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ABSTRACT
The dramatic increase in the number of academic publications has 

led to a growing demand for efficient organization of the 

resources to meet researchers’ specific needs. As a result, a 

number of network services have compiled databases from the 

public resources scattered over the Internet. Furthermore, because 

the publications utilize many different citation formats, the 

problem of accurately extracting metadata from a publication list 

has also attracted a great deal of attention in recent years. In this 

paper, we extend our previous work by using a gene sequence 

alignment tool to recognize and parse citation strings from 

publication lists into citation metadata. We also propose a new 

tool called BibPro. The main difference between BibPro and our 

previously proposed tool is that BibPro does not need any 

knowledge databases (e.g., an author name database) to generate a 

feature index for a citation string. Instead, BibPro only uses the 

order of punctuation marks in a citation string as its feature index 

to represent the string’s citation format. Second, by using this 

feature index, BibPro employs the Basic Local Alignment Search 

Tool (BLAST) to match the feature’s citation sequence with the 

most similar citation formats in the citation database. The 

Needleman-Wunsch algorithm is then used to determine the best 

citation format for extracting the desired citation metadata. By 

utilizing the alignment information, which is determined by the 

best template, BibPro can systematically extract the fields of 

author, title, journal, volume, number (issue), month, year, and 

page information from different citation formats with a high level 

of precision. The experiment results show that, in terms of 

precision and recall, BibPro outperforms other systems (e.g., 

INFOMAP and ParaCite). The results also show that BibPro 

scales very well. 

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Retrieval.

General Terms
Algorithms, Documentation. 

Keywords
Citation Extraction, Sequence Alignment, Digital Library, Data 

Integration, Data Cleaning. 

1. INTRODUCTION 
Parsing citations is essential for integrating bibliographical 

information published on the Internet. The technique can also be 

used in other applications, such as field-based searching, author 

analysis of publications, and citation analysis [5]. However, it is 

difficult to design a system that can automatically parse citations 

scattered over the Internet because, in addition to the problem of 

technical typing errors, there are many different citation 

styles/formats. Citations can include a number of fields (e.g., 

author, title, publication information) arranged in many different 

formats depending on the type of publication (e.g., book, journal, 

conference paper, research report, or technical report). Therefore, 

extracting the required fields from citations is a challenging task. 

Numerous works on extracting metadata from citations are 

reported in literature [1-12, 16]. The approaches can be roughly 

classified into three categories: learning-based, template-based 

and rule-based approaches.  

Learning-based methods utilize machine learning techniques (e.g.,. 

the Hidden Markov Model (HMM) [7, 8], Support Vector 

Machines (SVM) [6], and Conditional Random Fields (CRF) [5]). 

Among them, CRF achieves the best performance with an overall 

word accuracy of 95.37% on the Cora reference dataset [5, 17], 

which contains 500 references covering thirteen fields: author, 

title, editor, book title, date, journal, volume, tech, institution, 

pages, location, publisher, and note. 

Template-based methods utilize template databases with various 

styles of citation templates (e.g., ParaCite [16] and INFOMAP 

[11,12]). ParaCite has been integrated with the EPrints.org 

software, and links with CiteBase, RefLink, and ISI Web of 

Science [16] are currently under consideration. INFOMAP is a 

hierarchical template-based reference metadata extraction method 

with an overall average accuracy level of 92.39% for the six 

major citation styles detailed in [12].  

Rule-based methods are widely used in real-world applications. 

For example, CiteSeer [1-4] is a well-known search engine and 

digital library that uses heuristics to extract certain subfields. It 

identifies titles and author names in citations with roughly 80% 

accuracy and page numbers with roughly 40% accuracy [1]. 

In a previous work [10], we proposed a template-based citation 

parser that achieved approximately 80% precision, but it had a 

number of drawbacks. First, because template construction relies 

on an author name database for the token matching process, the 

size of the author database directly affects the accuracy of the 
Copyright 2007 ACM 1-58113-000-0/00/0004… 



template database. Second, the parser uses several heuristic rules 

to transform a citation string into templates, but the rules may 

only work for some special cases. The same problem arises when 

metadata is extracted from a citation string by referencing a 

template. Finally, during the matching process, there is high 

probability of mismatching templates with other templates that 

have same similarity score. We call this the "template conflict" 

problem. Generally, the larger the template database, the more 

serious the problem will be. 

