Automatic Derivation of Compositional Rules in Automated Compositional Reasoning

Bow－Yaw Wang

January 15， 2007 ｜｜Technical Report No．TR－IIS－07－002
http：／／www．iis．sinica．edu．tw／LIB／TechReport／tr2007／tr07．html

AUTOMATIC DERIVATION OF COMPOSITIONAL RULES IN AUTOMATED COMPOSITIONAL REASONING

BOW-YAW WANG

Abstract

Soundness of compositional reasoning rules depends on computational models and sometimes is rather involved. Since it is tedious to establish new rules, verifiers are forced to mould verification problems into a handful of proof rules available to them. In this paper, a syntactic approach to establishing soundness of proof rules in automated compositional reasoning is shown. Not only can our work justify all proof rules known to us automatically, but also derive new circular rules by intuitionistic reasoning without human intervention. Practitioners can now develop their own rules in automated compositional reasoning through learning rather easily.

1. Introduction

One of the most effective techniques to alleviate the state-explosion problem in formal verification is compositional reasoning. The technique divides compositions and conquers the verification problem by parts. The decomposition however cannot be done naively. Oftentimes, components function correctly only in specific contexts; they may not work separately. Assume-guarantee reasoning circumvents the problem by introducing environmental assumptions. Components are not checked against arbitrary environment, but verified under certain assumptions. Nevertheless, making proper environmental assumptions requires clairvoyance. It is so tedious a task that one would like to do without.

In [4], the problem is solved by a novel application of the L^{*} learning algorithm. Consider, for example, the following assume-guarantee rule where $M \models P$ denotes that the system M satisfies the property P.

$$
\frac{M_{0} \| A \models P \quad M_{1} \models A}{M_{0} \| M_{1} \models P}
$$

To apply the rule, the new paradigm constructs an assumption A satisfying all premises by automated supervised learning. By the completeness of the proof rule and the L^{*} algorithm, it is guaranteed that a proper assumption A will be construed if the composition does satisfy the property.

But few proof rules have been established in automated compositional reasoning. Since proofs of their soundness are essentially tedious case analysis, verifiers may be reluctant to develop new rules lest introducing flaws in the paradigm. Moreover, existing proof rules for other computational models may not apply because their proofs of soundness often depend on different assumptions. Subsequently, all verification tasks must be moulded into a handful of proof rules available in automated compositional reasoning. The effectiveness and applicability of the new paradigm are therefore impeded.

In this paper, a proof-theoretic technique for establishing soundness of proof rules in automated compositional reasoning is developed. We begin with the simple observation that regular languages are closed under Boolean operations and form a Boolean algebra. The proof system $L K$ for classical logic can hence be used to deduce relations among regular sets syntactically.

Nonetheless classical logic has its limitation. Consider the following circular compositional rule in [2].

$$
\frac{M_{0}\left\|P_{1} \models P_{0} \quad P_{0}\right\| M_{1} \models P_{1}}{M_{0}\left\|M_{1} \models P_{0}\right\| P_{1}}
$$

If we think compositions as conjunctions and satisfactions as implications, it is easy to see that the rules is not sound even in the Boolean domain. Hence the circular compositional rule cannot be derived in any sound proof system for Boolean algebra.

Following Abadi and Plotkin's work in [1], we show that non-empty, prefixclosed regular languages form a Heyting algebra. Hence the proof system $L J$ for intuitionistic logic can be used to deduce relations among them. Moreover, a circular inference rule in [1] is shown to be sound in the Heyting algebra. After adding it in the system $L J$, we are able to derive the soundness of the aforementioned circular compositional proof rule syntactically.

With the help of modern proof assistants, we can in fact justify compositional rules automatically. For the classical interpretation, the proof assistant Isabelle [9] is used to establish the soundness of all proof rules in $[4,3]$. The proof assistant CoQ [8] proves the soundness of a circular compositional rule and variants of assume-guarantee rules in $[4,3]$ by intuitionistic reasoning. The proof search engines in both tools are able to justify all rules without human intervention. Verifiers are hence liberated from tedious case analysis in proofs of soundness and can establish their own rules effortlessly.

Many compositional reasoning rules have been proposed in literature (for a comprehensive introduction, see [5]). The present work focuses on the rules used in automated compositional reasoning via learning [4, 3]. Instead of proposing new rules for the paradigm, a systematic way to establishing compositional rules is developed. Since it is impossible to enumerate all rules for various scenarios, we feel our work could be more useful to practitioners.

Although we are motivated by the advent of automated compositional reasoning, our techniques borrow extensively from Abadi and Plotkin [1]. There are, nonetheless, a couple of essential differences. The computational model in [1] is very abstract where a property is a set of sequences consisting of alternating states and agents. Ours is, on the other hand, very specific where all system behaviors and properties are but regular languages. Secondly, all our constructions are shown to preserve regularity. They therefore fit perfectly in the context of automated compositional reasoning.

The paper is organized as follows. After the preliminaries in Section 2, a classical interpretation of propositional logic over regular languages and its limitation is presented in Section 3. The intuitionistic interpretation is then followed in Section 4. Applications are illustrated in Section 5. We briefly discuss the completeness issues in Section 6. Finally, we conclude the paper in Section 7.

2. Preliminaries

The systems $L K$ for classical logic and $L J$ for intuitionistic logic are briefly described in this section. It is known that the system $L K$ is sound and complete for Boolean algebra while the system $L J$ for Heyting algebra. We begin the definitions of algebraic models and their properties. They are followed by the descriptions of proof systems. Elementary results in finite automata theory are also recalled. For more detailed exposition, please refer to $[7,10,6]$.

A partially ordered set $\mathcal{P}=(P, \leq)$ consists of a set P and a reflexive, antisymmetric, and transitive binary relation \leq over P. Given a set $A \subseteq P$, an element u is an upper bound of A if $a \leq u$ for all $a \in A$. The element u is a least upper bound if u is an upper bound of A and $u \leq v$ for any upper bound v of A. Lower bounds and greatest lower bounds of A can be defined symmetrically. Since \leq is anti-symmetric, it is straightforward to verify that least upper bounds and greatest lower bounds for a fixed set are unique.

Definition 1. A lattice $\mathcal{L}=(L, \leq, \sqcup, \sqcap)$ is a partially ordered set where the least upper bound $(a \sqcup b)$ and the greatest lower bound ($a \sqcap b$) exist for any $\{a, b\}$ with $a, b \in L$.

It is easy to verify that $a \leq b$ if and only if $a \sqcup b=b$ and $a \sqcap b=a$ in any lattice.
Lemma 1. Let $\mathcal{L}=(L, \leq, \sqcup, \sqcap)$ be a lattice. Then $a \leq b$ if and only if $a \sqcup b=b$ and $a \sqcap b=a$ for $a, b \in L$.

Proof. Suppose $a \leq b$. We have $a \sqcap b \leq a$ and $b \leq a \sqcup b$ by definition of $a \sqcap b$ and $a \sqcup b$. Since a and b are respectively a lower bound and an upper bound of $\{a, b\}$, $a \leq a \sqcap b$ and $a \sqcup b \leq b$ as well.
$a=a \sqcap b \leq b$ and $a \leq a \sqcup b=b$ by definition.
Given a lattice $\mathcal{L}=(L, \leq, \sqcup, \sqcap)$, we say it is distributive if $a \sqcap(b \sqcup c)=(a \sqcap b) \sqcup$ $(a \sqcap c)$ and $a \sqcup(b \sqcap c)=(a \sqcup b) \sqcap(a \sqcup c)$ for $a, b, c \in L$. The lattice \mathcal{L} is bounded if it has a unit $1 \in L$ and a zero $0 \in L$ such that $0 \leq a$ and $a \leq 1$ for all $a \in L$.

In a bounded lattice $\mathcal{L}=(L, \leq, \sqcup, \sqcap), b$ is a complement of a if $a \sqcup b=1$ and $a \sqcap b=0$. A bounded lattice \mathcal{L} is complemented if each element has a complement. It can be shown that complements are unique in any bounded distributive lattice.

Lemma 2. Let $\mathcal{L}=(L, \leq, \sqcup, \sqcap)$ be a bounded distributive lattice. If a^{\prime} and $a^{\prime \prime}$ are complements of a, then $a^{\prime}=a^{\prime \prime}$.
Proof. Recall that $a \sqcup a^{\prime}=1, a \sqcap a^{\prime}=0, a \sqcup a^{\prime \prime}=1$, and $a \sqcap a^{\prime \prime}=0$. Then $a^{\prime}=a^{\prime} \sqcap 1=a^{\prime} \sqcap\left(a \sqcup a^{\prime \prime}\right)=\left(a^{\prime} \sqcap a\right) \sqcup\left(a^{\prime} \sqcap a^{\prime \prime}\right)=a^{\prime} \sqcap a^{\prime \prime}$. Hence $a^{\prime} \leq a^{\prime \prime}$. Symmetrically, $a^{\prime \prime} \leq a^{\prime}$. Therefore $a^{\prime}=a^{\prime \prime}$.

A Boolean algebra is but a complemented distributive lattice. Since complements, zero, and unit are unique, we give them distinct notations in the following definition.

Definition 2. A Boolean algebra $\mathcal{B}=(B, \leq, \sqcup, \sqcap,-, 0,1)$ is a complemented distributive lattice where

- $a \sqcup b$ and $a \sqcap b$ are the least upper bound and the greatest lower bound of a and b respectively;
- -a is the complement of a; and
- 0 and 1 are its zero and unit respectively.

