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 Abstract – This paper addresses the following collision detection problem: determine the collision status for a pair of  
stationary convex polyhedral objects whose allowed deformation is uniform but arbitrary scaling of vertices within given 
upper and lower limits. We present an exact overlap checking method based on the characterization of all contact 
configurations.  The set of all scaling pairs that two objects  contact each other externally is characterized by a  decending 
piecewise linear curve where the switching point of this piecewise linear curve represents the scaling pair as long as the 
contact configuration changes feature. Then, using this piecewise linear curve, the rectangle of allowable scaling pairs is 
partitioned into an exact overlap and an exact non-overlap sub-regions. A corresponding decision curve for exact overlap 
checking is constructed from this scaling decision curve via parametric intersection points of each polyhedron with the 
shortest path between inner ellipsoids of deformation bounds.  

 
 Index Terms - collision detection, convex polyhedra, deformation, scaling 
 

I.  INTRODUCTION 
OLLISION detection [1], [5] is the process of finding the geometrical or physical contacts between the (static or moving, rigid 
or deformable) objects. A wealth of existing works on solving the broad and narrow phases of collision detection problems,  
either approximate or exact, is developed for rigid convex polyhedra and some for arbitrary polyhedra (see the survey for 

virtual environments or graphics [1], [2], [10], or the survey in robot motion planning [16]). A numerical approach to approximate 
collision detection of convex polyhedral objects based on inner ellipsoids has been developed in recent years [3], in contrast to the 
approach via outer ellipsoids [9],[11]. Overlap between convex polyhedra can be detected  via the intersection points of convex 
polyhedra with the shortest path between inner ellipsoids, where tradeoff among accuracy, efficiency, memory storage and user 
control of these factors was demonstrated in the performed experiments.  

Recently there are increasing interests in collision detection for deformable objects (see [12] for a state of the art report in the 
graphics community) undergoing different types of deformation [5]-[9]. The shape and topology of the object may change during 
certain types of deformation which would complicate the collision detection process for deformable objects. Very few methods that 
perform well for collision detection of rigid objects can also be extended to be applied on objects undergoing different type of 
geometric or physical deformations [6]-[9]. Among the methods, bounding volumes hierarchies (BVHs) are widely applied on a 
variety of deformation models, either alone or combined with other methods (e.g. hash-table, sweep and prune) [12] to trade 
accuracy for speed. Some obvious drawbacks  of  BVHs updating approach are: (i)BVHs can drastically change during 
deformation. Only the primitives like sphere-trees whose overlap checking is easy are of practical use [6], [9]. (ii) complete rework 
on the bounding volumes for constantly changing shape and topology of the objects at each time step of deformation is a 
time-consuming process and thus usually is very slow. 

 To speed-up the refitting process, partial refitting of BVHs are applied to localize “interesting regions”, which are later 
stochastically sampled to elaborate the search for (local) closest features [12]. BVH has been applied to collision detection of 
convex polyhedral objects with arbitrary vertex repositioning [5]. This paper studies the exact collision detection of convex 
polyhedral objects undergoing scaling transformation (uniform vertex repositioning, i.e. scaling  the size of the objects while 
shapes remain unchanged) employing the shortest path between inner ellipsoids [4].  The scaling transformation is important as an 
elementary operation of affine transformation [1]. The growth distance [20] is defined via identical scaling of a pair of convex 

Exact Collision Detection for Scaled Convex 
Polyhedral Objects  

Jing-Sin Liu*,  Y.H. Tsao**, Wen-Yang Ku* Wen-Hwa Pan*  and Y.-Z. Chang** 
*Institute of Information Science **Department of Mechanical Engineering 

Academia Sinica Chang Gung University 
Nankang, Taipei 115, Taiwan, R.O.C Tao-Yuan, Taiwan, R.O.C 

