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Abstract

A long-standing goal of machine learning is to build a
system which can detect a large number of classes with
accuracy and efficiency. Some relationships between
classes would become a scale-free network in which
we can classify the assigned class very fast. Many
available methods for multiclass problems have been
proposed in the literatures, such as AdaBoost.ECC
[4], AdaBoost.ERP, [7] and JointBoost [12]. However,
many of them are inaccurate or time-consuming on
training. In this paper, we propose a new algorithm,
called AdaBoost.ERC, which combines the approach
of Dietterich and Bakiri [2] based on error correcting
output codes (ECOC) and Shapire’s boosting algorithm
[3] [10]. With advantages of both concepts, our new
approach achieves better performance compared to
AdaBoost.ECC, AdaBoost.ERP, and JointBoost.

Keywords: multiclass learning, scale-free network,
ECOC, AdaBoost

1. Introduction
In our previous research and experiences in machine
learning, we found that it is difficult to learn a large
number of classes with accuracy and efficiency. For ex-
ample, in a recommend system, the underlying concept
would detect potential customers for cold sellers [6];
however, a large proportion of all products are cold sell-
ers. Other examples such as applications include large
vocabulary speech categorization [8], natural language
processing tasks [5], and object recognition in cluttered
scenes [12] still have the same problem. Obviously, tra-
ditional methods require to train a classifier for each
class independently. When classes are increasing, we
need applying a large number of different classifiers to
those classes. As a result, the computational complex-
ity and the sample complexity scales linearly with the
number of classes to be detected.

In many practical applications, there are some rela-
tionships among classes and these relationships would
become a scale-free network, where a small number of
nodes have a very high degree of connections and most
of the other nodes have a very small degree. In other
words, some nodes are very important while a large ma-
jority of nodes are less important. It turns out that the
degrees of nodes have a power-law distribution. There-
fore, suppose there is an application where we have a
large number of classes to classify, and they form a
scale-free network. Then potentially we can learn to
classify those important classes first.

In this paper, we want to take advantage of the scale-
free network, we do not need to train a classifier inde-
pendently. We propose sharing classifiers among dif-
ferent categories for constructing a scale-free network
of classifiers. The key idea is to explore the property
of short characteristic path length of a scale-free net-
work. Therefore, a small number of related classifiers
can be associated together to accurately classify a piece
of data. Another important property of scale-free net-
works is robustness. It means that even if some nodes
have breakdowns, the network still works well. That is,
if our classifiers constitute a scale-free network, even
if some of the classifiers fail, the network will still be
robust and quickly find a route to complete the classifi-
cation.

If we can reuse the learned classifiers, then the re-
sources (i.e., time, training examples, etc.) require to
learning a classifier for the majority of other classes will
be decreased significantly. In this way, we can scale
up the learning algorithm to a large number of classes.
This is also more similar to human learning curves: ini-
tially, a baby takes a long time to learn to say a few
words. But later, the baby can learn a lot of words very
quick. Currently, no machine learning can achieve that
kind of feat.



2. Related Work
Given training data D = {(xi, yi)}n

i=1 ∈ X × Y
where X is the input space and Y = {1, ..., K} is
the label space. Multiclass learning problems involve
finding an unknown function H such that the value
of E(x,y)∈D[H(x) �= y] is minimun. The complex-
ity of multiclass learning problems is increasing with
the number of clsses. Because of good performance
of binary classifiers, most muticlass learning tasks are
solved by reducing to multiple binary classification
problems [1]. There are many available algorithms for
learning binary classification problems. The AdaBoost
algorithm introduced in 1995 by Freund and Shapire
is the most popular one of them [3]. AdaBoost works
by repeatedly reweighting examples and rerunning the
weak learner whose accuracy is only better than ran-
dom guessing on these reweighted examples. Finally,
the combined ensemble is a weighted vote of the weak
classifiers. Because AdaBoost focuses on those hardest
examples, the error rate of AdaBoost can be achieved
arbitrarily small.