In this paper, we propose a new framework, called BibPro, for the 

citation parser. BibPro retains the advantages of our previous 

work (e.g., it uses protein sequences to represent citations and the 

Basic Local Alignment Search Tool (BLAST) to find similar 

templates), and resolves the weaknesses. Instead of relying on an 

author name database and heuristic rules, BibPro uses the order of 

punctuation marks in a citation string as a feature to represent the 

string’s citation style. Furthermore, to find the template with the 

highest similarity score, we use the Needleman-Wunsch algorithm 

[15] in conjunction with BLAST to extract metadata from citation 

strings and align the features (a protein sequence) with the 

templates in our template database. In other words, BibPro 

extracts metadata systematically from the strings by referencing 

the alignment information of the matched template. Because of 

these two modifications, BibPro does not need any heuristics, and 

thus overcomes the template conflict problem. Figure 1 shows an 

example of extracting metadata from a citation string, where 

BibPro can be used to extract several common fields, such as 

author, title, journal, volume, number (issue), page, month, and 

year information, from a citation string.  

The remainder of this paper is organized as follows. In Section 2, 

we explain the concepts behind BibPro and describe its 

architecture. In Section 3, we detail the experiment results and 

compare BibPro with several related works. Then, in Section 4, 

we present our conclusions and discuss some interesting 

directions for future research. 

2. BIBPRO: CITATION PARSER 
2.1 Basic Ideas 
Our system is based on two concepts. The first uses a protein 

sequence to represent a citation string. We split a citation string 

into several tokens and use an amino acid symbol to represent 

each token. Figure 2 shows an example of a citation string 

transformed into a protein sequence 

“AAADTTTTDLLLLDYRPHS”. When transforming a citation 

string into a protein sequence, Bibpro only transfers important 

features (e.g., the order of the fields and the field separators) from 

the citation string to the protein sequence. Redundant information 

is filtered out to simplify the problem and accelerate the parsing 

process. A protein sequence is designed to capture some features 

of the citation string. The sequence is then matched with 

previously known templates by BLAST [13, 14], a well-

developed protein sequence matching program that searches 

protein sequence databases for sequences that are most similar to 

the target sequence. After a template has been selected as the first 

priority by BLAST, Bibpro partitions and extracts the desired 

metadata from the citation string. 

Because citation strings of the same style have similar 

punctuation marks and reserved words, the order of the 

punctuation marks in a string must be fairly significant to identify 

the citation style. Our second concept utilizes this structural 

property as a feature index in BLAST to help match citation 

styles and parse citation strings according to their respective 

citation styles.  

Based on these two concepts, Bibpro consists of two phases: a 

system preprocessing phase and an online parsing phase. The goal 

of the first phase is to generate feature indices for all previously 

known citation styles in advance so that BLAST will be able to 

better match citation styles in the second phase (see Figure 3a.). 

During the online parsing phase, BibPro uses BLAST [13, 14] to 

Figure 2. Transforming a citation string to a protein 
sequence.

Figure 3. System preprocess and online parsing phases. 

Figure 1. Extraction metadata from a citation string. 



find a citation style with a feature index similar to that of the 

citation string. BibPro then accurately extracts metadata from this 

citation string. In the following subsections, we introduce each 

component and the feature indices used in our system. 

2.2 Form Translation 
In order to use BLAST to match similar citation styles, we need to 

transform incompatible citation strings into compatible protein 

sequences. Therefore, we need to consider a number of questions: 

How many symbols can be used in a protein sequence? 

How many fields should be extracted from a citation string? 

How do we transform a citation string into a protein sequence 

and retain its citation style information? 

Having considered the above questions, we created an encoding 

table to define the relationships between the tokens in a citation 

string and the symbols in protein sequences, as shown in Table1. 