liu@iis.sinica.edu.tw  

C



polyhedra. Scaling can also be used in producing an exaggeration effect on entire motion clips or gated segments of clips of 
captured human motion data [24]. In general, the collision status of a pair of scaled convex polyhedral objects can be detected 
exactly (i.e. no collisions may occur without being detected) by repeatedly applying the method of (enhanced) GJK [1], [22] at 
each scaling timeframe. By contrast, this paper develops an exact collision detection for uniformly scaled convex polyhedra  via 
reference to a decending piecewise linear decision curve characterizing the set of all contact configurations. Furthermore, in 
contrast with the GJK approach based on the closest points (see e.g. [1], [5]), the proposed exact collision detection approach is 
based on the decision curve constructed on the plane of parametrized  estimated closest points in the direction of shortest path 
between inner ellipsoids. It has recently been found that the signed distance along a given direction (i.e. directional distance) can be 
used to efficiently detect the overlapping of  two convex polyhedra and compute their corresponding penetration depth (PD) for  
overlapping pairs of objects  [1], [15], [18]-[20] which is defined as the minimum translational distance over which one object 
needs to be displaced in order to bring two overlapping objects into touching contact [20], [1].  Usually the Minkowski sum of two 
polyhedra and Gauss map are employed to develop algorithms for computation of PD or its estimate, which is used to generate 
visually acceptable collision response of overlapping. Also, one can define other measures, for example, pseudo-distance [21] as a 
unified distance metric for two objects that are separating or intersecting. 

The paper is organized as follows. Piecewise linear curve characterizing the set of all touching scalings of two scaled convex 
polyhedra is introduced in Section II. In Section III, we proceed to exact collision detection based on the piecewise linear curve 
characterizing all contact configuration of objects. Finally, we conclude this paper in Section IV.  
 

II. Piecewise linear relationship between touching scalings 

2.1. Deformation model: Uniform scaling 
For each convex polyhedron, the uniform deformation of vertex coordinates assumes that any point on the object undergoes 

the same fraction of stretching or compressing displacement relative to an interior point, called seedpoint   is so that 

iii p  p~ ρ=                                                             

where iiiii s-)z~ ,y~ ,x~(p~ =  is the displacement of a point iiiii s-)z ,y ,x(p =  undergoing a scaling transformation 

iρ  of each polyhedral object [20].  Throughout this paper, ))(P),(P( 2211 ρρ denotes  the pair of objects after applying the scaling 
pair ),( 21 ρρ  to the object pair )P,P( 21 . For brevity, the configuration of ))(P),(P( 2211 ρρ is also represented uniquely and 
interchangably by the scaling pair ),( 21 ρρ .  
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Fig. 1 Two scaled convex polyhedra with inner ellipsoidal deformation bounds are in external touch. 
 
 
2.2. Shortest path between inner ellipsoids 

Consider two undeformed convex polyhedra, 1P  and 2P  with known configuration. To determine the overlap status of the 
pair of scaled convex polyhedra ))(P),(P( 2211 ρρ  for different scaling pair ),( 21 ρρ , we first construct an inner 

ellipsoid i
2

i
1 E,E respectively for each object as inner deformation bounds (Fig. 1) [3]-[4]. Let the closest points between inner 

ellipsoids i
2

i
1 E,E  be i

1v and i
2v , respectively. The point at which the ray emanating from i

1v  (respectively, i
2v ) toward i

2v  



(respectively, i
1v ) intersects the boundary of )(P 11 ρ  (respectively, )(P 22 ρ ) is denoted as 1v  (respectively 2v ). The intersections 

are parametrized respectively as 

 
[0,1] t), v)(v(  t-    v )( v

[0,1] t, ) v)(v(  t  v  )( v

2
i
1

i
222

i
222

1
i
1

i
211

i
111

∈−=

∈−+=

ρρ

ρρ
 (1)  

 
2.2.1  Touching scaling pairs 
 A pair of  objects 21 P,P  contact each other externally if 

setempty  )int(P)int(P 21 =∩  

where int denotes the interior of the polyhedron. A touching scaling  pair is  ),( 21 ρρ  such that ))(P),(P( 2211 ρρ  

contact externally. In addition, the intersections of shortest path along the inner ellipsoids with ))(P),(P( 2211 ρρ  assuming in 

contact configurations can be parametrized as  (Fig. 1) 
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Note that the contact configuration/scaling  is unique for identically scaled convex polyhedral objects, while there are 
infinitely many contact configurations/scaling pairs for uniformly non-identically scaled convex polyhedral objects. A contact 
configuration of two convex objects is represented by the contact feature pair, whose features may change for different contact 
configurations. As the scaling applied to deform each convex polyhedral object is uniform but not identical, the exact overlapping 
conditions are more involved due to: (i) there are infinitely many contact configuration between scaled polyhedra, and (ii) the 
contact features may be varied for different contact configurations.    