For dealing with multiclass problems, we investigate
the approach of Dietterich and Bakiri [2] based on error
correcting output codes (ECOC), which is designed to
handle multiclass problems using only a binary learn-
ing algorithm. Given an error correcting output coding
matrix M ∈ {−1,+1}K×T , where T is the length of a
codeword and K is the number of classes. Here, M(k)
denotes the k− th row of the matrix M , that is, a code-
word for class k. Each column of M defines a binary
partition of K classes over data, then a binary classifier
is trained. After T training steps, it produces T classi-
fiers h1, ..., hT . A given new example is then classified
by choosing the class whose associated codeword is the
closest in Hamming distance to the sequence of the pre-
dictions generated by h1, ..., hT .

The most fascinating property of ECOC is that the
code can correct some bit errors. It means that even
some bit positions of codeword predict incorrectly, the
nearest codeword will still be the correct codeword.
A review of the literature indicate that combining Ad-
aBoost algorithm with the method of ECOC is faster
and better in experiment and in theory than other multi-
class algorithms. Those variants of ECOC include Ad-
aBoost.ECC, AdaBoost.ERP, and JointBoost. Their al-
gorithms are depicted in Figure 1, 2, and 3. (Note: In
these figures, I(φ) is an indicator function defined to be
1 if proposition φ holds and 0 otherwise.)

3. Proposed Approach
The two primary properties of scale-free network: (1)
average short path length between any two nodes; (2)

robustness of network. In our research, we want to con-
struct classifiers to achieve those properties of scale-
free network. We think using ECOC may be a good
start. The error correcting property of the code is like
the robustness of scale-free network, that is, even the
system make a little breakdown it will still work well.
Furthermore, binary partition of each column of code
can be regard as sharing knowledge among different
classes. Then if we want to classify some assigned
class, we may pick partial columns of codes which
are associated about assigned class to classify. That is
like the average short path length of scale-free network.
Therefore, using ECOC is our proposal approach. For
making ECOC to achieve better performance, our pro-
posal algorithm also combine with boosting. Our new
method differs from the above mentioned algorithms.

More specifically, given an input x, the ensemble
output H(x) = (h1(x), ..., hT (x)) is computed, and
the Hamming distance is used to predict the class of x.
The Hamming distance between H(x) and k − th row
M(k) is defined as

�(M(k),H(x)) =
T∑

t=1

(1 − M(k, t)h(x))/2. (1)

Then the predicted class ŷ is

ŷ = arg min�(M(k),H(x)). (2)

If we want to classify an example (x, y) correctly,
�(M(y),H(x)) must be smaller than �(M(k),H(x))
for any k �= y. Like AdaBoost.ECC, we adopt their def-
inition margin of the example (x, y) for class k. That
is,

ρk(x, y) = �(M(k),H(x)) −�(M(y),H(x)). (3)

[11]. Intuitionally, we want to design a learning algo-
rithm which can let the margins of the training exam-
ples be as large as possible. As AdaBoost.ECC and
AdaBoost.ERP, they optimize an exponential objective
function based on the margins

CM (H) =
N∑

n=1

∑

k �=yn

e−ρk(xn,yn). (4)

Given a matrix M, we want to find a optimal classifier H
such that objective function CM (H) minimum. Using
the negative gradient method to minimize the objective
function. The negative gradient can be reduced to

Ut

N∑

n=1

Dt(n)M(yn, t)ht(xn) = Ut(1 − 2εt), (5)



Input: A training set {(xn, yn)}N
n=1;length of codeword T

Initialize: D̃1(n, k) = I(k �= yn)/N(K − 1)
For: t = 1, 2, ..., T
· Choose the t − th column M(·, t) ∈ {−1, +1}K

· Ut =
∑N

n=1

∑K
k=1 D̃t(n, k)I(M(k, t) �= M(yn, t))

· Dt(n) = U−1
t

∑K
k=1 D̃t(n, k)I(M(k, t) �= M(yn, t))

· Train a decision stump ht with distribution Dt

· D̃t+1(n, k) = Z̃t
−1 · D̃t(n, k) · exp−ht(xn)(M(yn,t)−M(k,t))/2

where Z̃t is a normalization factor.
End
Output H(x) = arg maxk∈Y

∑T
t=1 ht(x)M(k, t)