Table 1. Encoding Table 

A: Author 

T: Title 

L: Journal 

F: Volume value 

W: Issue value 

H: Page value 

X: noise (unrecognized token) 

M: Month 

Y: Year (number: 1900-2010) 

S: Issue key. e.g. “no”, “No” 

P: Page key. e.g. “pp”, “page” 

V: Volume key. e.g. “Vol”, “vo” 

N: numeral 

Q: @ # $ % ^ & * + = \ | ~ _ 
/ ! ? 

I: ( [ { < 

K: ) ] } >  

D: .

G: " “ ”     

R: , 

C: - : 

E: ' ` 

Z: ; 

B: blank (use one B＂ to 
replace continuous X＂)

The design of the encoding table is based on the following 

observations: 

BLAST can only process sequences with 23 different symbols, 

so we use these 23 symbols to represent different fields, and 

use field separators to keep the citation style information in 

sequence. 

The most common fields in citation strings are: author, title, 

journal, volume, number, page, issue, month and year. Thus, 

we focus on extracting these fields from citation strings and 

assign a symbol to represent each field. 

The most common reserved words used in citation string are: 

"vo", "vol", "no", "NO", "pp", and "page". Since these words 

are also used to separate fields, we use a symbol to represent 

each kind of reserved word. 

The punctuation marks normally used to separate fields are: " , 

", " . ", " ; ", " : ", " " " and " ' ". Hence we assign each 

punctuation mark a symbol to represent it. 

Brackets and parentheses are synonymous in citation strings, 

so we use one symbol to represent both. 

Several kinds of punctuation marks appear in the title field, 

such as: " - ", " ! ", " ? ". However, we only use one symbol to 

represent all of them because they do not separate fields. 

Figures 4 and 5 show examples of citation strings transformed 

into protein sequences. Figure 4 shows that when a citation 

string’s partitions are pre-determined, we can correctly label each 

token. Because this form is the correct encoding of the protein 

sequence, we call it the "RESULT FORM", and if we can 

correctly transform a citation string to its RESULT FORM, it is 

easy to extract information for the citation string. However, when 

parsing a given citation string online, as Figure 5 shows, we can 

only label each token based on its content. If we find 

unrecognized tokens, we replace them with a "X". We call this 

protein sequence the "BASE FORM". Thus, the process of 

parsing citation strings can be stated more simply as the 

transformation of target citation strings from their BASE FORM 

into their RESULT FORM. 

To transform a citation string from its BASE FORM into its 

RESULT FORM, we need to know its citation style. For this 

reason, we define several forms of a protein sequence for our 

mining process: 

STYLE FORM: To store information about different citation 

styles, BibPro generates a style form for each style in the 

preprocessing phase. The style form is then used to partition 

citation strings during the online parsing phase. The RESULT 

FORM can represent style information for specific citation 

strings, but it has a lot of excess information, such as the 

length of author, title, and journal fields. We therefore 

condense the redundant information in the RESULT FORM by 

using one of each symbol to represent the above fields, as 

shown in Figure 6. This sequence, called the "STYLE FORM", 

is used to represent a citation style.

INDEX FORM: To recognize the style of a citation string, we 

need to define a form to represent the feature index shown in 

Figure 3. We only use the order of punctuation marks in 

citation strings as the feature index. Figure 7 shows an 

example of the transformation of a citation string from its 

BASE FORM into what we call its “INDEX FORM” by 

removing all other unrecognized tokens. The INDEX FORM is 

the protein sequence that BLAST will try to match with similar 

sequences in the template database, so it is like an index used 

in a conventional database. 

