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AUTOMATIC DERIVATION OF COMPOSITIONAL RULES IN

AUTOMATED COMPOSITIONAL REASONING

BOW-YAW WANG

Abstract. Soundness of compositional reasoning rules depends on computa-
tional models and sometimes is rather involved. Since it is tedious to establish
new rules, verifiers are forced to mould verification problems into a handful
of proof rules available to them. In this paper, a syntactic approach to es-
tablishing soundness of proof rules in automated compositional reasoning is
shown. Not only can our work justify all proof rules known to us automat-
ically, but also derive new circular rules by intuitionistic reasoning without
human intervention. Practitioners can now develop their own rules in auto-
mated compositional reasoning through learning rather easily.

1. Introduction

One of the most effective techniques to alleviate the state-explosion problem in
formal verification is compositional reasoning. The technique divides compositions
and conquers the verification problem by parts. The decomposition however cannot
be done naively. Oftentimes, components function correctly only in specific con-
texts; they may not work separately. Assume-guarantee reasoning circumvents the
problem by introducing environmental assumptions. Components are not checked
against arbitrary environment, but verified under certain assumptions. Neverthe-
less, making proper environmental assumptions requires clairvoyance. It is so te-
dious a task that one would like to do without.

In [4], the problem is solved by a novel application of the L∗ learning algorithm.
Consider, for example, the following assume-guarantee rule where M |= P denotes
that the system M satisfies the property P .

M0‖A |= P M1 |= A

M0‖M1 |= P

To apply the rule, the new paradigm constructs an assumption A satisfying all
premises by automated supervised learning. By the completeness of the proof rule
and the L∗ algorithm, it is guaranteed that a proper assumption A will be construed
if the composition does satisfy the property.

But few proof rules have been established in automated compositional reasoning.
Since proofs of their soundness are essentially tedious case analysis, verifiers may
be reluctant to develop new rules lest introducing flaws in the paradigm. Moreover,
existing proof rules for other computational models may not apply because their
proofs of soundness often depend on different assumptions. Subsequently, all veri-
fication tasks must be moulded into a handful of proof rules available in automated
compositional reasoning. The effectiveness and applicability of the new paradigm
are therefore impeded.
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In this paper, a proof-theoretic technique for establishing soundness of proof
rules in automated compositional reasoning is developed. We begin with the simple
observation that regular languages are closed under Boolean operations and form
a Boolean algebra. The proof system LK for classical logic can hence be used to
deduce relations among regular sets syntactically.

Nonetheless classical logic has its limitation. Consider the following circular
compositional rule in [2].

M0‖P1 |= P0 P0‖M1 |= P1

M0‖M1 |= P0‖P1

If we think compositions as conjunctions and satisfactions as implications, it is easy
to see that the rules is not sound even in the Boolean domain. Hence the circular
compositional rule cannot be derived in any sound proof system for Boolean algebra.

Following Abadi and Plotkin’s work in [1], we show that non-empty, prefix-
closed regular languages form a Heyting algebra. Hence the proof system LJ for
intuitionistic logic can be used to deduce relations among them. Moreover, a circu-
lar inference rule in [1] is shown to be sound in the Heyting algebra. After adding
it in the system LJ , we are able to derive the soundness of the aforementioned
circular compositional proof rule syntactically.

With the help of modern proof assistants, we can in fact justify compositional
rules automatically. For the classical interpretation, the proof assistant Isabelle [9]
is used to establish the soundness of all proof rules in [4, 3]. The proof assis-
tant Coq [8] proves the soundness of a circular compositional rule and variants
of assume-guarantee rules in [4, 3] by intuitionistic reasoning. The proof search
engines in both tools are able to justify all rules without human intervention. Ver-
ifiers are hence liberated from tedious case analysis in proofs of soundness and can
establish their own rules effortlessly.

Many compositional reasoning rules have been proposed in literature (for a com-
prehensive introduction, see [5]). The present work focuses on the rules used in
automated compositional reasoning via learning [4, 3]. Instead of proposing new
rules for the paradigm, a systematic way to establishing compositional rules is de-
veloped. Since it is impossible to enumerate all rules for various scenarios, we feel
our work could be more useful to practitioners.

Although we are motivated by the advent of automated compositional reason-
ing, our techniques borrow extensively from Abadi and Plotkin [1]. There are,
nonetheless, a couple of essential differences. The computational model in [1] is
very abstract where a property is a set of sequences consisting of alternating states
and agents. Ours is, on the other hand, very specific where all system behaviors
and properties are but regular languages. Secondly, all our constructions are shown
to preserve regularity. They therefore fit perfectly in the context of automated
compositional reasoning.

The paper is organized as follows. After the preliminaries in Section 2, a classical
interpretation of propositional logic over regular languages and its limitation is
presented in Section 3. The intuitionistic interpretation is then followed in Section 4.
Applications are illustrated in Section 5. We briefly discuss the completeness issues
in Section 6. Finally, we conclude the paper in Section 7.
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2. Preliminaries

The systems LK for classical logic and LJ for intuitionistic logic are briefly
described in this section. It is known that the system LK is sound and complete for
Boolean algebra while the system LJ for Heyting algebra. We begin the definitions
of algebraic models and their properties. They are followed by the descriptions of
proof systems. Elementary results in finite automata theory are also recalled. For
more detailed exposition, please refer to [7, 10, 6].

A partially ordered set P = (P,≤) consists of a set P and a reflexive, anti-
symmetric, and transitive binary relation ≤ over P . Given a set A ⊆ P , an element
u is an upper bound of A if a ≤ u for all a ∈ A. The element u is a least upper
bound if u is an upper bound of A and u ≤ v for any upper bound v of A. Lower
bounds and greatest lower bounds of A can be defined symmetrically. Since ≤ is
anti-symmetric, it is straightforward to verify that least upper bounds and greatest
lower bounds for a fixed set are unique.

Definition 1. A lattice L = (L,≤,�,�) is a partially ordered set where the least
upper bound (a � b) and the greatest lower bound (a � b) exist for any {a, b} with
a, b ∈ L.

It is easy to verify that a ≤ b if and only if a� b = b and a� b = a in any lattice.

Lemma 1. Let L = (L,≤,�,�) be a lattice. Then a ≤ b if and only if a � b = b

and a � b = a for a, b ∈ L.

Proof. Suppose a ≤ b. We have a � b ≤ a and b ≤ a � b by definition of a � b and
a � b. Since a and b are respectively a lower bound and an upper bound of {a, b},
a ≤ a � b and a � b ≤ b as well.
a = a � b ≤ b and a ≤ a � b = b by definition. �

Given a lattice L = (L,≤,�,�), we say it is distributive if a� (b� c) = (a� b)�
(a � c) and a � (b � c) = (a � b) � (a � c) for a, b, c ∈ L. The lattice L is bounded if
it has a unit 1 ∈ L and a zero 0 ∈ L such that 0 ≤ a and a ≤ 1 for all a ∈ L.