The complement of a can be viewed as the greatest element incompatible with a (that is, the greatest c such that $a \sqcap c=0$). The view can be generalized to define complements relative to arbitrary elements as follows.
Definition 3. Let $\mathcal{L}=(L, \leq, \sqcup, \sqcap)$ be a lattice. For any a and b in L, a pseudocomplement of a relative to b is an element p in L such that

$$
\text { for all } c, c \leq p \text { if and only if } a \sqcap c \leq b .
$$

Since a lattice is also a partial ordered set, pseudo-complements of a relative to b are in fact unique. We hence write $a \Rightarrow b$ for the pseudo-complement of a relative to b. A lattice \mathcal{L} is relatively pseudo-complemented if the pseudo-complement of a relative to b exists for all a and b. It can be shown that the unit exists in any relatively pseudo-complemented lattice.

A Heyting algebra can now be defined formally as a relative pseudo-complemented lattice with a zero.

Definition 4. A Heyting algebra $\mathcal{H}=(H, \leq, \sqcup, \sqcap, \Rightarrow, 0,1)$ is a relatively pseudocomplemented lattice with a zero where

- $a \sqcup b$ and $a \sqcap b$ are the least upper bound and the greatest lower bound of a and b respectively;
- $a \Rightarrow b$ is the pseudo-complement of a relative to b; and
- 0 and 1 are its zero and unit respectively.

The following lemma relates pseudo-complements with the partial order in a lattice. It is very useful when the syntactic deduction and semantic interpretation are linked together later in our exposition.

Lemma 3. Let $\mathcal{L}=(L, \leq, \sqcup, \sqcap)$ be a relatively pseudo-complemented lattice. Then $a \Rightarrow b=1$ if and only if $a \leq b$.

Proof. Recall that for any $c \in L, a \sqcap c \leq b$ iff $c \leq a \Rightarrow b$.
Suppose $a \Rightarrow b=1$. Since $c \leq 1$ for all $c \in L$, we have $a \sqcap c \leq b$ for all $c \in L$. Particularly, $a \sqcap 1=a \leq b$.

On the other hand, suppose $a \leq b$. Hence $a \sqcap 1=a \leq b$. Thus, $1 \leq a \Rightarrow b$. Since $a \Rightarrow b \leq 1$, we have $a \Rightarrow b=1$ as required.

Lemma 4. Let $\mathcal{B}=(B, \leq, \sqcup, \sqcap,-, 0,1)$ be a Boolean algebra. Then \mathcal{B} is relatively pseudo-complemented.

Proof. Consider any $a, b \in B$. Define $a \Rightarrow b$ to be $-a \sqcup b$. We will show $c \leq a \Rightarrow b$
if and only if $a \sqcap c \leq b$ for all c.
Suppose $c \leq a \Rightarrow b=-a \sqcup b$. Then

$$
a \sqcap c \leq a \sqcap(-a \sqcup b)=(a \sqcap-a) \sqcup(a \sqcap b)=a \sqcap b \leq b .
$$

On the other hand, suppose $a \sqcap c \leq b$. Then

$$
c=c \sqcap 1=c \sqcap(-a \sqcup a)=(c \sqcap-a) \sqcup(c \sqcap a) \leq-a \sqcup(c \sqcap a) \leq-a \sqcup b .
$$

By Lemma 4, a Boolean algebra is also a Heyting algebra.
We will consider both classical and intuitionistic propositional logics in this work. Given a set $P V$ of propositional variables, the syntax of propositional formulae is defined as follows.

$$
\varphi=P V|\perp| \varphi \vee \varphi|\varphi \wedge \varphi| \varphi \rightarrow \varphi
$$

Ax $\xlongequal[P, \Gamma \vdash_{K} \Delta, P]{ } P$ atomic

$$
\operatorname{LW} \frac{\Gamma \vdash_{K} \Delta}{\varphi, \Gamma \vdash_{K} \Delta}
$$

$$
\operatorname{RW} \frac{\frac{\perp, \Gamma \vdash}{\Gamma} \vdash_{K} \Delta}{\Gamma \vdash_{K} \Delta, \varphi}
$$

$$
\mathrm{L} \wedge \frac{\varphi, \varphi^{\prime}, \Gamma \vdash_{K} \Delta}{\varphi \wedge \varphi^{\prime}, \Gamma \vdash_{K} \Delta} \quad \mathrm{R} \wedge \frac{\Gamma \vdash_{K} \Delta, \varphi}{\Gamma \vdash_{K} \Delta, \varphi \wedge \vdash_{K} \Delta, \varphi \vdash_{K} \Delta, \varphi^{\prime}}
$$

$$
\operatorname{L\vee } \frac{\varphi, \Gamma \vdash_{K} \Delta}{\varphi \vee \varphi^{\prime}, \Gamma \vdash_{K} \Delta}
$$

$$
\mathrm{R} \vee \frac{\Gamma \vdash_{K} \Delta, \varphi, \varphi^{\prime}}{\Gamma \vdash_{K} \Delta, \varphi \vee \varphi^{\prime}}
$$

$$
\mathrm{L} \rightarrow \frac{\Gamma \vdash_{K} \Delta, \varphi \quad \varphi^{\prime}, \bar{\Gamma} \vdash_{K} \Delta}{\varphi \rightarrow \varphi^{\prime}, \Gamma \vdash_{K} \Delta}
$$

$$
\mathrm{R} \rightarrow \frac{\varphi, \Gamma \vdash_{K} \Delta, \varphi^{\prime}}{\Gamma \vdash_{K} \Delta, \varphi \rightarrow \varphi^{\prime}}
$$

Figure 1. The System $L K_{0}$

We will use $\varphi, \varphi^{\prime}, \psi$ to range over propositional formulae and abbreviate $\neg \varphi$ and $\varphi \leftrightarrow \varphi^{\prime}$ for $\varphi \rightarrow \perp$ and $\left(\varphi \rightarrow \varphi^{\prime}\right) \wedge\left(\varphi^{\prime} \rightarrow \varphi\right)$ respectively.

Let Γ and Δ be finite sets of propositional formulae. A sequent is of the form $\Gamma \vdash . \Delta$. For simplicity, we write $\varphi, \Gamma \vdash \bullet \Delta, \varphi^{\prime}$ for $\{\varphi\} \cup \Gamma \vdash \bullet \Delta \cup\left\{\varphi^{\prime}\right\}$. An inference rule in a proof system is denoted by

$$
\ell \frac{\Gamma_{0} \vdash_{\bullet} \Delta_{0} \quad \ldots}{} \begin{aligned}
& \Gamma \vdash \cdot \Delta \\
& \Gamma_{n} \vdash_{\bullet} \Delta_{n} \\
& \hline
\end{aligned}
$$

where ℓ is the label of the rule, $\Gamma_{0} \vdash, \Delta_{0}, \ldots, \Gamma_{n} \vdash \Delta_{n}$ its premises, and $\Gamma \vdash . \Delta$ its conclusion. A proof tree is a tree-like structure constructed according to inference rules in a proof system. Proof systems offer a syntactic way to derive valid formulae. Gentzen defines the proof system $L K$ for classical first-order logic. The system $L K_{0}$ for its propositional fragment is presented in Figure 1. ${ }^{1}$ A proof tree in system $L K_{0}$ can be found in Figure 3 (a).

Let $\mathcal{B}=(B, \leq, \sqcup, \sqcap,-, 0,1)$ be a Boolean algebra. Define a valuation ρ in \mathcal{B} to be a mapping from $P V$ to B. The valuation $\llbracket \varphi \rrbracket_{K}^{\rho}$ of a propositional formula φ is defined as follows.

$$
\begin{array}{rlrl}
\llbracket V \rrbracket_{K}^{\rho} & =\rho(V) \text { for } V \in P V & \llbracket \perp \rrbracket_{K}^{\rho} & =0 \\
\llbracket \varphi \vee \varphi^{\prime} \rrbracket_{K}^{\rho} & =\llbracket \varphi \rrbracket_{K}^{\rho} \sqcup \llbracket \varphi^{\prime} \rrbracket_{K}^{\rho} & \llbracket \varphi \wedge \varphi^{\prime} \rrbracket_{K}^{\rho} & =\llbracket \varphi \rrbracket_{K}^{\rho} \sqcap \llbracket \varphi^{\prime} \rrbracket_{K}^{\rho} \\
\llbracket \varphi \rightarrow \varphi^{\prime} \rrbracket_{K}^{\rho} & =-\llbracket \varphi \rrbracket_{K}^{\rho} \sqcup \llbracket \varphi^{\prime} \rrbracket_{K}^{\rho} &
\end{array}
$$

Given a Boolean algebra $\mathcal{B}=(B, \leq, \sqcup, \sqcap,-, 0,1)$, a valuation ρ in \mathcal{B}, a propositional formula φ, and a set of propositional formulae Γ, we define $\mathcal{B}, \rho \models_{K} \varphi$ if $\llbracket \varphi \rrbracket_{K}^{\rho}=1$ and $\mathcal{B}, \rho \models_{K} \Gamma$ if $\mathcal{B}, \rho \models_{K} \varphi$ for all $\varphi \in \Gamma$. Finally, $\Gamma \models_{K} \varphi$ if $\mathcal{B}, \rho \models_{K} \Gamma$ implies $\mathcal{B}, \rho \models_{K} \varphi$ for all \mathcal{B}, ρ.

The following theorem states that the system $L K_{0}$ is both sound and complete with respect to Boolean algebra.

Theorem 1. Let Γ be a set of propositional formulae and φ a propositional formula. $\Gamma \vdash_{K} \varphi$ if and only if $\Gamma \models_{K} \varphi$.