ALIGN FORM: Parsing a citation string online is a difficult 

task, even after BLAST has determined its corresponding 

template. This is because the system only knows the INDEX 

and STYLE FORM of the template, but many fields of the 

citation like the author, title, and journal fields may contain 

punctuation marks. To extract these fields correctly, we have 

to remove all the punctuation marks in them. Besides, the 

STYLE FORM only shows the order of fields, not the number 

of authors that appear in a citation string. Hence, we cannot 

partition the citation string correctly with the STYLE FORM 

alone. For this reason, we use a knowledge database that 

includes author and journal information to mark and group 

author and journal field tokens in citation strings during the 

online parsing phase. Figure 8 shows an example of author and 

journal field grouping during the transformation of the BASE 

FORM into what we call the "ALIGN FORM". The knowledge 



database is not essential to our system, but it helps improve the 

level of accuracy. The ALIGN FORM is only used to process 

citation strings in the online parsing phase. 

Remember that the goal of BibPro is to correctly parse the given 

citation string, that is, to transform the given citation string to its 

final RESULT FORM. When parsing the citation string, BibPro 

does not know the RESULT FORM but could generate an answer 

by using the BLAST tool to match similar citation strings in our 

database. The matching process is based on the citation string’s 

INDEX FORM, so that BibPro can find out candidate citation 

strings with similar INDEX FORM. According to these 

candidates’ STYLE FORM, BibPro then uses the Needleman-

Wunsch algorithm to perform global alignment between the 

STYLE FORM and the ALIGN FORM, and extract metadata 

from the given citation string. Figure 9 shows the result of global 

alignment. With the alignment, BibPro is able get the RESULT 

FORM from the ALIGN FORM by adding “A” (author), “L” 

Figure 4. Transforming a citation string into a RESULT FORM. 

Figure 5. Transforming a citation string into a BASE FORM. 



(journal), and “T” (title) in the correct positions and by changing 

“N” to its corresponding amino acid (e.g., an amino acid “N” may 

become F [volume number], “W” [issue number] or H” [page 

number]]. Finally, by checking the original citation string and the 

RESULT FORM, we can parse all the metadata correctly. 

2.3 System Architecture and Design 
Figure 10 shows a simple flow diagram of BibPro’s processes. In 

the first step, BibPro collects data, including citation strings and 

their corresponding partition information, from the Internet and 

uses it to build a template database. The system is then able to 

provide an online citation parsing service. Hence, we can divide 

BibPro into two basic systems: a template generating system and 

a parsing system. 

2.3.1 Template Generating System 
The goal of the template generating system is to construct a large 

database of templates, each of which represents a citation style. 

We divide the template generating process into two phases. The 

first phase collects data, including citation strings and their 

corresponding metadata (partition answers), from the Internet. 

The second phase uses this data to build the templates. We 

developed programs to retrieve BibTeX files from the Internet. 

Since the files are field-based, we can easily parse them to get the 

metadata for a citation string. Then, we use the title field as a 

search query to search for a citation in CiteSeer or another search 

engine, e.g., Google. In this way, we can get many citation strings 

and their corresponding metadata, as shown in Figure 11. 

Figure 6. Transforming RESULT FORM into STYLE 
FORM.

Figure 7. Transforming BASE FORM into INDEX 
FORM.

Figure 10. System work flow of BibPro. 

Figure 8. Transforming BASE FORM into ALIGN 
FORM.

Figure 9. Aligning STYLE FORM and ALIGN FORM 
to get a RESULT FORM. 

Figure 11. Process of collecting template data. 



BibPro can then build the template database. Because each 

citation string’s partition answers are known, it is easy to 

transform citation strings into their STYLE and INDEX FORMs, 

as described in Section 2.2. We treat these two sequences as one 

record in the template database. However, we can not store the 

record in the database directly because the data collected from a 

citation string may be inconsistent with its metadata. Moreover, 

our token-based form translation may encounter problems if 

different fields share the same token. For this reason, we designed 

a template filter to ensure that a template is consistent with its 

original citation string. The template filter is designed according 

to some simple rules (e.g., the author, title and journal fields can 

not appear more than once in a citation string). This filter enables 

BibPro to build the template database automatically. Figure 12 

shows the process of building a template database. 