In a bounded lattice L = (L,≤,�,�), b is a complement of a if a � b = 1 and
a� b = 0. A bounded lattice L is complemented if each element has a complement.
It can be shown that complements are unique in any bounded distributive lattice.

Lemma 2. Let L = (L,≤,�,�) be a bounded distributive lattice. If a′ and a′′ are
complements of a, then a′ = a′′.

Proof. Recall that a � a′ = 1, a � a′ = 0, a � a′′ = 1, and a � a′′ = 0. Then
a′ = a′ � 1 = a′ � (a � a′′) = (a′ � a) � (a′ � a′′) = a′ � a′′. Hence a′ ≤ a′′.
Symmetrically, a′′ ≤ a′. Therefore a′ = a′′. �

A Boolean algebra is but a complemented distributive lattice. Since comple-
ments, zero, and unit are unique, we give them distinct notations in the following
definition.

Definition 2. A Boolean algebra B = (B,≤,�,�,−, 0, 1) is a complemented dis-
tributive lattice where

• a � b and a � b are the least upper bound and the greatest lower bound of a
and b respectively;

• −a is the complement of a; and
• 0 and 1 are its zero and unit respectively.
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The complement of a can be viewed as the greatest element incompatible with a
(that is, the greatest c such that a � c = 0). The view can be generalized to define
complements relative to arbitrary elements as follows.

Definition 3. Let L = (L,≤,�,�) be a lattice. For any a and b in L, a pseudo-
complement of a relative to b is an element p in L such that

for all c, c ≤ p if and only if a � c ≤ b.

Since a lattice is also a partial ordered set, pseudo-complements of a relative to
b are in fact unique. We hence write a⇒ b for the pseudo-complement of a relative
to b. A lattice L is relatively pseudo-complemented if the pseudo-complement of
a relative to b exists for all a and b. It can be shown that the unit exists in any
relatively pseudo-complemented lattice.

A Heyting algebra can now be defined formally as a relative pseudo-complemented
lattice with a zero.

Definition 4. A Heyting algebra H = (H, ≤, �, �, ⇒, 0, 1) is a relatively pseudo-
complemented lattice with a zero where

• a � b and a � b are the least upper bound and the greatest lower bound of a
and b respectively;

• a⇒ b is the pseudo-complement of a relative to b; and
• 0 and 1 are its zero and unit respectively.

The following lemma relates pseudo-complements with the partial order in a
lattice. It is very useful when the syntactic deduction and semantic interpretation
are linked together later in our exposition.

Lemma 3. Let L = (L,≤,�,�) be a relatively pseudo-complemented lattice. Then
a⇒ b = 1 if and only if a ≤ b.

Proof. Recall that for any c ∈ L, a � c ≤ b iff c ≤ a⇒ b.
Suppose a ⇒ b = 1. Since c ≤ 1 for all c ∈ L, we have a � c ≤ b for all c ∈ L.

Particularly, a � 1 = a ≤ b.
On the other hand, suppose a ≤ b. Hence a� 1 = a ≤ b. Thus, 1 ≤ a⇒ b. Since

a⇒ b ≤ 1, we have a⇒ b = 1 as required. �

Lemma 4. Let B = (B,≤,�,�,−, 0, 1) be a Boolean algebra. Then B is relatively
pseudo-complemented.

Proof. Consider any a, b ∈ B. Define a ⇒ b to be −a � b. We will show c ≤ a ⇒ b

if and only if a � c ≤ b for all c.
Suppose c ≤ a⇒ b = −a � b. Then

a � c ≤ a � (−a � b) = (a � −a) � (a � b) = a � b ≤ b.

On the other hand, suppose a � c ≤ b. Then

c = c � 1 = c � (−a � a) = (c � −a) � (c � a) ≤ −a � (c � a) ≤ −a � b.

�

By Lemma 4, a Boolean algebra is also a Heyting algebra.
We will consider both classical and intuitionistic propositional logics in this work.

Given a set PV of propositional variables, the syntax of propositional formulae is
defined as follows.

ϕ = PV ⊥ ϕ ∨ ϕ ϕ ∧ ϕ ϕ→ ϕ
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Ax P atomic
P,Γ K Δ, P

L⊥
⊥,Γ K

Γ K Δ
LW

ϕ,Γ K Δ

Γ K Δ
RW

Γ K Δ, ϕ
ϕ, ϕ′,Γ K Δ

L∧
ϕ ∧ ϕ′,Γ K Δ

Γ K Δ, ϕ Γ K Δ, ϕ′

R∧
Γ K Δ, ϕ ∧ ϕ′

ϕ,Γ K Δ ϕ′,Γ K Δ
L∨

ϕ ∨ ϕ′,Γ K Δ

Γ K Δ, ϕ, ϕ′

R∨
Γ K Δ, ϕ ∨ ϕ′

Γ K Δ, ϕ ϕ′,Γ K Δ
L→

ϕ→ ϕ′,Γ K Δ

ϕ,Γ K Δ, ϕ′

R→
Γ K Δ, ϕ→ ϕ′

Figure 1. The System LK0

We will use ϕ, ϕ′, ψ to range over propositional formulae and abbreviate ¬ϕ and
ϕ↔ ϕ′ for ϕ→ ⊥ and (ϕ→ ϕ′) ∧ (ϕ′ → ϕ) respectively.

Let Γ and Δ be finite sets of propositional formulae. A sequent is of the form
Γ • Δ. For simplicity, we write ϕ,Γ • Δ, ϕ′ for {ϕ}∪Γ • Δ∪{ϕ′}. An inference
rule in a proof system is denoted by

Γ0 • Δ0 · · · Γn • Δn
�

Γ • Δ

where � is the label of the rule, Γ0 • Δ0, . . ., Γn • Δn its premises, and Γ • Δ its
conclusion. A proof tree is a tree-like structure constructed according to inference
rules in a proof system. Proof systems offer a syntactic way to derive valid formulae.
Gentzen defines the proof system LK for classical first-order logic. The system LK0

for its propositional fragment is presented in Figure 1.1 A proof tree in system LK0

can be found in Figure 3 (a).
Let B = (B,≤,�,�,−, 0, 1) be a Boolean algebra. Define a valuation ρ in B to

be a mapping from PV to B. The valuation [[ϕ]]ρK of a propositional formula ϕ is
defined as follows.