In contrast to classical logic, intuitionistic logic does not admit the law of excluded middle $(\varphi \vee \neg \varphi)$. Philosophically, intuitionistic logic is closely related to constructivism. Its proof system, however, can be obtained from the system $L K$ with a simple restriction: all sequents have exactly one formula at their right-hand

[^0]\[

$$
\begin{array}{rl}
\mathrm{Ax} \frac{\mathrm{~A}}{P, \Gamma \vdash_{J} P} P \text { atomic } & \mathrm{L} \perp \overline{\perp, \Gamma \vdash_{J} \psi} \\
\mathrm{LW} \frac{\Gamma \vdash_{J} \psi}{\varphi, \Gamma \vdash_{J} \psi} \\
\mathrm{~L} \wedge \frac{\varphi, \varphi^{\prime}, \Gamma \vdash_{J} \psi}{\varphi \wedge \varphi^{\prime}, \Gamma \vdash_{J} \psi} & \mathrm{R} \wedge \frac{\Gamma \vdash_{J} \psi}{\Gamma \vdash_{J} \psi \wedge \psi_{J}} \\
\mathrm{~L} \rightarrow \frac{\Gamma \vdash_{J} \vdash^{\prime}}{\varphi \vdash_{J} \varphi \varphi^{\prime}, \Gamma \vdash_{J} \psi}{\varphi_{J} \psi}_{\varphi^{\prime}, \Gamma \vdash_{J} \psi}^{\varphi \rightarrow \varphi^{\prime}, \Gamma \vdash_{J} \psi} & \mathrm{R} \vee \frac{\Gamma \vdash_{J} \psi_{i}}{\Gamma \vdash_{J} \psi_{0} \psi_{1}}(i=0,1) \\
\mathrm{L} & \mathrm{R} \rightarrow \frac{\varphi, \Gamma \vdash_{J} \psi}{\Gamma \vdash_{J} \varphi \rightarrow \psi}
\end{array}
$$
\]

Figure 2. The System $L J_{0}$
side. Figure 2 shows the propositional fragment of Gentzen's system $L J$ for intuitionistic logic. A sample proof tree in system $L J_{0}$ is shown in Figure 3 (b).

Let $\mathcal{H}=(H, \leq, \sqcup, \sqcap, \Rightarrow, 0,1)$ be a Heyting algebra. A valuation η in \mathcal{H} is a mapping from $P V$ to H. Similarly, we define the valuation $\llbracket \bullet \rrbracket_{J}^{\eta}$ over propositional formulae as follows.

$$
\begin{array}{rlrl}
\llbracket V \rrbracket_{J}^{\eta} & =\eta(V) \text { for } V \in P V & \llbracket \perp \rrbracket_{J}^{\eta} & =0 \\
\llbracket \varphi \vee \varphi^{\prime} \rrbracket^{\eta} & =\llbracket \varphi \rrbracket_{J}^{\eta} \sqcup \llbracket \varphi^{\prime} \rrbracket_{J}^{n} & \llbracket \varphi \wedge \varphi^{\prime} \rrbracket_{J}^{\eta} & =\llbracket \varphi \rrbracket_{J}^{\eta} \sqcap \llbracket \varphi^{\prime} \rrbracket_{J}^{\eta} \\
\llbracket \varphi \rightarrow \varphi^{\prime} \rrbracket_{J}^{\eta} & =\llbracket \varphi \rrbracket_{J}^{\eta} \Rightarrow \llbracket \varphi^{\prime} \rrbracket_{J}^{\eta} &
\end{array}
$$

Let $\mathcal{H}=(H, \leq, \sqcup, \sqcap, \Rightarrow, 0,1)$ be a Heyting algebra, η a valuation, φ a propositional formula, and Γ a set of propositional formulae. The following satisfaction relations are defined similarly: $\mathcal{H}, \rho \models_{J} \varphi$ if $\llbracket \varphi \rrbracket_{\rho}=1, \mathcal{H}, \rho \models_{J} \Gamma$ if $\mathcal{H}, \rho \models_{J} \varphi$ for all $\varphi \in \Gamma$, and $\Gamma \models_{J} \varphi$ if $\mathcal{H}, \rho \models_{J} \Gamma$ implies $\mathcal{H}, \rho \models_{J} \varphi$ for all \mathcal{H}, ρ. The system $L J_{0}$ is both sound and complete with respect to Heyting algebra.

Theorem 2. Let Γ be a set of propositional formulae and φ a propositional formula. $\Gamma \vdash_{J} \varphi$ if and only if $\Gamma \not \models_{J} \varphi$.

Fix a set Σ of alphabets. A string is a finite sequence $a_{1} a_{2} \cdots a_{n}$ such that $a_{i} \in \Sigma$ for $1 \leq i \leq n$. The set of strings over Σ is denoted by Σ^{*}. Given a string $w=a_{1} a_{2} \cdots a_{n}$, its length (denoted by $|w|$) is n. The empty string ϵ is the string of length 0 . Moreover, the i-prefix of $w=a_{1} a_{2} \cdots a_{|w|}$, denoted by $w \downarrow_{i}$, is the substring $a_{1} a_{2} \cdots a_{i}$. We define w_{0} to be ϵ for any $w \in \Sigma^{*}$. A language over Σ is a subset of Σ^{*}. We say a language $L \subseteq \Sigma^{*}$ is prefix-closed if for any string $w \in L$, $w \downarrow_{i} \in L$ for all $0 \leq i \leq|w|$.

Definition 5. A finite state automaton M is a tuple $\left(Q, q_{0}, \longrightarrow, F\right)$ where

- Q is a non-empty finite set of states;
- $q_{0} \in Q$ is its initial state;
- $\longrightarrow \subseteq Q \times \Sigma \times Q$ is the total transition relation; and
- $F \subseteq Q$ is the accepting states.

We say a finite state automaton is deterministic if \longrightarrow is a total function from $Q \times \Sigma$ to Q. It is known that determinism does not change the expressiveness of finite automata [7]. For clarity, we write $q \xrightarrow{a} q^{\prime}$ for $\left(q, a, q^{\prime}\right) \in \longrightarrow$. A run of a string $w=a_{1} a_{2} \cdots a_{n}$ in M is a finite alternating sequence $q_{0} a_{1} q_{1} a_{2} \cdots q_{n-1} a_{n} q_{n}$ such that $q_{i} \xrightarrow{a_{i+1}} q_{i+1}$ for $0 \leq i<n$; it is accepting if $q_{n} \in F$. We say a string w is accepted by M if there is an accepting run of w in M. The set of all strings accepted
by M is called the language accepted by M and denoted by $L(M)$. A language $L \subseteq \Sigma^{*}$ is regular if there is a finite state automaton M such that $L=L(M)$.

Let $L \subseteq \Sigma^{*}$ be regular. Define $\bar{L}=\Sigma^{*} \backslash L$. It is known that regular languages are closed under Boolean operations [7].
Theorem 3. Let L and L^{\prime} be regular. Then $L \cup L^{\prime}, L \cap L^{\prime}$, and \bar{L} are regular.

3. Classical Interpretation

It is trivial to see that regular languages form a Boolean algebra. More formally, consider the set $R=\left\{L \subseteq \Sigma^{*}: L\right.$ is regular $\}$. The following theorem follows directly from the closure property of regular sets.

Theorem 4. Let $\mathcal{R}=\left(R, \subseteq, \cup, \cap, \boldsymbol{\bullet}, \emptyset, \Sigma^{*}\right)$. \mathcal{R} is a Boolean algebra.
Proof. Let $L, L^{\prime} \in R$. Then $L \cup L^{\prime}, L \cap L^{\prime}$, and \bar{L} are in R by Theorem 3. Both \emptyset and Σ^{*} are trivially regular. Furthermore, we have $L \cup \bar{L}=\Sigma^{*}$ and $L \cap \bar{L}=\emptyset$. Finally, $\emptyset \subseteq L$ and $L \subseteq \Sigma^{*}$ for any $L \in R$.

Theorem 1 immediately gives the following corollary.
Corollary 1. Let ρ be a valuation in \mathcal{R} and φ a propositional formula. If $\Gamma \vdash_{K} \varphi$, then $\mathcal{R}, \rho \models_{K} \Gamma$ implies $\mathcal{R}, \rho \models_{K} \varphi$.

To illustrate the significance of Corollary 1 , let us consider the following scenario. Suppose we are given five regular languages $M_{0}, M_{1}, A_{0}, A_{1}$, and P. Further, assume $M_{0} \cap A_{0} \subseteq P, M_{1} \cap A_{1} \subseteq P$, and $\bar{A}_{0} \cap \bar{A}_{1} \subseteq P$. We can deduce $M_{0} \cap M_{1} \subseteq P$ as follows. First, consider the valuation ρ that assigns propositional variables to regular languages of the same name. Suppose there is a proof tree for the following sequent.

$$
M_{0} \wedge A_{0} \rightarrow P, M_{1} \wedge A_{1} \rightarrow P, \neg A_{0} \wedge \neg A_{1} \rightarrow P \vdash_{K} M_{0} \wedge M_{1} \rightarrow P
$$

Corollary 1 asserts that if $\mathcal{R}, \rho \models_{K} M_{0} \wedge A_{0} \rightarrow P, \mathcal{R}, \rho \models_{K} M_{1} \wedge A_{1} \rightarrow P$, and $\mathcal{R}, \rho \models_{K} \neg A_{0} \wedge \neg A_{1} \rightarrow P$, then $\mathcal{R}, \rho \models_{K} M_{0} \wedge M_{1} \rightarrow P$. Lemma 3 gives exactly what we want in \mathcal{R}. Hence the proof tree in Figure 3 (a) suffices to prove $M_{0} \cap M_{1} \subseteq P$. Note that we do not make semantic arguments in the analysis. Instead, Corollary 1 allows us to derive semantic property ($M_{0} \cap M_{1} \subseteq P$) by manipulating sequents syntactically.
3.1. Limitation of Classical Interpretation. Consider the following circular inference rule proposed in [1].

$$
\overline{\vdash[(E \rightarrow M) \wedge(M \rightarrow E)] \rightarrow M}
$$

It is easy to see that the valuation of the formula is 0 by taking $E=M=0$ in any Boolean algebra. Since the system $L K_{0}$ is sound for Boolean algebra, we conclude that the rule cannot be derived by the proof system. But it does not imply that the rule is not sound in other algebraic semantics. To give insights to the intuitionistic interpretation, it is instructive to see how the rule fails in non-trivial cases.