Consider a pair of stationary convex polyhedral objects at an initially underformed configuration, its configuration 

undergoing scaling transformation can be represented by their scaling pair. If )  ,( 21 ρρ dominates )  ,( 21 μμ , i.e. iρ  is not less 

than iμ , i=1,2, and at least one iρ  is larger than iμ , the objects in configuration )  ,( 21 ρρ are getting closer than in 

configuration )  ,( 21 μμ  measured in the direction of  the shortest path of inner ellipsoids, which is smaller if the objects are apart 

(or  penetrating deeper if the objects are overlapping).Thus to detect the overlap status of a configuration represented by )  ,( 21 ρρ , 

it can be approached from the characterization of all contact configurations which separate the overlap and non-overlap situations. 

If )  ,( 21 ρρ dominates the contact configurations )  ,( 2
*
1 ρρ or )  ,( *

21 ρρ as one object is fixed,  then the pair of objects is 

overlapping; else, non-overlap is reported. 

2.3  Characterization of the set of all touching scaling pairs  
2.3.1 Piecewise-linear relationship between touching scaling pairs 

A touching contact between two convex polyhedra, which has six variants (as illustrated in Fig. 6 in Appendix), can be 
represented by the feature pair, one feature from each object. These can be further reduced as three basic contacts expressed as 
face-vertex (F,V), edge-edge (E,E) or vertex-edge (V,E) contact.  In any of the six contact types, the set of touching scaling pairs 

) ,( 21 ρρ respects a linear relationship (see Appendix for analytical derivations)   

                    0 ,12 <+= abaρρ                             (2)         

That is, for a contact configuration )P ,(P 21 , if  1P is scaled by 1ρ then 2P  should be scaled by 2 ρ via (2) to maintain 

external contact without change in contact features. As ) ,( 21 ρρ  varies over all of the allowable ranges, denoted by 21 I I × , a 

decending piecewise linear curve can be constructed by putting together each segment described by (2) for each contact feature, 
and the junction (switching point) is the scaling pair for which the contact feature changes.  
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Fig.2 Flowchart for computing all line segments that characterize the set of  all touching scaling pairs.



  

2.3.2 Computation of the piecewise linear curve 
Fig. 2 is a computational scheme for construction of the decending piecewise linear curve characterizing the set of all 

touching scaling pairs, mainly through exhaustive search of touching scaling pairs within the allowable ranges from scratch. 

Choosing a resolution for ) ,( 21 ρρ  amounts to discretize the rectangle 21 I I × into rectangular grid, where each node represents a 

configuration. By exhaustive search, a sufficient number of nodes corresponding to touching scaling pairs is found for construction 

of the piecewise linear curve characterizing the the set of all touching scaling pairs over 21 I I × . This search for contact 

configurations over the grid representation of the rectangle 21 I I ×  is an expensive, lengthy process. There are two obvious 

drawbacks of using only exhaustive search in the construction of the decending piecewise linear curve that can introduce errors in 
practical applications: (i)The junction between adjacent line segments will be likely missed if the resolutions are not fine enough, 
and the junction is not sampled in the search process, (ii)For two adjacent line segments with nearly the same slopes, they are often 
not distinguishable and will be pieced together as one line segment so that contact feature change is missed at all. To overcome the 
drawbacks, the analytical equations derived in Appendix are invoked to aid for correct construction and reduce the computational 
expenses of exhaustive search. 

Using the analytical equations to calculate the line segments and the junctions, if the contact features and vertices of feature 
are correct, the line segments from analytical equations will be the same with the results of exhaustive search, and easier to 
distinguish even the two line segments looks very closely because the slopes are more accurate(Fig. 3). Otherwise, the junctions 
will be the exact ones, don’t need to consider about the resolution of sampling(Fig. 4). 

 

 

Fig. 3 . Black + : exhaustive search results. Blue -- and Red -- : results of analytical equations. Circle : 
junction of analytical equations. 
It’s easy to distinguish the two line segments from the analytical equations results. 
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In particular, the intersection of this curve with the line 12 ρρ =  is the growth distance [20], in the form of 

)1/(* ab −=ρ . 

In addition, this linear relationship implies  that the contact loci is also a decending piecewise linear curve which switches from a 
line segment to another line segment with flatter negative tangent as contact feature changes. The contact features (V,E), (E,F) are 
generic transitions between two consecutive contacts (V,F) and non collinear (E,E) contacts [22]. (V,E) contact very often acts as 
the switching point of contact feature changes. Fig.5 shows an example of contact features transition as the touching scaling pair is 

varied over a given range, where we observe that, as the contact features change, the linear relationship between 21 - ρρ for 

contact configurations is also changed. 
 