[[V ]]ρK = ρ(V ) for V ∈ PV [[⊥]]ρK = 0
[[ϕ ∨ ϕ′]]ρK = [[ϕ]]ρK � [[ϕ′]]ρK [[ϕ ∧ ϕ′]]ρK = [[ϕ]]ρK � [[ϕ′]]ρK

[[ϕ→ ϕ′]]ρK = −[[ϕ]]ρK � [[ϕ′]]ρK

Given a Boolean algebra B = (B,≤,�,�,−, 0, 1), a valuation ρ in B, a propo-
sitional formula ϕ, and a set of propositional formulae Γ, we define B, ρ |=K ϕ if
[[ϕ]]ρK = 1 and B, ρ |=K Γ if B, ρ |=K ϕ for all ϕ ∈ Γ. Finally, Γ |=K ϕ if B, ρ |=K Γ
implies B, ρ |=K ϕ for all B, ρ.

The following theorem states that the system LK0 is both sound and complete
with respect to Boolean algebra.

Theorem 1. Let Γ be a set of propositional formulae and ϕ a propositional formula.
Γ K ϕ if and only if Γ |=K ϕ.

In contrast to classical logic, intuitionistic logic does not admit the law of ex-
cluded middle (ϕ ∨ ¬ϕ). Philosophically, intuitionistic logic is closely related to
constructivism. Its proof system, however, can be obtained from the system LK

with a simple restriction: all sequents have exactly one formula at their right-hand

1Figure 1 is in fact a variant of the system LK, see [10].



6 BOW-YAW WANG

Ax P atomic
P,Γ J P

L⊥
⊥,Γ J ψ

Γ J ψ
LW

ϕ,Γ J ψ
ϕ, ϕ′,Γ J ψ

L∧
ϕ ∧ ϕ′,Γ J ψ

Γ J ψ Γ J ψ
′

R∧
Γ J ψ ∧ ψ′

ϕ,Γ J ψ ϕ′,Γ J ψ
L∨

ϕ ∨ ϕ′,Γ J ψ

Γ J ψi
R∨ (i = 0, 1)

Γ J ψ0 ∨ ψ1

Γ J ϕ ϕ′,Γ J ψ
L→

ϕ→ ϕ′,Γ J ψ

ϕ,Γ J ψ
R→

Γ J ϕ→ ψ

Figure 2. The System LJ0

side. Figure 2 shows the propositional fragment of Gentzen’s system LJ for intu-
itionistic logic. A sample proof tree in system LJ0 is shown in Figure 3 (b).

Let H = (H,≤,�,�,⇒, 0, 1) be a Heyting algebra. A valuation η in H is a
mapping from PV to H . Similarly, we define the valuation [[•]]ηJ over propositional
formulae as follows.

[[V ]]ηJ = η(V ) for V ∈ PV [[⊥]]ηJ = 0
[[ϕ ∨ ϕ′]]ηJ = [[ϕ]]ηJ � [[ϕ′]]ηJ [[ϕ ∧ ϕ′]]ηJ = [[ϕ]]ηJ � [[ϕ′]]ηJ

[[ϕ→ ϕ′]]ηJ = [[ϕ]]ηJ ⇒ [[ϕ′]]ηJ

Let H = (H,≤,�,�,⇒, 0, 1) be a Heyting algebra, η a valuation, ϕ a proposi-
tional formula, and Γ a set of propositional formulae. The following satisfaction
relations are defined similarly: H, ρ |=J ϕ if [[ϕ]]ρ = 1, H, ρ |=J Γ if H, ρ |=J ϕ for
all ϕ ∈ Γ, and Γ |=J ϕ if H, ρ |=J Γ implies H, ρ |=J ϕ for all H, ρ. The system LJ0

is both sound and complete with respect to Heyting algebra.

Theorem 2. Let Γ be a set of propositional formulae and ϕ a propositional formula.
Γ J ϕ if and only if Γ |=J ϕ.

Fix a set Σ of alphabets. A string is a finite sequence a1a2 · · ·an such that
ai ∈ Σ for 1 ≤ i ≤ n. The set of strings over Σ is denoted by Σ∗. Given a string
w = a1a2 · · · an, its length (denoted by |w|) is n. The empty string ε is the string
of length 0. Moreover, the i-prefix of w = a1a2 · · · a|w|, denoted by w ↓i, is the
substring a1a2 · · ·ai. We define w0 to be ε for any w ∈ Σ∗. A language over Σ is
a subset of Σ∗. We say a language L ⊆ Σ∗ is prefix-closed if for any string w ∈ L,
w↓i∈ L for all 0 ≤ i ≤ |w|.

Definition 5. A finite state automaton M is a tuple (Q, q0,−→, F ) where

• Q is a non-empty finite set of states;
• q0 ∈ Q is its initial state;
• −→⊆ Q× Σ ×Q is the total transition relation; and
• F ⊆ Q is the accepting states.

We say a finite state automaton is deterministic if −→ is a total function from
Q × Σ to Q. It is known that determinism does not change the expressiveness of

finite automata [7]. For clarity, we write q
a

−→ q′ for (q, a, q′) ∈−→. A run of a
string w = a1a2 · · · an in M is a finite alternating sequence q0a1q1a2 · · · qn−1anqn

such that qi
ai+1

−→ qi+1 for 0 ≤ i < n; it is accepting if qn ∈ F . We say a string w is
accepted by M if there is an accepting run of w in M . The set of all strings accepted
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by M is called the language accepted by M and denoted by L(M). A language
L ⊆ Σ∗ is regular if there is a finite state automaton M such that L = L(M).

Let L ⊆ Σ∗ be regular. Define L = Σ∗ \ L. It is known that regular languages
are closed under Boolean operations [7].

Theorem 3. Let L and L′ be regular. Then L ∪ L′, L ∩ L′, and L are regular.

3. Classical Interpretation

It is trivial to see that regular languages form a Boolean algebra. More formally,
consider the set R = {L ⊆ Σ∗ : L is regular }. The following theorem follows
directly from the closure property of regular sets.

Theorem 4. Let R = (R,⊆,∪,∩, •, ∅,Σ∗). R is a Boolean algebra.

Proof. Let L,L′ ∈ R. Then L ∪ L′, L ∩ L′, and L are in R by Theorem 3. Both
∅ and Σ∗ are trivially regular. Furthermore, we have L ∪ L = Σ∗ and L ∩ L = ∅.
Finally, ∅ ⊆ L and L ⊆ Σ∗ for any L ∈ R. �

Theorem 1 immediately gives the following corollary.

Corollary 1. Let ρ be a valuation in R and ϕ a propositional formula. If Γ K ϕ,
then R, ρ |=K Γ implies R, ρ |=K ϕ.

To illustrate the significance of Corollary 1, let us consider the following scenario.
Suppose we are given five regular languages M0, M1, A0, A1, and P . Further,
assume M0∩A0 ⊆ P , M1∩A1 ⊆ P , and A0∩A1 ⊆ P . We can deduce M0∩M1 ⊆ P

as follows. First, consider the valuation ρ that assigns propositional variables to
regular languages of the same name. Suppose there is a proof tree for the following
sequent.