Consider the automata in Figure 4. Let M and E denote the automaton shown in Figure 4 (a) and (b) respectively. Let the valuation ρ be that $\rho(E)=L(E)$ and $\rho(M)=L(M)$. Observe that the string $b d \notin L(M)$. Hence $b d \in \rho(M \rightarrow$ $E)=\overline{L(M)} \cup L(E)$. Similarly, $b d \in \rho(E \rightarrow M)$. But $b d \notin L(M)$. Thus $\rho(M \rightarrow$ $E) \cap \rho(E \rightarrow M) \nsubseteq \rho(M)$. Hence $\forall[(E \rightarrow M) \wedge(M \rightarrow E)] \rightarrow M$ by Lemma 3 .
$\mathrm{Ax} \wedge \frac{\overline{M_{0}, A_{0} \vdash_{K} M_{0}} \quad \mathrm{Ax} \overline{M_{0}, A_{0} \vdash_{K} A_{0}}}{M_{0}, A_{0} \vdash_{K} M_{0} \wedge A_{0}}$

(a) The automaton M

(b) The automaton E

Figure 4. Limitation of Classical Interpretation
Note that both $L(M)$ and $L(E)$ are non-empty and prefix-closed. The argument is still valid should we restrict to non-empty, prefix-closed regular languages.

In classical interpretation, the valuation of $E \rightarrow M$ is defined as $\overline{\rho(E)} \cup \rho(M)$. Any string not in $\rho(E)$ belongs to $\rho(E \rightarrow M)$, even though it may not belong to $\rho(M)$. The problem arises exactly when $\overline{\rho(E)} \cap \overline{\rho(M)}$ is not empty. One may suspect that the valuation of $E \rightarrow M$ is defined too liberally in classical interpretation and resort to a more conservative version. This is indeed the approach taken by Abadi and Plotkin and followed in this work.

4. Interpretation À la Abadi and Plotkin

In order to admit circular compositional rules, an interpretation inspired by [1] is proposed here. Mimicking the definition of relative pseudo-complements in [1], we show that non-empty, prefix-closed regular languages form a Heyting algebra. Hence the system $L J_{0}$ can be used to derive compositional rules in the new interpretation. Moreover, we will prove the soundness of the circular inference rule in Section 3.1. It allows us to derive other circular compositional rules.

We use the regular set $\{\epsilon\}$ as the zero element. The following lemma shows that our choice is indeed justified.

Lemma 5. Let L be a non-empty, prefix-closed language. Then $\epsilon \in L$ if and only if $L \neq \emptyset$.
Proof. If $\epsilon \in L, L \neq \emptyset$ trivially. Now suppose $w \in L$. Since L is prefix-closed, $w \downarrow_{n} \in L$ for $0 \leq n \leq|w|$. Particularly, $w \downarrow_{0}=\epsilon \in L$.

Similarly, we would like to know whether two non-empty, prefix-closed regular languages are closed under intersection and union. This is shown in the following lemma.

Lemma 6. Let K and L be non-empty, prefix-closed regular languages. Then $K \cap L$ and $K \cup L$ are non-empty, prefix-closed regular languages.
Proof. Since regular languages are closed under Boolean operators. $K \cap L$ and $K \cup L$ are regular. Further, $\epsilon \in K$ and $\epsilon \in L$ by Lemma 5. Hence both $K \cap L$ and $K \cup L$ are non-empty. It remains to show both are prefix-closed.

Consider any string $w \in K \cap L$. Hence $w \in K$. Thus all prefixes of w are in K since K is prefix-closed. Similarly, all prefixes of w are in L. Thus all prefixes of w are in $K \cap L$.

The case for $K \cup L$ is proved similarly.
For relative pseudo-complements, we follow the definition in [1]. Note that the following definition does not allude to closure properties. In order to define a Heyting algebra, one must show that non-empty, prefix-closed regular languages are closed under relative pseudo-complementation.
Definition 6. Let K and L be prefix-closed languages. Define

$$
K \rightarrow L=\left\{w: w \downarrow_{n} \in K \rightarrow w \downarrow_{n} \in L \text { for } 0 \leq n \leq|w|\right\}
$$

We first show that the language $K \rightarrow L$ defined above is indeed the pseudocomplement of K relative to L.

Proposition 1. Let K, L, and M be prefix-closed languages. Then $K \cap M \subseteq L$ if and only if $M \subseteq K \rightarrow L$.
Proof. Assume $K \cap M \subseteq L$ and $w \in M$, but $w \notin K \rightarrow L$. Then there is an n such that $w \downarrow_{n} \in K$ but $w \downarrow_{n} \notin L$. Since $w \in M$ and M is prefix-closed, $w \downarrow_{n} \in M$. Hence $w \downarrow_{n} \in K \cap M$. Thus $w \downarrow_{n} \in L$, a contradiction.

On the other hand, assume $M \subseteq K \rightarrow L$ and $w \in K \cap M$. Since $w \in M$ and $M \subseteq K \rightarrow L, w \in K \rightarrow L$. Particularly, $w \in K$ implies $w \in L$. But $w \in K$ by assumption. Hence $w \in L$ as required.

Next, we show that $K \rightarrow L$ is non-empty and prefix-closed if both K and L are non-empty and prefix-closed.

Lemma 7. Let K and L be non-empty, prefix-closed languages. Then $K \rightarrow L$ is non-empty and prefix-closed.

Proof. Since both K and L are non-empty and prefix-closed, $\epsilon \in K$ and $\epsilon \in L$. Hence $\epsilon \in K \rightarrow L$ by definition.

Now suppose $w \in K \rightarrow L$. We have $w \downarrow_{n} \in K \rightarrow w \downarrow_{n} \in L$ for $0 \leq n \leq|w|$. Consider any prefix $w \downarrow_{i}$, we have $w \downarrow_{j} \in K \rightarrow w \downarrow_{j} \in L$ for $0 \leq j \leq i$. That is, $w \downarrow_{i} \in K \rightarrow L$.

It remains to show that regularity is preserved by Definition 6. Given two deterministic finite state automata M and N, we construct a new automaton $M \rightarrow N$ such that $L(M \rightarrow N)=L(M) \rightarrow L(N)$. Our idea is to use an extra bit to accumulate information while simulating both automata. Let $\mathbb{B}=\{$ false, true $\}$ be the Boolean domain. The following definition gives the construction of $M \rightarrow N$.

Definition 7. Let $M=\left(P, p_{0}, \longrightarrow_{M}, F_{M}\right)$ and $N=\left(Q, q_{0}, \longrightarrow_{N}, F_{N}\right)$ be deterministic finite state automata accepting prefix-closed languages. Define the finite state automaton $M \rightarrow N=\left(P \times Q \times \mathbb{B},\left(p_{0}, q_{0}, b_{0}\right), \longrightarrow, F\right)$ as follows.

- $b_{0}= \begin{cases}\text { true } & \text { if } p_{0} \in F_{M} \rightarrow q_{0} \in F_{N} \\ \text { false } & \text { otherwise }\end{cases}$
- $(p, q, b) \xrightarrow{a}\left(p^{\prime}, q^{\prime}, b^{\prime}\right)$ if
$-p \xrightarrow{a}_{M} p^{\prime}$;
$-q \xrightarrow{a}{ }_{N} q^{\prime}$; and
$-b^{\prime}= \begin{cases}\text { true } & \text { if } b=\text { true and } p^{\prime} \in F_{M} \rightarrow q^{\prime} \in F_{N} \\ \text { false } & \text { otherwise }\end{cases}$
- $F=\{(p, q$, true $): p \in P, q \in Q\}$.

The automaton $M \rightarrow E$ of the automata M and E in Figure 4 is shown in Figure 5. Note that the bold states are the products of the unaccepting states in

Figure 5. The automaton $M \rightarrow E$
Figure 4. Any string prefixed by strings in $\overline{L(M)}$ and followed by those in $\overline{L(E)}$ is accepted in the bold accepting state in $M \rightarrow E$. On the other hand, strings prefixed by $\overline{L(E)}$ and followed by $\overline{L(M)}$ reach the other bold state and are not accepted.

To show that $L(M \rightarrow N)=L(M) \rightarrow L(N)$, we use the following lemma.
Lemma 8. Let $M=\left(P, p_{0}, \longrightarrow_{M}, F_{M}\right)$ and $N=\left(Q, q_{0}, \longrightarrow_{N}, F_{N}\right)$ be deterministic finite state automata accepting non-empty, prefix-closed languages. Consider any $w \in \Sigma^{*}$ and $\left(p_{0}, q_{0}, b_{0}\right) \xrightarrow{w \downarrow_{n}}\left(p_{n}, q_{n}, b_{n}\right)$ in $M \rightarrow N$ for $0 \leq n \leq|w|$. Then $b_{|w|}$ is true if and only if $p_{n} \in F_{M} \rightarrow q_{n} \in F_{N}$ for $0 \leq n \leq|w|$.