III. Exact collision detection via decision curve 
By mapping (2) from ),( 21 ρρ plane to 21  t-t  plane, a piecewise linear decision curve of 21  t-t  is constructed for  checking  

the collision status of scaled convex polyhedra. 
3.1  Procedure for Exact collision detection  

Now we summarize the procedure for checking the overlap of two scaled convex polyhedra via 21 t,t .  
Given: 

Fig. 4 . Black + : exhaustive search results. Blue -- and Red -- : results of analytical equations. Circle : 
junction of analytical equations. 
Exhaustive search could not find out the exact junction because the resolution of sampling is not fine 
enough. But using analytical equations could get the exact junction. 
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 (i) two scalable convex polyhedra 21 P ,P  in an initially undeformed configuration, and their  allowable scaling 

range 2121 ) ,( II ×∈ρρ with respect to the seedpoints 21 s ,s . 

(ii)a configuration )(P ),(P 2211 ρρ  to be checked for overlapping 
Procedure: 
Step 1(construction of overlap decision curve) Determine the decending piecewise linear curve of touching scaling pairs 
(Flowchart Fig.2).  
Step 2. (Select a direction to estimate closest points between the objects). Calculate the shortest path between inner ellipsoids. As 
an alternative, the shortest path can be replaced by an arbitrary line segment with endpoints well inside the scaled convex 
polyhedra (e.g. the seedpoints). 
Step 3. Compute the corresponding piecewise linear curve in the triangle { }1  ,]1,0[) ,(:) ,( 21

2
2121 ≤+∈ tttttt  of parametrized 

estimated closest points of )(P ),(P 2211 ρρ  in the direction selected in Step 2. 

Step4. Compute ) ,( 21 tt  for current configuration.  
Output:  Report overlap/non-overlap of )(P ),(P 2211 ρρ . 
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Fig.5 Contact features may change as the touching scaling pairs vary. This figure shows the changes of contact feature: (from top 
to bottom) undeformed configuration, contact feature (V1,F2), switching feature (V1,E2), contact feature (E1,E2). The seedpoint 
is the centroid (i.e. arithmetic average of vertices) of each polyhedral object. 
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 Fig. 6 Fig.5 continued: the diagrams that quantifies the decending piecewise linear relationship of contact configurations 
for 2

21 3] [0.8,) ,( ∈ρρ and for 21 tt − . 
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Fig.7 The piecewise linear loci of contact points of Fig.5. 
 
3.2  Computational issues 

For implementation, we search for the collision pair using a fast triangle intersection check [1] by triangulating the faces of 
each scaled polyhedral object. Except for the trivial situations that the objects are overlapping /non-overlapping over all ranges of 

scaling, one touching scaling ) ,( *
2

*
1 ρρ  within the rectangle 21 II × of allowable scaling can be computed by a bisection search 



between a penetration situation and a separation situation. To reduce the numerical inaccuracy due to roundoff errors, the bisection 
method can be run  a couple of times and their average is the outcome of the bisection search. To generate the piecewise linear 
curve characterizing the set of all touching scalings and the loci of contact points, the procedure is given in the flowchart of Fig. 2. 
As an example, Fig.6 shows the piecewise linear plot of all touching scalings, growth distance and the parametrized intersection 

points of 21ss with scaled polyhedra for Fig.3, and the negative tangent is flatter after switching. Fig. 7 is the corresponding loci of 

contact points. It is easily seen that the loci of contact points of (V,F) contact is the line segment with tangent in the contact vertex  
deforming direction. 
Remark. For the purpose of overlap checking, it suffices to use an arbitrary line segment with endpoints selected as interior point 
within all scaled polyhedron, instead of shortest path between inner ellipsoids. Setting 

 ,s v,s  v 2
i
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s22s11s22s11 tt,tt,vv,vv ==== ,  
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since ),( 21 ρρ are linearly related via (2). However, the use of shortest path between inner ellipsoids offers additional information: 

an accurate estimate of separation/penetration distance between scaled convex polyhedral objects. 
 

IV CONCLUSION 

In this paper, we present an exact collision detection method for two convex polyhedral objects whose allowed deformation is 
uniform but arbitrary scaling of vertices within given upper and lower limits. Whether there are overlaps between scaled convex 
polyhedral objects is checked by reference to the decending piecewise linear curve characterizing the set of all ),( 21 tt of contact 
configurations, which depends on the initial configuration of the objects. The loci of contact points for two convex polyhedra 
undergoing scaling transformation is a piecewise linear curve. 
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APPENDIX: Proof of (2)  