M0 ∧A0 → P,M1 ∧A1 → P,¬A0 ∧ ¬A1 → P K M0 ∧M1 → P.

Corollary 1 asserts that if R, ρ |=K M0 ∧ A0 → P , R, ρ |=K M1 ∧ A1 → P ,
and R, ρ |=K ¬A0 ∧ ¬A1 → P , then R, ρ |=K M0 ∧ M1 → P . Lemma 3 gives
exactly what we want in R. Hence the proof tree in Figure 3 (a) suffices to prove
M0 ∩ M1 ⊆ P . Note that we do not make semantic arguments in the analysis.
Instead, Corollary 1 allows us to derive semantic property (M0 ∩ M1 ⊆ P ) by
manipulating sequents syntactically.

3.1. Limitation of Classical Interpretation. Consider the following circular
inference rule proposed in [1].

 [(E →M) ∧ (M → E)] →M

It is easy to see that the valuation of the formula is 0 by taking E = M = 0 in any
Boolean algebra. Since the system LK0 is sound for Boolean algebra, we conclude
that the rule cannot be derived by the proof system. But it does not imply that the
rule is not sound in other algebraic semantics. To give insights to the intuitionistic
interpretation, it is instructive to see how the rule fails in non-trivial cases.

Consider the automata in Figure 4. Let M and E denote the automaton shown
in Figure 4 (a) and (b) respectively. Let the valuation ρ be that ρ(E) = L(E)
and ρ(M) = L(M). Observe that the string bd �∈ L(M). Hence bd ∈ ρ(M →

E) = L(M) ∪ L(E). Similarly, bd ∈ ρ(E → M). But bd �∈ L(M). Thus ρ(M →
E) ∩ ρ(E → M) �⊆ ρ(M). Hence � [(E → M) ∧ (M → E)] → M by Lemma 3.
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(a) The automaton M

a

a,b,c,d

a

b

c,d a,b a,b

a,b,c,d

c

d
cdb

c,d

(b) The automaton E

Figure 4. Limitation of Classical Interpretation

Note that both L(M) and L(E) are non-empty and prefix-closed. The argument is
still valid should we restrict to non-empty, prefix-closed regular languages.

In classical interpretation, the valuation of E → M is defined as ρ(E) ∪ ρ(M).
Any string not in ρ(E) belongs to ρ(E → M), even though it may not belong to

ρ(M). The problem arises exactly when ρ(E)∩ρ(M) is not empty. One may suspect
that the valuation of E →M is defined too liberally in classical interpretation and
resort to a more conservative version. This is indeed the approach taken by Abadi
and Plotkin and followed in this work.

4. Interpretation à la Abadi and Plotkin

In order to admit circular compositional rules, an interpretation inspired by [1]
is proposed here. Mimicking the definition of relative pseudo-complements in [1],
we show that non-empty, prefix-closed regular languages form a Heyting algebra.
Hence the system LJ0 can be used to derive compositional rules in the new inter-
pretation. Moreover, we will prove the soundness of the circular inference rule in
Section 3.1. It allows us to derive other circular compositional rules.

We use the regular set {ε} as the zero element. The following lemma shows that
our choice is indeed justified.

Lemma 5. Let L be a non-empty, prefix-closed language. Then ε ∈ L if and only
if L �= ∅.

Proof. If ε ∈ L, L �= ∅ trivially. Now suppose w ∈ L. Since L is prefix-closed,
w↓n∈ L for 0 ≤ n ≤ |w|. Particularly, w↓0= ε ∈ L. �

Similarly, we would like to know whether two non-empty, prefix-closed regular
languages are closed under intersection and union. This is shown in the following
lemma.

Lemma 6. Let K and L be non-empty, prefix-closed regular languages. Then K∩L
and K ∪ L are non-empty, prefix-closed regular languages.

Proof. Since regular languages are closed under Boolean operators. K ∩ L and
K ∪ L are regular. Further, ε ∈ K and ε ∈ L by Lemma 5. Hence both K ∩ L and
K ∪ L are non-empty. It remains to show both are prefix-closed.

Consider any string w ∈ K ∩ L. Hence w ∈ K. Thus all prefixes of w are in K

since K is prefix-closed. Similarly, all prefixes of w are in L. Thus all prefixes of w
are in K ∩ L.
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The case for K ∪ L is proved similarly. �

For relative pseudo-complements, we follow the definition in [1]. Note that the
following definition does not allude to closure properties. In order to define a
Heyting algebra, one must show that non-empty, prefix-closed regular languages
are closed under relative pseudo-complementation.

Definition 6. Let K and L be prefix-closed languages. Define

K → L = {w : w↓n∈ K → w↓n∈ L for 0 ≤ n ≤ |w|}.

We first show that the language K → L defined above is indeed the pseudo-
complement of K relative to L.

Proposition 1. Let K, L, and M be prefix-closed languages. Then K ∩M ⊆ L if
and only if M ⊆ K → L.

Proof. Assume K ∩M ⊆ L and w ∈M , but w �∈ K → L. Then there is an n such
that w↓n∈ K but w↓n �∈ L. Since w ∈M and M is prefix-closed, w↓n∈M . Hence
w↓n∈ K ∩M . Thus w↓n∈ L, a contradiction.

On the other hand, assume M ⊆ K → L and w ∈ K ∩M . Since w ∈ M and
M ⊆ K → L, w ∈ K → L. Particularly, w ∈ K implies w ∈ L. But w ∈ K by
assumption. Hence w ∈ L as required. �

Next, we show that K → L is non-empty and prefix-closed if both K and L are
non-empty and prefix-closed.

Lemma 7. Let K and L be non-empty, prefix-closed languages. Then K → L is
non-empty and prefix-closed.

Proof. Since both K and L are non-empty and prefix-closed, ε ∈ K and ε ∈ L.
Hence ε ∈ K → L by definition.

Now suppose w ∈ K → L. We have w ↓n∈ K → w ↓n∈ L for 0 ≤ n ≤ |w|.
Consider any prefix w ↓i, we have w ↓j∈ K → w ↓j∈ L for 0 ≤ j ≤ i. That is,
w↓i∈ K → L. �

It remains to show that regularity is preserved by Definition 6. Given two deter-
ministic finite state automata M and N , we construct a new automaton M → N

such that L(M → N) = L(M) → L(N). Our idea is to use an extra bit to accu-
mulate information while simulating both automata. Let B = { false, true } be the
Boolean domain. The following definition gives the construction of M → N .