Proof. (\Rightarrow) We prove $p_{n} \in F_{M} \rightarrow q_{n} \in F_{N}$ and $b_{n}=$ true by induction on $|w|-n$. The basis, $n=|w|$, follows by the assumption $b_{|w|}$ is true and the definition of $b_{|w|}$. Now suppose $p_{n} \in F_{M} \rightarrow q_{n} \in F_{N}$ and $b_{n}=$ true. Observe that $b_{n-1}=$ true for $b_{n}=$ true. Hence $p_{n-1} \in F_{M} \rightarrow q_{n-1} \in F_{N}$ follows by $b_{n-1}=$ true.
(\Leftarrow) We prove $b_{n}=$ true by induction on n. Since $p_{0} \in F_{M} \rightarrow q_{0} \in F_{N}$, $b_{0}=$ true by definition. Suppose $b_{n}=$ true. Then $b_{n+1}=$ true for $b_{n}=$ true and $p_{n+1} \in F_{M} \rightarrow q_{n+1} \in F_{N}$.

Now we establish $L(M \rightarrow N)=L(M) \rightarrow L(N)$ in the following proposition.
Proposition 2. Let M and N be deterministic finite state automata accepting non-empty, prefix-closed languages. Then $L(M) \rightarrow L(N)=L(M \rightarrow N)$.

Proof. Let $M=\left(P, p_{0}, \longrightarrow_{M}, F_{M}\right)$ and $N=\left(Q, q_{0}, \longrightarrow_{N}, F_{N}\right)$ be two deterministic finite state automata accepting non-empty, prefix-closed regular languages. Consider any $w \in \Sigma^{*}$. Define $\left(p_{0}, q_{0}, b_{0}\right) \xrightarrow{w \downarrow_{n}}\left(p_{n}, q_{n}, b_{n}\right)$ as in Lemma 8.

Suppose $w \in L(M \rightarrow N)$. It suffices to show that $w \downarrow_{n} \in L(M) \rightarrow w \downarrow_{n} \in L(N)$ for $0 \leq n \leq|w|$. From Lemma $8, b_{n}=$ true for $0 \leq n \leq|w|$. By the definition of $M \rightarrow N$, we have

- $p_{0} \xrightarrow{w \downarrow_{n}} M p_{n}$;
- $q_{0} \xrightarrow{w \downarrow_{n}} N q_{n}$; and
- $p_{n} \in F_{M} \rightarrow q_{n} \in F_{N}$.

That is, $w \downarrow_{n} \in L(M) \rightarrow w \downarrow_{n} \in L(N)$ for $0 \leq n \leq|w|$. Hence $w \in L(M) \rightarrow L(N)$.
On the other hand, suppose $w \in L(M) \rightarrow L(N)$. Thus, $w \downarrow_{n} \in L(M) \rightarrow w \downarrow_{n} \in$ $L(N)$ for $0 \leq n \leq|w|$. Consider $\left(p_{0}, q_{0}, b_{0}\right) \xrightarrow{w \downarrow_{n}}\left(p_{n}, q_{n}, b_{n}\right)$ in $M \rightarrow N$. We show $b_{|w|}=$ true by induction on n. When $n=0, w \downarrow_{n}=\epsilon \in L(M) \rightarrow L(N)$. Hence $\epsilon \in L(M) \rightarrow \epsilon \in L(N)$. Therefore $p_{0} \in F_{M} \rightarrow q_{0} \in F_{N}$. That is, $b_{0}=$ true.

Suppose $b_{n}=$ true. Consider $w \downarrow_{n+1}$. We have $w \downarrow_{n+1} \in L(M) \rightarrow w \downarrow_{n+1} \in L(N)$. Hence $p_{n+1} \in F_{M} \rightarrow q_{n+1} \in F_{N}$. Therefore $b_{n+1}=$ true as required.

Since any regular language is accepted by a deterministic finite state automaton, the following proposition is only a simple application of Proposition 2.

Proposition 3. Let K and L be non-empty, prefix-closed regular languages. Then $K \rightarrow L$ is a non-empty, prefix-closed regular language.
Proof. Let $M=\left(P, \Sigma, p_{0}, \longrightarrow_{M}, F_{M}\right)$ and $N=\left(Q, \Sigma, q_{0}, \longrightarrow_{N}, F_{N}\right)$ be deterministic finite automata such that $L(M)=K$ and $L(N)=L$ respectively. By Proposition $2, K \rightarrow L=L(M \rightarrow N)$. Hence $K \rightarrow L$ is regular. By Lemma $7, K \rightarrow L$ is both non-empty and prefix-closed as required.

After establishing closure properties of various operations, we can define our new interpretation. More formally, define $R^{+}=\left\{L \subseteq \Sigma^{*}: L\right.$ is non-empty, prefixclosed, and regular $\}$. The following theorem states that non-empty, prefix-closed regular languages form a Heyting algebra.

Theorem 5. Let $\mathcal{R}^{+}=\left(R^{+}, \subseteq, \cup, \cap, \rightarrow,\{\epsilon\}, \Sigma^{*}\right)$. \mathcal{R}^{+}is a Heyting algebra.
Proof. Lemma 6 and Proposition 3 show that R^{+}is closed under \cup, \cap, and \rightarrow. Lemma 5 shows that $\{\epsilon\} \subseteq L$ for any non-empty, prefix-closed language L. Finally, Proposition 1 shows $K \rightarrow L$ is the pseudo-complement of K relative to L.

Similar to our classical interpretation, Theorem 2 immediately gives the following corollary.

Corollary 2. Let η be a valuation in \mathcal{R}^{+}and φ a propositional formula. If $\Gamma \vdash_{J} \varphi$, then $\mathcal{R}^{+}, \eta \models{ }_{J} \Gamma$ implies $\mathcal{R}^{+}, \eta \models_{J} \varphi$.

Let us consider an application of Corollary 2. Suppose five non-empty prefixclosed regular languages $M_{0}, M_{1}, A_{0}, A_{1}$, and P are given. Assume $M_{0} \cap A_{0} \subseteq P$, $M_{1} \cap A_{1} \subseteq P$, and $A_{0} \cup A_{1} \cup P=\Sigma^{*}$. We can deduce $M_{0} \cap M_{1} \subseteq P$ by the proof tree in Figure 3 (b).

We now turn our attention to circular compositional rules. A modified version of non-interference in [1] is used in our setting.

Definition 8. Let L be a non-empty, prefix-closed language in Σ^{*} and $\Xi \subseteq \Sigma$. We say L constrains Ξ, write $L \triangleright \Xi$, if for any $w \in L$, wa $\in L$ for any a $\notin \Xi$.

Exploiting non-interference, we show the circular inference rule presented in Section 3.1 is sound by induction on the length of strings.

Theorem 6. Let K and L be non-empty, prefix-closed languages such that $K \triangleright \Xi_{K}$, $L \triangleright \Xi_{L}$, and $\Xi_{K} \cap \Xi_{L}=\emptyset$. Then $(K \rightarrow L) \cap(L \rightarrow K) \subseteq K$.

Proof. Consider any $w \in(K \rightarrow L) \cap(L \rightarrow K)$. We will show $w \downarrow_{n} \in K$ for all n. Firstly, $w \downarrow_{0}=\epsilon \in K$ for K is non-empty. Now suppose $w \downarrow_{i+1}=w \downarrow_{i} a_{i}$ and $w \downarrow_{i} \in K$. Consider the following two cases.
(1) $a_{i} \notin \Xi_{K}$. Then $w \downarrow_{i+1} \in K$ for $K \triangleright \Xi_{K}$.
(2) $a_{i} \in \Xi_{K}$. Since $w \downarrow_{i} \in K$ and $w \downarrow_{i} \in K \rightarrow L, w \downarrow_{i} \in L$. Hence $w \downarrow_{i+1} \in L$ for $a_{i} \in \Xi_{K}$ and $\Xi_{K} \cap \Xi_{L}=\emptyset$. Finally, $w \downarrow_{i+1} \in K$ follows from $w \downarrow_{i+1} \in L \rightarrow$ K.

Theorem 6 admits an inference rule in the Heyting algebra \mathcal{R}^{+}. More formally, we have the following corollary.

Corollary 3. Let P and P^{\prime} be propositional variables, Ξ and Ξ^{\prime} subsets of Σ, η a valuation in \mathcal{R}^{+}. Then we have the following inference rule with respect to \mathcal{R}^{+}, provided $\rho(P) \triangleright \Xi, \rho\left(P^{\prime}\right) \triangleright \Xi^{\prime}, \Xi \cap \Xi^{\prime}=\emptyset$.

$$
C P \overline{\vdash\left[\left(P \rightarrow P^{\prime}\right) \wedge\left(P^{\prime} \rightarrow P\right)\right] \rightarrow P}
$$

We can in fact characterize the non-empty prefix-closed language satisfying the condition in Theorem 6. Note that one direction can be obtained by syntactic deduction. It is the other direction where semantic analysis is needed.

Theorem 7. Let K and L be non-empty, prefix-closed languages such that $K \triangleright \Xi_{K}$, $L \triangleright \Xi_{L}$, and $\Xi_{K} \cap \Xi_{L}=\emptyset$. Then $(K \rightarrow L) \cap(L \rightarrow K)=K \cap L$.

Proof. By Theorem 6, $(K \rightarrow L) \cap(L \rightarrow K) \subseteq K$. Symmetrically, we have $(K \rightarrow$ $L) \cap(L \rightarrow K) \subseteq L$.

Conversely, consider any $w \in K \cap L$. Then $w \downarrow_{n} \in K$ and $w \downarrow_{n} \in L$ for $0 \leq n \leq|w|$. Hence $w \downarrow_{n} \in K \rightarrow w \downarrow_{n} \in L$ for $0 \leq n \leq|w|$. That is, $w \in K \rightarrow L$. Similarly, $w \in L \rightarrow K$. Therefore $K \cap L \subseteq(K \rightarrow L) \cap(L \rightarrow K)$.