There are six contact configurations between two convex polyhedra (Fig. 8): vertex-vertex, vertex-edge, vertex-face, 
edge-edge, edge-face, and face-face. Some of the geometric manipulations in the following derivations could be found in [5 ]. 
Notations: for i=1,2  

is  the seed point of polyhedron i 

iρ scaling of polyhedron i 



ic  the contact point (vertex or projective point of  is  on contact edge) of polyhedron i,  

iiii dcc
r

ρ+=' scaled position of ic , 

iii scd −=
r

 the scaling direction of polyhedron i 

yxyx −=),(D , the distance between the entities x, y (a point or an edge, a face) 

(i) (F,V) contact 
Refer to Fig.9. Let 321 ,, aaa  be the three vertices of the contact face 1F  of polyhedron 1,  1nv  be its unit outward normal. Then 

0)( 1111111 =+++=−⋅= azyx dznynxnaanF v
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FFDdznynxn

aanF

azyx ±+++=

=′−⋅= v

 

where the “± ” sign denotes expanding or shrinking of 1F . We take the plus sign (i.e. polyhedron 1 enlarged) in the following 
derivation. 
Note that  

),()1(),( 111
'

11 FsDFFD −= ρ  
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By substituting 2c′  into '
1F  and rearrange the equation, we get  

22222 )( ssc'c +−= ρ , and 'c2  on the '
1F  when (F,V) contact, therefore 

01212121 =+′+′+′ ′azzyyxx dcncncn  , 'c2  and 'a1  could be rewritten by  1ρ , 2ρ  
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Therefore 21 ,ρρ  are linearly related. Furthermore, the new contact point. 222
'
2 dcc

r
ρ+=  is obtained. The loci of contact 

points is a line segment with tangent 2d
r

. 
 

 
Fig. 8.Six contact features of two convex polyhedra contact externally 
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Fig. 9 (V,F) contact 

 
(ii) (E,E) contact 
Let  , 1211 vv be end vertices of edge 1L , 2221 ,vv be the vertices of edge 2L . Then 
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If A is nonsingular, unique intersection exists, then we solve 
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which shows that 21 ,ρρ  are linearly related.  

If det(A)=0,  and two edges 21221112 , -vv-vv  are overlapping, there are an infinite of intersection points. 
 
 (iii) (V,E) contact as switching point where contact features change 
(a)In most cases, the contact transition from  (F,V) feature to (E,E) feature and vice versa is (V,E). In this situation, 

(2) 
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(b)(V,E) contact can also occur as the transition between (E,E) feature and (E,E) feature 
As above 
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(c) (V,E) contact as transition between (F,V) feature and (F,V) feature 
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(iv) (E,F) contact 
Two situations occur in this case. One is that at least one vertex of contact edge is in the contact face. This situation can be reduced 
to (V,F) case by setting 2p as the contact vertex. The other situation is that the two vertices of contact edge are outside the contact 

face. However, it does not influence the computation and linearity of 21,ρρ .We only need to check whether the edge is still 
tangent to the face or not. 
 
(v) (F,F) contact 
Note that  (F, F) contact occurs only when the pair of closest features are two parallel  faces. This case can be reduced to (V,F) case 
by the following setting.  Let 2p , the projective point of 2s onto the contact face of polyhedron 1, be the contact vertex and the 

unit normal 1nv  of the contact face of polyhedron 1 be the deforming direction of polyhedron 2. This might cause the deformed 

point '
2p  no longer located at '

1F , but it does not influence the computation and linearity of 21,ρρ . We only need to check 
whether the two faces are still tangent to each other or not. 
 
(vi) (V,V) contact  

(3)

(4)

(5) 



 To maintain a (V,V) contact under uniform scaling transformation, let a given contact vertex be ccc == 21 . The scaled 

contact vertex '
2

'
1 cc = , or 
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Thus 21ssc∈ , and if this is the case the contact  scalings 21 ,ρρ  are linearly related via (A1). This could happen only for very 
special choice of seedpoints, rather than a generic contact case for scaled convex polyhedral objects. 
 

From the linear relationship of touching scaling, it is easy to show that the scaled contact point of two called convex polyhedral 
objects has a linear relationship as well. For the cases of vertex-vertex, vertex-edge, and vertex-face contacts, the scaled contact 
point (vertex) is on the deforming direction. A linear relationship follows.  Edge-face and face-face cases can be reduced to 
vertex-face case, so they also have a linear relationship. For edge-edge contact case, if we solve for the scaled contact point, we can 
find an equation showing the linear relationship between scaled contact point and 1ρ . Therefore, scaled contact point of two 
designated convex polyhedral objects has a linear relationship for all six types of contact. 
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