Definition 7. Let M = (P, p0,−→M , FM ) and N = (Q, q0,−→N , FN ) be deter-
ministic finite state automata accepting prefix-closed languages. Define the finite
state automaton M → N = (P ×Q× B, (p0, q0, b0),−→, F ) as follows.

• b0 =

{
true if p0 ∈ FM → q0 ∈ FN

false otherwise

• (p, q, b)
a

−→ (p′, q′, b′) if

– p
a

−→M p′;

– q
a

−→N q′; and

– b′ =

{
true if b = true and p′ ∈ FM → q′ ∈ FN

false otherwise
• F = {(p, q, true) : p ∈ P, q ∈ Q}.

The automaton M → E of the automata M and E in Figure 4 is shown in
Figure 5. Note that the bold states are the products of the unaccepting states in
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c
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d
c

b
d
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Figure 5. The automaton M → E

Figure 4. Any string prefixed by strings in L(M) and followed by those in L(E) is
accepted in the bold accepting state in M → E. On the other hand, strings prefixed
by L(E) and followed by L(M) reach the other bold state and are not accepted.

To show that L(M → N) = L(M) → L(N), we use the following lemma.

Lemma 8. Let M = (P, p0,−→M , FM ) and N = (Q, q0,−→N , FN ) be determin-
istic finite state automata accepting non-empty, prefix-closed languages. Consider

any w ∈ Σ∗ and (p0, q0, b0)
w↓n

−→ (pn, qn, bn) in M → N for 0 ≤ n ≤ |w|. Then b|w|

is true if and only if pn ∈ FM → qn ∈ FN for 0 ≤ n ≤ |w|.

Proof. (⇒) We prove pn ∈ FM → qn ∈ FN and bn = true by induction on |w| − n.
The basis, n = |w|, follows by the assumption b|w| is true and the definition of b|w|.
Now suppose pn ∈ FM → qn ∈ FN and bn = true. Observe that bn−1 = true for
bn = true. Hence pn−1 ∈ FM → qn−1 ∈ FN follows by bn−1 = true.

(⇐) We prove bn = true by induction on n. Since p0 ∈ FM → q0 ∈ FN ,
b0 = true by definition. Suppose bn = true. Then bn+1 = true for bn = true and
pn+1 ∈ FM → qn+1 ∈ FN . �

Now we establish L(M → N) = L(M) → L(N) in the following proposition.

Proposition 2. Let M and N be deterministic finite state automata accepting
non-empty, prefix-closed languages. Then L(M) → L(N) = L(M → N).

Proof. Let M = (P, p0,−→M , FM ) and N = (Q, q0,−→N , FN ) be two determin-
istic finite state automata accepting non-empty, prefix-closed regular languages.

Consider any w ∈ Σ∗. Define (p0, q0, b0)
w↓n

−→ (pn, qn, bn) as in Lemma 8.
Suppose w ∈ L(M → N). It suffices to show that w ↓n∈ L(M) → w ↓n∈ L(N)

for 0 ≤ n ≤ |w|. From Lemma 8, bn = true for 0 ≤ n ≤ |w|. By the definition of
M → N , we have

• p0

w↓n

−→M pn;

• q0
w↓n

−→N qn; and
• pn ∈ FM → qn ∈ FN .
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That is, w↓n∈ L(M) → w↓n∈ L(N) for 0 ≤ n ≤ |w|. Hence w ∈ L(M) → L(N).
On the other hand, suppose w ∈ L(M) → L(N). Thus, w ↓n∈ L(M) → w ↓n∈

L(N) for 0 ≤ n ≤ |w|. Consider (p0, q0, b0)
w↓n

−→ (pn, qn, bn) in M → N . We show
b|w| = true by induction on n. When n = 0, w ↓n= ε ∈ L(M) → L(N). Hence
ε ∈ L(M) → ε ∈ L(N). Therefore p0 ∈ FM → q0 ∈ FN . That is, b0 = true.

Suppose bn = true. Consider w↓n+1. We have w↓n+1∈ L(M) → w↓n+1∈ L(N).
Hence pn+1 ∈ FM → qn+1 ∈ FN . Therefore bn+1 = true as required. �

Since any regular language is accepted by a deterministic finite state automaton,
the following proposition is only a simple application of Proposition 2.

Proposition 3. Let K and L be non-empty, prefix-closed regular languages. Then
K → L is a non-empty, prefix-closed regular language.

Proof. Let M = (P,Σ, p0,−→M , FM ) and N = (Q,Σ, q0,−→N , FN ) be determinis-
tic finite automata such that L(M) = K and L(N) = L respectively. By Proposi-
tion 2, K → L = L(M → N). Hence K → L is regular. By Lemma 7, K → L is
both non-empty and prefix-closed as required. �

After establishing closure properties of various operations, we can define our
new interpretation. More formally, define R+ = {L ⊆ Σ∗ : L is non-empty, prefix-
closed, and regular }. The following theorem states that non-empty, prefix-closed
regular languages form a Heyting algebra.

Theorem 5. Let R+ = (R+,⊆,∪,∩,→, {ε},Σ∗). R+ is a Heyting algebra.

Proof. Lemma 6 and Proposition 3 show that R+ is closed under ∪, ∩, and →.
Lemma 5 shows that {ε} ⊆ L for any non-empty, prefix-closed language L. Finally,
Proposition 1 shows K → L is the pseudo-complement of K relative to L. �

Similar to our classical interpretation, Theorem 2 immediately gives the following
corollary.

Corollary 2. Let η be a valuation in R+ and ϕ a propositional formula. If Γ J ϕ,
then R+, η |=J Γ implies R+, η |=J ϕ.

Let us consider an application of Corollary 2. Suppose five non-empty prefix-
closed regular languages M0, M1, A0, A1, and P are given. Assume M0 ∩A0 ⊆ P ,
M1 ∩ A1 ⊆ P , and A0 ∪A1 ∪ P = Σ∗. We can deduce M0 ∩M1 ⊆ P by the proof
tree in Figure 3 (b).

We now turn our attention to circular compositional rules. A modified version
of non-interference in [1] is used in our setting.

Definition 8. Let L be a non-empty, prefix-closed language in Σ∗ and Ξ ⊆ Σ. We
say L constrains Ξ, write L � Ξ, if for any w ∈ L, wa ∈ L for any a �∈ Ξ.

Exploiting non-interference, we show the circular inference rule presented in
Section 3.1 is sound by induction on the length of strings.

Theorem 6. Let K and L be non-empty, prefix-closed languages such that K�ΞK ,
L � ΞL, and ΞK ∩ ΞL = ∅. Then (K → L) ∩ (L→ K) ⊆ K.

Proof. Consider any w ∈ (K → L) ∩ (L → K). We will show w ↓n∈ K for all
n. Firstly, w ↓0= ε ∈ K for K is non-empty. Now suppose w ↓i+1= w ↓i ai and
w↓i∈ K. Consider the following two cases.