We can similarly summarize Theorem 7 as follows.
Corollary 4. Let P and P^{\prime} be propositional variables, Ξ and Ξ^{\prime} subsets of Σ, η a valuation in \mathcal{R}^{+}. Then we have the following inference rule with respect to \mathcal{R}^{+}, provided $\rho(P) \triangleright \Xi, \rho\left(P^{\prime}\right) \triangleright \Xi^{\prime}, \Xi \cap \Xi^{\prime}=\emptyset$.

$$
C P^{\prime} \overline{\vdash\left[\left(P \rightarrow P^{\prime}\right) \wedge\left(P^{\prime} \rightarrow P\right)\right] \leftrightarrow\left(P \wedge P^{\prime}\right)}
$$

Consider again the examples in Figure 4. Observe that both $L(M)$ and $L(E)$ are non-empty and prefix-closed. Let the valuation η in \mathcal{R}^{+}be that $\eta(M)=L(M)$ and $\eta(E)=L(E)$. Since $b \in \eta(E)$ but $b \notin \eta(M), b \notin \eta(E \rightarrow M)$. Thus $b d \notin \eta(E \rightarrow M)$. Also note that $\eta(M) \triangleright\{a, b\}$ and $\eta(E) \triangleright\{c, d\}$. Hence $\eta(M \rightarrow E) \cap \eta(E \rightarrow M)=$ $\eta(M) \cap \eta(E)$ by Theorem 7 .

5. Applications

A subclass of finite state automata called labeled transition systems (LTS) is used for system modeling in automated compositional reasoning [3, 4]. Intuitively, an LTS models observable actions by its alphabets. When shared observable actions are performed in compositions of two LTS's, they are synchronized. On the other hand, an LTS stutters when the other LTS performs its local observable actions in their composition. In this section, we apply proof-theoretic techniques to derive soundness of compositional rules for LTS's. It is noted that our formulation is equivalent to those in $[4,3]$.

Definition 9. Let $\Sigma_{M} \subseteq \Sigma$. A deterministic finite state automaton $M=\left(Q, q_{0}\right.$, $\longrightarrow, F)$ is a labeled transition system (LTS) over Σ_{M} if the following conditions are satisfied.
(1) $q \xrightarrow{a} q$ for any $q \in Q$ and $a \in \Sigma \backslash \Sigma_{M}$; and
(2) for any $n \geq 0$, if $q_{i} \xrightarrow{a_{i+1}} q_{i+1}$ for $0 \leq i<n$ and $q_{n} \in F$, then $q_{i} \in F$ for $0 \leq i \leq n$.

With our formulation, it is possible to define compositions of two LTS's by product automata. Let $M=\left(P, p_{0}, \longrightarrow_{M}, F_{M}\right)$ and $N=\left(Q, q_{0}, \longrightarrow_{N}, F_{N}\right)$ be two LTS's over Σ_{M} and Σ_{N} respectively. Define the finite state automaton $M \| N=$ $\left(P \times Q,\left(p_{0}, q_{0}\right), \longrightarrow, F\right)$ as follows.

- $(p, q) \xrightarrow{a}\left(p^{\prime}, q^{\prime}\right)$ if $p \xrightarrow{a} M p^{\prime}$ and $q \xrightarrow{a}{ }_{N} q^{\prime}$; and
- $F=F_{M} \times F_{N}$.

The following lemma shows that product automata are indeed LTS's.
Lemma 9. Let $M=\left(P, p_{0}, \longrightarrow_{M}, F_{M}\right)$ and $N=\left(Q, q_{0}, \longrightarrow_{N}, F_{N}\right)$ be two LTS's over Σ_{M} and Σ_{N} respectively. Then $M \| N$ is an LTS over $\Sigma_{M} \cup \Sigma_{N}$.

Proof. If $(p, q) \xrightarrow{a}\left(p^{\prime}, q^{\prime}\right)$ and $(p, q) \xrightarrow{a}\left(p^{\prime \prime}, q^{\prime \prime}\right)$, then $p \xrightarrow{a} M p^{\prime}$ and $p \xrightarrow{a}{ }_{M} p^{\prime \prime}$. Thus $p^{\prime}=p^{\prime \prime}$ for the LTS M is a deterministic finite state automaton. Similarly, $q^{\prime}=q^{\prime \prime}$. Hence $\left(p^{\prime}, q^{\prime}\right)=\left(p^{\prime \prime}, q^{\prime \prime}\right), M \| N$ is deterministic.

Suppose $a \notin \Sigma_{M} \cup \Sigma_{N}$. We have $p \xrightarrow{a} p$ and $q \xrightarrow{a}_{N} q$ for M and N are LTS's. Hence $(p, q) \xrightarrow{a}(p, q)$ as required.

For any n, consider $\left(p_{i}, q_{i}\right) \xrightarrow{a_{i+1}}\left(p_{i+1}, q_{i+2}\right)$ for $0 \leq i<n$ in $M \| N$. If $\left(p_{n}, q_{n}\right) \in$ $F_{M} \times F_{N}, p_{n} \in F_{M}$ and $q_{n} \in F_{N}$. But then $p_{i} \in F_{M}$ and $q_{i} \in F_{N}$ and hence $\left(p_{i}, q_{i}\right) \in F_{N}$ for $0 \leq i \leq n$.

We now recall that the language accepted by the product of two automata is nothing more than the intersection of the languages accepted by these automata.
Proposition 4. Let $M=\left(P, p_{0}, \longrightarrow_{M}, F_{M}\right)$ and $N=\left(Q, q_{0}, \longrightarrow_{N}, F_{N}\right)$ be two $L T S$'s over Σ_{M} and Σ_{N} respectively. Then $L(M \| N)=L(M) \cap L(N)$.
Proof. Let $w=a_{1} \cdots a_{n} \in L\left(M_{0} \| M_{1}\right)$. Then there is a run

$$
\left(p_{0}, q_{0}\right) \xrightarrow{a_{1}}\left(p_{1}, q_{1}\right) \xrightarrow{a_{2}} \cdots \xrightarrow{a_{n}}\left(p_{n}, q_{n}\right) .
$$

By the definition of the transition relation of $M \| N$, we have two runs

$$
p_{0}{\xrightarrow{a_{1}}}_{M} p_{1}{\xrightarrow{a_{2}}}_{M} \cdots{\xrightarrow{a_{n}}}_{M} p_{n} \text { in } M
$$

and

$$
q_{0} \xrightarrow{a_{1}} N q_{1} \xrightarrow{a_{2}} N \cdots{\xrightarrow{a_{n}}}_{N} q_{n} \text { in } N
$$

respectively. Hence $w \in L(M)$ and $w \in L(N)$.
The other direction is similar.
Symmetrically, define the finite state automaton $M+N=\left(P \times Q,\left(p_{0}, q_{0}\right), \longrightarrow\right.$, $F)$ as follows.

- $(p, q) \xrightarrow{a}\left(p^{\prime}, q^{\prime}\right)$ if $p \xrightarrow{a} M p^{\prime}$ and $q \xrightarrow{a}{ }_{N} q^{\prime} ;$ and
- $F=\left(F_{M} \times Q\right) \cup\left(P \times F_{N}\right)$.

Lemma 10. Let $M=\left(P, p_{0}, \longrightarrow_{M}, F_{M}\right)$ and $N=\left(Q, q_{0}, \longrightarrow_{N}, F_{N}\right)$ be two LTS's over Σ_{M} and Σ_{N} respectively. Then $M+N$ is an LTS over $\Sigma_{M} \cup \Sigma_{N}$.

Proof. $M+N$ is deterministic for M and N are both deterministic.
If $a \notin \Sigma_{M} \cup \Sigma_{N},(p, q) \xrightarrow{a}(p, q)$ for $p \xrightarrow{a} M p$ and $q \xrightarrow{a}{ }_{N} q$.
For any n, let $\left(p_{i}, q_{i}\right) \xrightarrow{a_{i+1}}\left(p_{i+1}, q_{i+1}\right)$ for $0 \leq i<n$ in $M+N$. If $\left(p_{n}, q_{n}\right) \in F$, let $p_{n} \in F_{M}$ without loss of generality. Since M is an LTS, $p_{i} \in F_{M}$ for $0 \leq i \leq n$. That is, $\left(p_{i}, q_{i}\right) \in F$ for $0 \leq i \leq n$.

It is as easy to show that $M+N$ accepts the union of the languages accepted by M and N.

Proposition 5. Let $M=\left(P, p_{0}, \longrightarrow_{M}, F_{M}\right)$ and $N=\left(Q, q_{0}, \longrightarrow_{N}, F_{N}\right)$ be two $L T S$'s over Σ_{M} and Σ_{N} respectively. Then $L(M+N)=L(M) \cup L(N)$.

Proof. Consider an accepting run for $w=a_{1} \cdots a_{n} \in L(M+N)$ as follows.

$$
\left(p_{0}, q_{0}\right) \xrightarrow{a_{1}}\left(p_{1}, q_{1}\right) \xrightarrow{a_{2}} \cdots \xrightarrow{a_{n}}\left(p_{n}, q_{n}\right) .
$$

Suppose $p_{n} \in F_{M}$ without loss of generality. The following run is accepting in M.

$$
p_{0}{\xrightarrow{a_{1}}}_{M} p_{1}{\xrightarrow{a_{2}}}_{M} \cdots{\xrightarrow{a_{n}}}_{M} p_{n}
$$

Hence $w \in L(M)$.
The other direction is similar.
The automaton $M \rightarrow N$ is also an LTS if M and N both are. The alphabets constrained by $M \rightarrow N$ is also characterized in the following lemma.

Lemma 11. Let $M=\left(P, p_{0}, \longrightarrow_{M}, F_{M}\right)$ and $N=\left(Q, q_{0}, \longrightarrow_{N}, F_{N}\right)$ be two LTS's over Σ_{M} and Σ_{N} respectively. Then $M \rightarrow N$ is an LTS over $\Sigma_{M} \cup \Sigma_{N}$.