Figure 1: A description of AdaBoost.ECC

where Ut and Dt(n) are defined in Figure 1 and εt is
the error rate of classifier ht. Both AdaBoost.ECC and
AdaBoost.ERP try to maximize this negative gradient,
then along the negative gradient we can get minimiza-
tion of objective function CM (H). Let’s review nega-
tive gradient again. It can be separated into two parts
: one is Ut and the other is εt. The larger Ut is, the
stronger the error-correcting ability is. The εt is the
error rate of weak learners trained based on each col-
umn. It seems that in order to optimize the objective
function, it should both maximize Ut and minimize εt.
Unfortunately, in empirical studying, there is a trade-off
between Ut and εt. However, Ut can be rewritten as

Ut =
∑

k,k′∈1,...,K

I(M(k, t) �= M(k′, t))ωt(k, k′),

(6)
where ωt(k, k′) =

∑N
n=1 D̃t(n, k)I(k′ = yn) [9]. It

is obvious to show that maximizing Ut is a special case
of the ”Max-Cut” problem, which is known to be NP-
complete. Li [7] shows that even using max-cut for
getting maximized Ut, the performance is not as good
as expected. One probable reason is that the binary
classification problems from max-cut are usually much
”harder” for the base learner. Therefore, Li proposed
repartition columns of code to make base learner easier
to train in every iteration.

In our new method, however, we propose more a
straightforward approach to make base learners get
small error. Unlike Li’s repartition code approach, we
just repeat columns of code iteratively.Then we apply
AdaBoost algorithm for each repeating column. There-
fore, even for some ”harder” columns which are pro-
duced by max-cut approach, as long as more repeat-
ing columns produced we still could get low error rate
of these columns. We call our new algorithm Ad-

aBoost.ERC (AdaBoost with Error-correcting Repeat
Code). Its algorithm is depicted in Figure 4.

In ECOC method, the fewer error bits we make,
the shorter length of codeword we need. If we can
get more accuracy in each position of codeword, the
length of codeword is to scale approximately loga-
rithmically with the number of classes. In order to
achieve this goal, we apply AdaBoost for each col-
umn of code repeatedly until some specified number
of repeats or specified error rate. In the next section,
we will compare our new method with AdaBoost.ECC,
AdaBoost.ERP, and JointBoost. Our experimental re-
sults show that AdaBoost.ERC performs significantly
better than theirs.

4. Results
We tested our method experimentally on four multi-
class benchmark problems available from the machine
learning repository at UCI. These data sets have both
training data and test data. The characteristics of the
benchmarks used are summarized in Table 1. For the
weak learner of AdaBoost, we used the decision stump
which makes its prediction based on the result of a sin-
gle test comparing one of the attributes to a threshold
value. As mentioned above, maximizing Ut will make
base learners hard to learn, so we choose the simplest
option to produce each column of code uniformly and
independently at random from {−1, +1} but ensuring
half of column mapping to 1. We apply the same code
to AdaBoost.ECC, AdaBoost.ERP, and AdaBoost.ERC
except JointBoost. For JointBoost framework, its al-
gorithm picks the subset of classes to share a classi-
fier that maximally reduces the error on the weighted
training set for all the classes. Other algorithms in our



Input: A training set {(xn, yn)}N
n=1;length of codeword T

Initialize: D̃1(n, k) = I(k �= yn)/N(K − 1)
For: t = 1, 2, ..., T
· Choose the t − th column M(·, t) ∈ {−1, +1}K

· repeat Alternate learning and repartitioning
· Ut =

∑N
n=1

∑K
k=1 D̃t(n, k)I(M(k, t) �= M(yn, t))

· Dt(n) = U−1
t

∑K
k=1 D̃t(n, k)I(M(k, t) �= M(yn, t))

· Train a decision stump ht with distribution Dt

· M(k, t) = sign[
∑

n:yn=k

∑K
l=1 D̃t(n, l)ht(xn) − ∑N

n=1 D̃t(n, k)ht(xn)]
·until convergence or some specified steps
· D̃t+1(n, k) = Z̃t

−1 · D̃t(n, k) · exp−ht(xn)(M(yn,t)−M(k,t))/2

where Z̃t is a normalization factor.
End
Output H(x) = arg maxk∈Y

∑T
t=1 ht(x)M(k, t)