(1) ai �∈ ΞK . Then w↓i+1∈ K for K � ΞK .
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(2) ai ∈ ΞK . Since w ↓i∈ K and w ↓i∈ K → L, w ↓i∈ L. Hence w ↓i+1∈ L for
ai ∈ ΞK and ΞK ∩ ΞL = ∅. Finally, w ↓i+1∈ K follows from w ↓i+1∈ L →
K. �

Theorem 6 admits an inference rule in the Heyting algebra R+. More formally,
we have the following corollary.

Corollary 3. Let P and P ′ be propositional variables, Ξ and Ξ′ subsets of Σ, η
a valuation in R+. Then we have the following inference rule with respect to R+,
provided ρ(P ) � Ξ, ρ(P ′) � Ξ′, Ξ ∩ Ξ′ = ∅.

CP
 [(P → P ′) ∧ (P ′ → P )] → P

We can in fact characterize the non-empty prefix-closed language satisfying the
condition in Theorem 6. Note that one direction can be obtained by syntactic
deduction. It is the other direction where semantic analysis is needed.

Theorem 7. Let K and L be non-empty, prefix-closed languages such that K�ΞK ,
L � ΞL, and ΞK ∩ ΞL = ∅. Then (K → L) ∩ (L→ K) = K ∩ L.

Proof. By Theorem 6, (K → L) ∩ (L → K) ⊆ K. Symmetrically, we have (K →
L) ∩ (L→ K) ⊆ L.

Conversely, consider any w ∈ K∩L. Then w↓n∈ K and w↓n∈ L for 0 ≤ n ≤ |w|.
Hence w ↓n∈ K → w ↓n∈ L for 0 ≤ n ≤ |w|. That is, w ∈ K → L. Similarly,
w ∈ L→ K. Therefore K ∩ L ⊆ (K → L) ∩ (L→ K). �

We can similarly summarize Theorem 7 as follows.

Corollary 4. Let P and P ′ be propositional variables, Ξ and Ξ′ subsets of Σ, η
a valuation in R+. Then we have the following inference rule with respect to R+,
provided ρ(P ) � Ξ, ρ(P ′) � Ξ′, Ξ ∩ Ξ′ = ∅.

CP’
 [(P → P ′) ∧ (P ′ → P )] ↔ (P ∧ P ′)

Consider again the examples in Figure 4. Observe that both L(M) and L(E) are
non-empty and prefix-closed. Let the valuation η in R+ be that η(M) = L(M) and
η(E) = L(E). Since b ∈ η(E) but b �∈ η(M), b �∈ η(E →M). Thus bd �∈ η(E →M).
Also note that η(M) � {a, b} and η(E) � {c, d}. Hence η(M → E) ∩ η(E → M) =
η(M) ∩ η(E) by Theorem 7.

5. Applications

A subclass of finite state automata called labeled transition systems (LTS) is
used for system modeling in automated compositional reasoning [3, 4]. Intuitively,
an LTS models observable actions by its alphabets. When shared observable actions
are performed in compositions of two LTS’s, they are synchronized. On the other
hand, an LTS stutters when the other LTS performs its local observable actions
in their composition. In this section, we apply proof-theoretic techniques to derive
soundness of compositional rules for LTS’s. It is noted that our formulation is
equivalent to those in [4, 3].

Definition 9. Let ΣM ⊆ Σ. A deterministic finite state automaton M = (Q, q0,
−→, F ) is a labeled transition system (LTS) over ΣM if the following conditions
are satisfied.

(1) q
a

−→ q for any q ∈ Q and a ∈ Σ \ ΣM ; and
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(2) for any n ≥ 0, if qi
ai+1

−→ qi+1 for 0 ≤ i < n and qn ∈ F , then qi ∈ F for
0 ≤ i ≤ n.

With our formulation, it is possible to define compositions of two LTS’s by
product automata. Let M = (P, p0,−→M , FM ) and N = (Q, q0,−→N , FN ) be two
LTS’s over ΣM and ΣN respectively. Define the finite state automaton M‖N =
(P ×Q, (p0, q0),−→, F ) as follows.

• (p, q)
a

−→ (p′, q′) if p
a

−→M p′ and q
a

−→N q′; and
• F = FM × FN .

The following lemma shows that product automata are indeed LTS’s.

Lemma 9. Let M = (P, p0,−→M , FM ) and N = (Q, q0,−→N , FN ) be two LTS’s
over ΣM and ΣN respectively. Then M‖N is an LTS over ΣM ∪ ΣN .

Proof. If (p, q)
a

−→ (p′, q′) and (p, q)
a

−→ (p′′, q′′), then p
a

−→M p′ and p
a

−→M p′′.
Thus p′ = p′′ for the LTS M is a deterministic finite state automaton. Similarly,
q′ = q′′. Hence (p′, q′) = (p′′, q′′), M‖N is deterministic.

Suppose a �∈ ΣM ∪ ΣN . We have p
a

−→M p and q
a

−→N q for M and N are

LTS’s. Hence (p, q)
a

−→ (p, q) as required.

For any n, consider (pi, qi)
ai+1

−→ (pi+1, qi+2) for 0 ≤ i < n in M‖N . If (pn, qn) ∈
FM × FN , pn ∈ FM and qn ∈ FN . But then pi ∈ FM and qi ∈ FN and hence
(pi, qi) ∈ FN for 0 ≤ i ≤ n. �

We now recall that the language accepted by the product of two automata is
nothing more than the intersection of the languages accepted by these automata.

Proposition 4. Let M = (P, p0,−→M , FM ) and N = (Q, q0,−→N , FN ) be two
LTS’s over ΣM and ΣN respectively. Then L(M‖N) = L(M) ∩ L(N).

Proof. Let w = a1 · · · an ∈ L(M0‖M1). Then there is a run

(p0, q0)
a1−→ (p1, q1)

a2−→ · · ·
an−→ (pn, qn).

By the definition of the transition relation of M‖N , we have two runs

p0
a1−→M p1

a2−→M · · ·
an−→M pn in M

and
q0

a1−→N q1
a2−→N · · ·

an−→N qn in N

respectively. Hence w ∈ L(M) and w ∈ L(N).
The other direction is similar. �

Symmetrically, define the finite state automaton M +N = (P ×Q, (p0, q0), −→,

F ) as follows.

• (p, q)
a

−→ (p′, q′) if p
a

−→M p′ and q
a

−→N q′; and
• F = (FM ×Q) ∪ (P × FN ).

Lemma 10. Let M = (P, p0,−→M , FM ) and N = (Q, q0,−→N , FN ) be two LTS’s
over ΣM and ΣN respectively. Then M +N is an LTS over ΣM ∪ ΣN .