Proof. Let $M \rightarrow N=\left(P \times Q \times \mathbb{B},\left(p_{0}, q_{0}, b_{0}\right), \longrightarrow, F\right)$.
Suppose $(p, q, b) \xrightarrow{a}\left(p^{\prime}, q^{\prime}, b^{\prime}\right)$ and $(p, q, b) \xrightarrow{a}\left(p^{\prime \prime}, q^{\prime \prime}, b^{\prime \prime}\right)$ in $M \rightarrow N$. Since M and N are deterministic, $p^{\prime}=p^{\prime \prime}$ and $q^{\prime}=q^{\prime \prime}$. But then $b^{\prime \prime}=p^{\prime \prime} \in F_{M} \rightarrow q^{\prime \prime} \in$ $F_{N}=p^{\prime} \in F_{M} \rightarrow q^{\prime} \in F_{N}=b^{\prime} . M \rightarrow N$ is deterministic.

For any (p, q, b) and $a \notin \Sigma_{M} \cup \Sigma_{N}$, we have $p \xrightarrow{a}{ }_{M} p$ and $q \xrightarrow{a} N q$ for M and N are LTS's. Hence $(p, q, b) \xrightarrow{a}(p, q, b)$.

Finally, suppose $\left(p_{i}, q_{i}, b_{i}\right) \xrightarrow{a_{i+1}}\left(p_{i+1}, q_{i+1}, b_{i+1}\right)$ for $0 \leq i<n$ and $b_{n}=$ true. Define $w=a_{1} \cdots a_{n}$. We have $b_{i}=$ true for $0 \leq i \leq n$ by Lemma 8. Hence $\left(p_{i}, q_{i}, b_{i}\right) \in F$ for $0 \leq i \leq n$.

Suppose two LTS's M and P are given as specifications of the system and the property respectively. We would like to know whether all observable action sequences of the system M conform to the property P, namely, $L(M) \subseteq L(P)$. If so, we say M satisfies P and denote it by $M \models P$.

Example 1. Consider the following assume-guarantee rule where $M_{0}, M_{1}, A_{0}, A_{1}, P$ are LTS's, and \bar{M} denotes the complement automaton of M. Note that \bar{M} is not necessary an LTS [3].

$$
\begin{array}{ccc}
M_{0} \| A_{0} \models P & M_{1} \| A_{1} \models P & \bar{A}_{0} \| \bar{A}_{1} \models P \\
\hline & M_{0} \| M_{1} \models P &
\end{array}
$$

By Lemma 3, Proposition 4, and Theorem 1, we can establish the soundness of the rule by finding a proof tree of the following sequent.

$$
M_{0} \wedge A_{0} \rightarrow P, M_{1} \wedge A_{1} \rightarrow P, \neg A_{0} \wedge \neg A_{1} \rightarrow P \vdash_{K} M_{0} \wedge M_{1} \rightarrow P
$$

The proof tree is shown in Figure 3 (a).
Using existing proof assistants, we can in fact prove all rules in [3] and [4] automatically.

Example 2. Suppose $M_{0}, M_{1}, A_{0}, A_{1}, P_{0}, P_{1}$ are LTS's. Consider the following assume-guarantee rule in [3].

$$
\frac{M_{0}\left\|A_{0} \models P_{0} \quad M_{1}\right\| A_{1} \models P_{1} \quad M_{0}\left\|A_{0} \models A_{1} \quad M_{1}\right\| A_{1} \models A_{0} \quad L\left(\bar{A}_{0} \| \bar{A}_{1}\right)=\emptyset}{M_{0}\left\|M_{1} \models P_{0}\right\| P_{1}}
$$

It suffices to find a proof for the following sequent.

$$
\begin{aligned}
& M_{0} \wedge A_{0} \rightarrow P_{0}, \quad M_{1} \wedge A_{1} \rightarrow P_{1}, \\
& M_{0} \wedge A_{0} \rightarrow A_{1}, \quad M_{1} \wedge A_{1} \rightarrow A_{0}, \quad \vdash_{K} M_{0} \wedge M_{1} \rightarrow P_{0} \wedge P_{1} \\
& \quad \neg A_{0} \wedge \neg A_{1} \leftrightarrow \text { false }
\end{aligned}
$$

We can use the proof assistant Isabelle to search the proof tree. The following transcript shows that the tactic auto () is able to find a proof automatically. ${ }^{2}$
$>$ Goal "ALL M0 M1 A0 A1 P0 P1. (M0 \& A0 $\rightarrow \mathrm{P} 0$) \& ($\mathrm{M} 1 \& A 1 \rightarrow P 1$) \&
$(M 0 \& A 0 \rightarrow A 1) \&(M 1 \& A 1 \rightarrow A 0) \&((\neg A 0 \& \neg A 1)=$ False $) \Rightarrow$
($\mathrm{M} 0 \& \mathrm{M} 1 \rightarrow \mathrm{P} 0 \& \mathrm{P} 1$)";
Level 0 (1 subgoal)
...
$>$ auto ();
Level 1
ALL M0 M1 A0 A1 P0 P1.
$(M O \& A O \rightarrow P O) \&$
$(M 1 \& A 1 \rightarrow P 1) \&$
$(M 0 \& A 0 \rightarrow A 1) \&(M 1 \& A 1 \rightarrow A 0) \&(\neg A 0 \& \neg A 1)=$ False
$\Rightarrow M 0 \& M 1 \rightarrow P 0 \& P 1$
No subgoals!
val it $=()$: unit
To establish circular compositional rules in our framework, the intuitionistic interpretation in Section 4 is needed. The following lemma characterizes the languages accepted by LTS's and the alphabets constrained by them.

Lemma 12. Let $M=\left(Q, q_{0}, \longrightarrow, F\right)$ be an LTS over Σ_{M}. Then $L(M)$ is nonempty, prefix-closed, and $L(M) \triangleright \Sigma_{M}$.

Proof. The condition (2) in Definition 9 implies $q_{0} \in F$ by taking $n=0$. Hence $\epsilon \in L(M), L(M)$ is not empty.

Consider any string $w=a_{1} a_{2} \cdots a_{n} \in L(M)$. We have $q_{i} \xrightarrow{a_{i+1}} q_{i+1}$ for $0 \leq i<n$. Since $w \in L(M), q_{n} \in F$. Hence $q_{i} \in F$ for $0 \leq i \leq n$ by condition (2). That is, $w \downarrow_{i} \in L(M)$ for $0 \leq i \leq n$. $L(M)$ is prefix-closed.

Suppose $b \notin \Sigma_{M}$. Hence $b \in \Sigma \backslash \Sigma_{M}$. Consider the string $w a=a_{1} a_{2} \cdots a_{n} b$. Since $q_{n} \xrightarrow{b} q_{n}$ by the first condition, $w a \in F$ if and only if $w \in F$. Thus for any $w \in F, w b \in F$. Therefore $L(M) \triangleright \Sigma_{M}$.

As in classical interpretation, we can apply the techniques developed in Section 4 to establish the soundness of various compositional rules syntactically.

Example 3. Let $M_{0}, M_{1}, A_{0}, A_{1}$ and P be LTS's. Consider the following assumeguarantee rule.

$$
\begin{array}{cc}
M_{0}\left\|A_{0} \models P \quad M_{1}\right\| A_{1} \models P \quad \models A_{0}+A_{1}+P \\
\hline & M_{0} \| M_{1} \models P
\end{array}
$$

[^1]By Lemma 3, Proposition 4, Proposition 5, and Theorem 2, we can establish the soundness of the rule by finding a proof tree of the following sequent.

$$
M_{0} \wedge A_{0} \rightarrow P, M_{1} \wedge A_{1} \rightarrow P, A_{0} \vee A_{1} \vee P \vdash_{J} M_{0} \wedge M_{1} \rightarrow P
$$

The proof tree is shown in Figure 3 (b).
It is as easy to establish compositional rules by existing proof assistants automatically. The following example demonstrates how CoQ may be used to automate our proof search.

Example 4. Let $M_{0}, M_{1}, A_{0}, A_{1}$, and P be LTS's. Consider the following assumeguarantee rule.

$$
\begin{array}{ccc}
M_{0} \| A_{0} \models P & M_{1} \| A_{1} \models P & M_{0} \models A_{0}+A_{1} \\
\hline & M_{0} \| M_{1} \models P &
\end{array}
$$

We will search a proof tree for the following sequent.

$$
M_{0} \wedge A_{0} \rightarrow P, M_{1} \wedge A_{1} \rightarrow P, M_{0} \rightarrow A_{0} \vee A_{1} \vdash_{J} M_{0} \wedge M_{1} \rightarrow P
$$

The following transcript demonstrates that the proof search engine in CoQ is able to find a proof tree by the tactic intuition. ${ }^{3}$

$$
\begin{aligned}
& \text { Coq }<\text { Goal forall } M 0 M 1 A 0 A 1 P: P r o p, ~(M 0 \wedge A 0 \rightarrow P) \wedge(M 1 \wedge A 1 \rightarrow P) \wedge \\
& (M 0 \rightarrow A 0 \vee A 1) \rightarrow(M 0 \wedge M 1 \rightarrow P) \\
& 1 \text { subgoal } \\
& ============================== \\
& \quad \text { forall } M 0 M 1 A 0 A 1 P: P r o p, \\
& \quad(M 0 \wedge A 0 \rightarrow P) \wedge(M 1 \wedge A 1 \rightarrow P) \wedge(M 0 \rightarrow A 0 \vee A 1) \rightarrow M 0 \wedge M 1 \rightarrow P
\end{aligned}
$$