Figure 2: A description of AdaBoost.ERP

experiment are all based on the ECOC method so we
specify the same length of the codeword for each algo-
rithm. In order to make the results comparable, we set
up the number of repartitions of AdaBoost.ERP equal to
the number of repeats of AdaBoost.ERC. Figure 5 and
Figure 6 show the training error and test error curves
with the same length of the codeword for different data
sets. It is obvious that AdaBoost.ERC gets the lowest
training error and test error on each data set. And its
performance continues to improve with the increasing
of the number of repeats. We also found that the repar-
titions of AdaBoost.ERP converge quickly. It means
that the repartitions would not change after a few steps,
hence its performance is no longer improving. These
phenomenons are displayed in Figure 7. (Note: In fig-
ures, the digit in the bracket is the number of reparti-
tions/repeats of AdaBoost.ERP/AdaBoost.ERC.)

data set � train � test � attribute � class
segment 2100 210 36 7
optdigits 3823 797 64 10
pendigits 7494 3498 16 10

letter 16000 4000 16 64

Table 1:MultiClass DataSet from UCI

5 Conclusion
We have introduced a new multiclass boosting algo-
rithm, AdaBoost.ERC, with error-correcting output
codes and repeating. The repeating is meant to
find a better prediction associated each position of

the codeword. Our experimental results show that,
compared with AdaBoost.ECC, AdaBoost.ERP, and
JointBoost achieved the lowest training error and test
error on the data set we used. Furthermore, we find out
that repartition can improve the performance of base
learner, however, after a few steps, the repartition will
not change any more. Consequently, the performance
of AdaBoost.ERP will not keep improving with the
increasing number of repartitions. AdaBoost.ERC can
conquer this drawback. In our future work, we hope
that we can apply this new approach to constructing
a scale-free network of classifiers for learning a large
number of classes with accuracy and efficiency.
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Input: A training set {(xn, yn)}N
n=1;length of codeword T

Initialize: D̃1(n, k) = I(k �= yn)/N(K − 1)
For: t = 1, 2, ..., T
· Choose the t − th column M(·, t) ∈ {−1, +1}K

· Ut =
∑N

n=1

∑K
k=1 D̃t(n, k)I(M(k, t) �= M(yn, t))

· Dt(n) = U−1
t

∑K
k=1 D̃t(n, k)I(M(k, t) �= M(yn, t))

· repeat m = 1, ...,M
· Train a decision stump hm

t with distribution Dt

· Dt(n) = Z−1
t · Dt(n)exp−hm

t (xn)M(yn,t)

where Zt is a normalization factor
· h′

t = h′
t + hm

t

· until some specified repeats or specified error rate
· D̃t+1(n, k) = Z̃t

−1 · D̃t(n, k) · exp−h′
t(xn)(M(yn,t)−M(k,t))/2

where Z̃t is a normalization factor.
End
Output H(x) = arg maxk∈Y

∑T
t=1 h′

t(x)M(k, t)

Figure 4: A description of AdaBoost.ERC

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
segment

Length of CodeWord

T
ra

in
in

g 
E

rr
or

 R
at

e

JointBoost
AdaBoost.ECC
AdaBoost.ERP(4)
AdaBoost.ERC(4)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
optdigits

Length of CodeWord

T
ra

in
in

g 
E

rr
or

 R
at

e

JointBoost
AdaBoost.ECC
AdaBoost.ERP(4)
AdaBoost.ERC(4)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
pendigits

Length of CodeWord

T
ra

in
in

g 
E

rr
or

 R
at

e

JointBoost
AdaBoost.ECC
AdaBoost.ERP(4)
AdaBoost.ERC(4)

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
letter

Length of CodeWord

T
ra

in
in

g 
E

rr
or

 R
at

e

JointBoost
AdaBoost.ECC
AdaBoost.ERP(10)
AdaBoost.ERC(10)

Figure 5: Training Error on UCI DataSet
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Figure 6: Testing Error on UCI DataSet
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Figure 7: AdaBoost.ERP VS. AdaBoost.ERC