Proof. M +N is deterministic for M and N are both deterministic.

If a �∈ ΣM ∪ ΣN , (p, q)
a

−→ (p, q) for p
a

−→M p and q
a

−→N q.

For any n, let (pi, qi)
ai+1

−→ (pi+1, qi+1) for 0 ≤ i < n in M +N . If (pn, qn) ∈ F ,
let pn ∈ FM without loss of generality. Since M is an LTS, pi ∈ FM for 0 ≤ i ≤ n.
That is, (pi, qi) ∈ F for 0 ≤ i ≤ n. �
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It is as easy to show that M + N accepts the union of the languages accepted
by M and N .

Proposition 5. Let M = (P, p0,−→M , FM ) and N = (Q, q0,−→N , FN ) be two
LTS’s over ΣM and ΣN respectively. Then L(M +N) = L(M) ∪ L(N).

Proof. Consider an accepting run for w = a1 · · · an ∈ L(M +N) as follows.

(p0, q0)
a1−→ (p1, q1)

a2−→ · · ·
an−→ (pn, qn).

Suppose pn ∈ FM without loss of generality. The following run is accepting in M .

p0
a1−→M p1

a2−→M · · ·
an−→M pn

Hence w ∈ L(M).
The other direction is similar. �

The automaton M → N is also an LTS if M and N both are. The alphabets
constrained by M → N is also characterized in the following lemma.

Lemma 11. Let M = (P, p0,−→M , FM ) and N = (Q, q0,−→N , FN ) be two LTS’s
over ΣM and ΣN respectively. Then M → N is an LTS over ΣM ∪ ΣN .

Proof. Let M → N = (P ×Q× B, (p0, q0, b0),−→, F ).

Suppose (p, q, b)
a

−→ (p′, q′, b′) and (p, q, b)
a

−→ (p′′, q′′, b′′) in M → N . Since M
and N are deterministic, p′ = p′′ and q′ = q′′. But then b′′ = p′′ ∈ FM → q′′ ∈
FN = p′ ∈ FM → q′ ∈ FN = b′. M → N is deterministic.

For any (p, q, b) and a �∈ ΣM ∪ ΣN , we have p
a

−→M p and q
a

−→N q for M and

N are LTS’s. Hence (p, q, b)
a

−→ (p, q, b).

Finally, suppose (pi, qi, bi)
ai+1

−→ (pi+1, qi+1, bi+1) for 0 ≤ i < n and bn = true.
Define w = a1 · · · an. We have bi = true for 0 ≤ i ≤ n by Lemma 8. Hence
(pi, qi, bi) ∈ F for 0 ≤ i ≤ n. �

Suppose two LTS’s M and P are given as specifications of the system and the
property respectively. We would like to know whether all observable action se-
quences of the system M conform to the property P , namely, L(M) ⊆ L(P ). If so,
we say M satisfies P and denote it by M |= P .

Example 1. Consider the following assume-guarantee rule where M0,M1, A0, A1, P

are LTS’s, and M denotes the complement automaton of M . Note that M is not
necessary an LTS [3].

M0‖A0 |= P M1‖A1 |= P A0‖A1 |= P

M0‖M1 |= P

By Lemma 3, Proposition 4, and Theorem 1, we can establish the soundness of
the rule by finding a proof tree of the following sequent.

M0 ∧A0 → P,M1 ∧A1 → P,¬A0 ∧ ¬A1 → P K M0 ∧M1 → P

The proof tree is shown in Figure 3 (a). �

Using existing proof assistants, we can in fact prove all rules in [3] and [4] auto-
matically.

Example 2. Suppose M0,M1, A0, A1, P0, P1 are LTS’s. Consider the following
assume-guarantee rule in [3].
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M0‖A0 |= P0 M1‖A1 |= P1 M0‖A0 |= A1 M1‖A1 |= A0 L(A0‖A1) = ∅

M0‖M1 |= P0‖P1

It suffices to find a proof for the following sequent.

M0 ∧A0 → P0, M1 ∧A1 → P1,

M0 ∧A0 → A1, M1 ∧A1 → A0,

¬A0 ∧ ¬A1 ↔ false
K M0 ∧M1 → P0 ∧ P1

We can use the proof assistant Isabelle to search the proof tree. The following
transcript shows that the tactic auto () is able to find a proof automatically.2

> Goal ”ALL M0 M1 A0 A1 P0 P1 . (M0 & A0 → P0) & (M1 & A1 → P1) &
(M0 & A0 → A1) & (M1 & A1 → A0) & (( ¬ A0 & ¬ A1) = False) ⇒
(M0 & M1 → P0 & P1)”;
Level 0 (1 subgoal)
...
> auto ();
Level 1
ALL M0 M1 A0 A1 P0 P1.

(M0 & A0 → P0) &
(M1 & A1 → P1) &
(M0 & A0 → A1) & (M1 & A1 → A0) & ( ¬ A0 & ¬ A1) = False

⇒M0 & M1 → P0 & P1
No subgoals!
val it = () : unit �

To establish circular compositional rules in our framework, the intuitionistic
interpretation in Section 4 is needed. The following lemma characterizes the lan-
guages accepted by LTS’s and the alphabets constrained by them.

Lemma 12. Let M = (Q, q0,−→, F ) be an LTS over ΣM . Then L(M) is non-
empty, prefix-closed, and L(M) � ΣM .

Proof. The condition (2) in Definition 9 implies q0 ∈ F by taking n = 0. Hence
ε ∈ L(M), L(M) is not empty.

Consider any string w = a1a2 · · · an ∈ L(M). We have qi
ai+1

−→ qi+1 for 0 ≤ i < n.
Since w ∈ L(M), qn ∈ F . Hence qi ∈ F for 0 ≤ i ≤ n by condition (2). That is,
w↓i∈ L(M) for 0 ≤ i ≤ n. L(M) is prefix-closed.

Suppose b �∈ ΣM . Hence b ∈ Σ \ ΣM . Consider the string wa = a1a2 · · · anb.

Since qn
b

−→ qn by the first condition, wa ∈ F if and only if w ∈ F . Thus for any
w ∈ F , wb ∈ F . Therefore L(M) �ΣM . �

As in classical interpretation, we can apply the techniques developed in Section 4
to establish the soundness of various compositional rules syntactically.

Example 3. Let M0,M1, A0, A1 and P be LTS’s. Consider the following assume-
guarantee rule.

M0‖A0 |= P M1‖A1 |= P |= A0 +A1 + P

M0‖M1 |= P

2Strictly speaking, Isabelle uses natural deduction instead of Gentzen’s system LK. Both proof
systems are equivalent [9].
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By Lemma 3, Proposition 4, Proposition 5, and Theorem 2, we can establish the
soundness of the rule by finding a proof tree of the following sequent.