Unnamed_thm < intuition .
Proof completed.
We now prove a circular compositional rule in the following example.
Example 5. Let M_{0}, M_{1}, P_{0}, and P_{1} be LTS's. Further, assume P_{0} and P_{1} are over Σ_{0} and Σ_{1} respectively, and $\Sigma_{0} \cap \Sigma_{1}=\emptyset$. Consider the following circular compositional rule [2].

$$
\frac{M_{0}\left\|P_{1} \models P_{0} \quad P_{0}\right\| M_{1} \models P_{1}}{M_{0}\left\|M_{1} \models P_{0}\right\| P_{1}}
$$

By Theorem 7, we have

$$
\vdash\left(P_{0} \rightarrow P_{1}\right) \wedge\left(P_{1} \rightarrow P_{0}\right) \rightarrow\left(P_{0} \wedge P_{1}\right)
$$

Hence the soundness of the given circular compositional rule can be established by finding a proof tree for the following sequent.

$$
\begin{aligned}
& \left(P_{0} \rightarrow P_{1}\right) \wedge\left(P_{1} \rightarrow P_{0}\right) \rightarrow\left(P_{0} \wedge P_{1}\right), \quad \vdash_{J} M_{0} \wedge M_{1} \rightarrow P_{0} \wedge P_{1} \\
& \quad M_{0} \wedge P_{1} \rightarrow P_{0}, P_{0} \wedge M_{1} \rightarrow P_{1}
\end{aligned}
$$

Figure 6 shows the desired proof tree.
It is also possible to automate our proof search in CoQ. The following transcript shows how CoQ helps us complete our proof.

[^2]
Figure 6. Proof of Circular Rule

```
Coq < Goal forall M0 M1 P0 P1 : Prop, ((P0 ->P1) ^(P1 }->\textrm{P}0)->(\textrm{P}0\wedge\textrm{P}1)
```



```
1 subgoal
============================
forall M0 M1 P0 P1 : Prop,
    ((P0 ->P1)\wedge (P1 ->P0) ->P0 ^P1)^
    (M0\wedgeP0 ->P1)\wedge(M1^P1 ->P0) ->M0\wedge M1 ->P0^P1
```

Unnamed_thm < intuition .
Proof completed.

6. On Completeness

In automated compositional reasoning, the completeness of assume-guarantee rules is required for its termination. We say an assume-guarantee rule is complete if it is always possible to satisfy its premises when its conclusion holds. Thanks to Lemma 3, we can formulate the completeness of assume-guarantee rules as a proof search problem. However, it requires the proof systems $L K$ and $L J$ for classical and intuitionistic first-order logics. We only give an example and leave technical details in another exposition.

Example 6. Let $M_{0}, M_{1}, A_{0}, A_{1}, P_{0}$, and P_{1} be LTS's. Consider again the following assume-guarantee rule.

$$
\frac{M_{0}\left\|A_{0} \models P_{0} \quad M_{1}\right\| A_{1} \models P_{1} \quad M_{0}\left\|A_{0} \models A_{1} \quad M_{1}\right\| A_{1} \models A_{0} \quad L\left(\bar{A}_{0} \| \bar{A}_{1}\right)=\emptyset}{M_{0}\left\|M_{1} \models P_{0}\right\| P_{1}}
$$

To show the rule is complete, it suffices to find a proof tree for the following sequent in system $L K$.

$$
\begin{aligned}
& M_{0} \wedge M_{1} \rightarrow P_{0} \wedge P_{1} \vdash_{K} \exists A_{0} A_{1} .\left(M_{0} \wedge A_{0} \rightarrow P_{0}\right) \wedge\left(M_{1} \wedge A_{1} \rightarrow P_{1}\right) \wedge \\
&\left(M_{0} \wedge A_{0} \rightarrow A_{1}\right) \wedge\left(M_{1} \wedge A_{1} \rightarrow A_{0}\right) \wedge \\
&\left(\neg A_{0} \wedge \neg A 1\right) \leftrightarrow \text { false }
\end{aligned}
$$

Isabelle can in fact find a proof automatically.

```
\(>\) Goal "ALL M0 M1 P0 P1. (M0 \& M1 \(\rightarrow \mathrm{P} 0 \& \mathrm{P} 1) \Rightarrow \mathrm{EX} \mathrm{A0} \mathrm{A1}\).
\((\mathrm{M} 0 \& A 0 \rightarrow P 0) \&(M 1 \& A 1 \rightarrow P 1) \&(M 0 \& A 0 \rightarrow A 1)\)
\& \((\mathrm{M} 1 \& \mathrm{~A} 1 \rightarrow \mathrm{~A} 0) \&((\neg \mathrm{~A} 0 \& \neg \mathrm{~A} 1)=\) False \()\) ";
Level 0 (1 subgoal)
ALL M0 M1 P0 P1. M0 \& \(M 1 \rightarrow P 0 \& P 1\)
\(\Rightarrow E X A 0\) A1.
        \((M 0 \& A 0 \rightarrow P 0) \&(M 1 \& A 1 \rightarrow P 1) \&(M 0 \& A 0 \rightarrow A 1) \&\)
        \((M 1 \& A 1 \rightarrow A 0) \&(\neg A 0 \& \neg A 1)=\) False
1. ALL M0 M1 P0 P1. M0 \& M1 \(\rightarrow P 0 \& P 1\)
    \(\Rightarrow\) EX A0 A1.
        \((M 0 \& A 0 \rightarrow P 0) \&(M 1 \& A 1 \rightarrow P 1) \&(M 0 \& A 0 \rightarrow A 1) \&\)
        \((M 1 \& A 1 \rightarrow A 0) \&(\neg A 0 \& \neg A 1)=\) False
val it = [] : Thm.thm list
\(>\) auto ();
Level 1
ALL M0 M1 P0 P1. M0 \& \(M 1 \rightarrow P 0 \& P 1\)
\(\Rightarrow\) EX A0 A1.
    \((M 0 \& A 0 \rightarrow P 0) \&(M 1 \& A 1 \rightarrow P 1) \&(M 0 \& A 0 \rightarrow A 1) \&\)
    \((M 1 \& A 1 \rightarrow A 0) \&(\neg A 0 \& \neg A 1)=\) False
```

No subgoals!

7. Conclusions

Soundness theorems for compositional reasoning rules depend on underlying computational models and can be very involved. Since it is tedious to develop new compositional rules, few such rules are available for each computational model. The limitation may impede the usability of automated compositional reasoning because verifiers are forced to mould their problems in a handful of compositional rules available to them. In this paper, we apply proof theory and develop a syntactic approach to analyze compositional rules for automated compositional reasoning. With publicly available proof assistants, we are able to establish compositional rules automatically. Our work may improve the usability of automated compositional reasoning by automatic derivation of its compositional rules.

Although all compositional rules known to us have been established automatically, it is unclear whether these proof systems are complete with respect to regular languages. It would also be of great interest if one could generate compositional rules to fit different circumstances automatically. Moreover, it is unclear whether our techniques can be applied to ω-regular sets. These questions are currently under investigation.

For the past years, research topics which combine both model checking and theorem proving are not unusual. This work may be viewed as another attempt to integrate both technologies. In contrast to previous attempts, we prefer a whiteboxed approach where both techniques are coupled more tightly. Our presentation gives a rather detailed exposition in the hope to reveal theoretical foundations of both technologies.
Acknowledgment. The author is very grateful for the discussion with Edmund Clarke, Orna Grumberg, Dale Miller, Nishant Sinha, and Yih-Kuen Tsay. This work would not be possible without their insightful comments.

References

[1] Martín Abadi and Gordon D. Plotkin. A logical view of composition and refinement. In Conference Record of the Eighteenth Annual ACM Symposium on Principles of Programming Languages, Orlando, pages 323-332. ACM, January 1991.
[2] R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in System Design, 15(1):748, 1999. Invited submission to FLoC'96 special isuue. A preliminary version appears in Proc. 11th LICS, 1996.
[3] Howard Barringer, Dimitra Giannakopoulou, and Corina S. Păsăreanu. Proof rules for automated compositional verification through learning. In Workshop on Specification and Verification of Component-Based Systems, pages 14-21, 2003.
[4] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păsăreanu. Learning assumptions for compositional verification. In Hubert Garavel and John Hatcliff, editors, TACAS, volume 2619 of LNCS, pages 331-346. Springer-Verlag, 2003.
[5] Willem-Paul de Roever, Frank de Boer, Ulrich Hanneman, Jozef Hooman, Yassine Lakhnech, Mannes Poel, and Job Zwiers. Concurrency Verification: Introduction to Compositional and Noncompositional Methods. Number 54 in Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2001.
[6] Robert Goldblatt. Topoi: The Categorial Analysis of Logic. Dover Publications, revised edition, 2006.
[7] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.
[8] Gérard Huet, Gilles Kahn, and Paulin-Mohring. The Coq proof assistant: a tutorial: version 6.1. Technical Report 204, Institut National de Recherche en Informatique et en Automatique, 1997.
[9] Lawrence C. Paulson and Tobias Nipkow. Isabelle tutorial and user's manual. Technical Report TR-189, Computer Laboratory, University of Cambridge, 1990.
[10] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Number 43 in Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2000.

Institute of Information Science, Academia Sinica, Taiwan
E-mail address: bywang@iis.sinica.edu.tw

[^0]: ${ }^{1}$ Figure 1 is in fact a variant of the system $L K$, see [10].

[^1]: ${ }^{2}$ Strictly speaking, Isabelle uses natural deduction instead of Gentzen's system $L K$. Both proof systems are equivalent [9].

[^2]: ${ }^{3}$ Again, CoQ uses a natural deduction system equivalent to $L J$ [8].