M0 ∧A0 → P,M1 ∧A1 → P,A0 ∨A1 ∨ P J M0 ∧M1 → P

The proof tree is shown in Figure 3 (b). �

It is as easy to establish compositional rules by existing proof assistants auto-
matically. The following example demonstrates how Coq may be used to automate
our proof search.

Example 4. Let M0,M1, A0, A1, and P be LTS’s. Consider the following assume-
guarantee rule.

M0‖A0 |= P M1‖A1 |= P M0 |= A0 +A1

M0‖M1 |= P

We will search a proof tree for the following sequent.

M0 ∧A0 → P,M1 ∧A1 → P,M0 → A0 ∨A1 J M0 ∧M1 → P

The following transcript demonstrates that the proof search engine in Coq is able
to find a proof tree by the tactic intuition.3

Coq < Goal forall M0 M1 A0 A1 P : Prop, (M0 ∧ A0 → P) ∧ (M1 ∧ A1 → P) ∧
(M0 → A0 ∨ A1) → (M0 ∧ M1 → P) .
1 subgoal

============================
forall M0 M1 A0 A1 P : Prop,

(M0 ∧ A0 → P) ∧ (M1 ∧ A1 → P) ∧ (M0 → A0 ∨ A1) → M0 ∧ M1 → P

Unnamed thm < intuition .
Proof completed. �

We now prove a circular compositional rule in the following example.

Example 5. Let M0,M1, P0, and P1 be LTS’s. Further, assume P0 and P1 are
over Σ0 and Σ1 respectively, and Σ0 ∩ Σ1 = ∅. Consider the following circular
compositional rule [2].

M0‖P1 |= P0 P0‖M1 |= P1

M0‖M1 |= P0‖P1

By Theorem 7, we have

 (P0 → P1) ∧ (P1 → P0) → (P0 ∧ P1).

Hence the soundness of the given circular compositional rule can be established by
finding a proof tree for the following sequent.

(P0 → P1) ∧ (P1 → P0) → (P0 ∧ P1),
M0 ∧ P1 → P0, P0 ∧M1 → P1

J M0 ∧M1 → P0 ∧ P1

Figure 6 shows the desired proof tree.
It is also possible to automate our proof search in Coq. The following transcript

shows how Coq helps us complete our proof.

3Again, Coq uses a natural deduction system equivalent to LJ [8].
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Coq < Goal forall M0 M1 P0 P1 : Prop, ((P0 → P1) ∧ (P1 → P0) → (P0 ∧ P1))
∧ (M0 ∧ P0 → P1) ∧ (M1 ∧ P1 → P0) → (M0 ∧ M1 → P0 ∧ P1) .
1 subgoal

============================
forall M0 M1 P0 P1 : Prop,

((P0 → P1) ∧ (P1 → P0) → P0 ∧ P1) ∧
(M0 ∧ P0 → P1) ∧ (M1 ∧ P1 → P0) → M0 ∧ M1 → P0 ∧ P1

Unnamed thm < intuition .
Proof completed. �

6. On Completeness

In automated compositional reasoning, the completeness of assume-guarantee
rules is required for its termination. We say an assume-guarantee rule is complete
if it is always possible to satisfy its premises when its conclusion holds. Thanks to
Lemma 3, we can formulate the completeness of assume-guarantee rules as a proof
search problem. However, it requires the proof systems LK and LJ for classical
and intuitionistic first-order logics. We only give an example and leave technical
details in another exposition.

Example 6. Let M0,M1, A0, A1, P0, and P1 be LTS’s. Consider again the follow-
ing assume-guarantee rule.

M0‖A0 |= P0 M1‖A1 |= P1 M0‖A0 |= A1 M1‖A1 |= A0 L(A0‖A1) = ∅

M0‖M1 |= P0‖P1

To show the rule is complete, it suffices to find a proof tree for the following
sequent in system LK.

M0 ∧M1 → P0 ∧ P1 K ∃A0A1.

(M0 ∧A0 → P0) ∧ (M1 ∧A1 → P1) ∧
(M0 ∧A0 → A1) ∧ (M1 ∧A1 → A0) ∧

(¬A0 ∧ ¬A1) ↔ false

Isabelle can in fact find a proof automatically.
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> Goal ”ALL M0 M1 P0 P1 . (M0 & M1 → P0 & P1) ⇒ EX A0 A1 .
(M0 & A0 → P0) & (M1 & A1 → P1) & (M0 & A0 → A1)
& (M1 & A1 → A0) & ((¬ A0 & ¬ A1) = False)”;
Level 0 (1 subgoal)
ALL M0 M1 P0 P1. M0 & M1 → P0 & P1
⇒ EX A0 A1.

(M0 & A0 → P0) & (M1 & A1 → P1) & (M0 & A0 → A1) &
(M1 & A1 → A0) & (¬ A0 & ¬ A1) = False

1. ALL M0 M1 P0 P1. M0 & M1 → P0 & P1
⇒ EX A0 A1.

(M0 & A0 → P0) & (M1 & A1 → P1) & (M0 & A0 → A1) &
(M1 & A1 → A0) & (¬ A0 & ¬ A1) = False

val it = [] : Thm.thm list
> auto ();
Level 1
ALL M0 M1 P0 P1. M0 & M1 → P0 & P1
⇒ EX A0 A1.

(M0 & A0 → P0) & (M1 & A1 → P1) & (M0 & A0 → A1) &
(M1 & A1 → A0) & (¬ A0 & ¬ A1) = False

No subgoals! �

7. Conclusions

Soundness theorems for compositional reasoning rules depend on underlying
computational models and can be very involved. Since it is tedious to develop new
compositional rules, few such rules are available for each computational model. The
limitation may impede the usability of automated compositional reasoning because
verifiers are forced to mould their problems in a handful of compositional rules
available to them. In this paper, we apply proof theory and develop a syntactic
approach to analyze compositional rules for automated compositional reasoning.
With publicly available proof assistants, we are able to establish compositional
rules automatically. Our work may improve the usability of automated composi-
tional reasoning by automatic derivation of its compositional rules.

Although all compositional rules known to us have been established automati-
cally, it is unclear whether these proof systems are complete with respect to regular
languages. It would also be of great interest if one could generate compositional
rules to fit different circumstances automatically. Moreover, it is unclear whether
our techniques can be applied to ω-regular sets. These questions are currently
under investigation.

For the past years, research topics which combine both model checking and
theorem proving are not unusual. This work may be viewed as another attempt to
integrate both technologies. In contrast to previous attempts, we prefer a white-
boxed approach where both techniques are coupled more tightly. Our presentation
gives a rather detailed exposition in the hope to reveal theoretical foundations of
both technologies.
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