2.3.2 Parsing System 
Once the template database has been compiled, BibPro can parse 

a citation string on-the-fly. Like the template-generating process, 

the parsing process can also be divided into two phases. In the 

first phase, BLAST searches the template database for the 

template most similar to that of the citation string. Then, the 

encoding table transforms the citation string into its INDEX 

FORM and ALIGN FORM. BibPro then uses the INDEX FORM 

as a query string for BLAST to match against and find the 

corresponding STYLE FORM. Since BLAST needs a scoring 

table to evaluate the search results, we modified the score table to 

fit the encoding table’s definitions. The complete process is 

illustrated in Figure 13. 

A problem may arise if the template database becomes too large 

because BLAST is likely to match many STYLE FORMs with the 

same similarity score. To solve this problem, in the second phase, 

BibPro uses the Needleman-Wunsch algorithm to compute the 

ALIGN FORMs of all the matched STYLE FORMs with the 

same score. Since the algorithm also needs a score table to 

evaluate the score, we added the author and journal information, 

which is included in both the ALIGN and STYLE FORMs, to the 

score table (see Appendix 1) . After calculating the scores, BibPro 

chooses the STYLE FORM with the highest score and thereby 

avoids the template conflict problem. Note that during the 

alignment computation step, BibPro continues to extract metadata 

from the citation string. Figure 14 illustrates the processes in the 

second phase. 

Figure 12. The structure of building template database.

Figure 13. Process of matching template by the BLAST.

Figure 14. Process of extracting metadata. 

Figure 15. System structure of BibPro. 



Figure 15 shows the combination of the parsing system and 

template generating system in BibPro. 

3. EXPERIMENTS AND ANALYSIS 
To conduct a comprehensive evaluation, we compared BibPro 

with several other systems. Because we cannot obtain their source 

codes, and each of them only provides its own dataset and 

performance measurements, we used their datasets with 

corresponding performance measurements when comparing with 

different systems, in order to have a fair comparison. 

3.1 Datasets 
We chose three datasets for our experiments. The first dataset, 

which was compiled by [12], comprised six citation styles, 

namely, JMIS, ACM, IEEE, APA, MISQ, and ISR, and included 

160,000 citation strings. We randomly selected 10,000 strings to 

build the template database and another 10,000 citation strings for 

testing. We refer this dataset as D1. 

The second dataset was created by the Cora project [5, 17]. It 

comprises 500 citation strings, each of which contains 13 fields: 

author, title, editor, book title, date, journal, volume, tech, 

institution, pages, location, publisher, and note. We used 350 

citation strings for training and the remaining 150 for testing. We 

refer this dataset as D2. 

The third dataset was obtained from CiteSeer and contained 6,500 

citation strings. We developed two programs: one to retrieve the 

BibTeX files from each citation string on the Internet; and the 

other for choosing the title field to search the citations in CiteSeer 

so that we could compile the citation strings and their 

corresponding metadata. We used 2,500 citation strings for 

training and 4,000 for testing. We refer this dataset as D3. 

The citation strings in D1 are more regular than those in D2 and 

D3 because they were generated from existing data. Moreover, 

the citation styles only differ in the order of the fields and the 

separators of the fields. In other words, there are no variations in 

the citation string formats. The D2 dataset is more complex than 

D1; however, it only contains 500 records, which are insufficient 

to express every type of citation style. We therefore collected real 

data from the Internet to generate the D3 dataset, which is more 

varied and fits real-world applications better. 

3.2 Performance Measurements 
We use different performance measurements for the datasets in 

our experiments. The first measurement, which is also used in [11, 

12] is 

fieldsofnumberTotal

fieldsextractedcorrectlyofNumber
Accuracy

This accuracy measurement, called EVAL1, is used to evaluate 

the system’s performance on the D1 dataset. 

The second measurement, defined in [5], is calculated as follows: 

Word accuracy: assume that A is the number of true positive 

words, B is the number of false negative words, C is the 

number of false positive words, D is  the number of true 

negative words, and A + B + C + D represents the total 

number of words. The word accuracy is calculated 

by: DCBA

DA

F1-measure: The Precision, Recall and F1 measures are 

defined as follows.

RecallPrecision

RecallPrecision2
F1

BA

A
Recall

CA

A
Precision

This measurement, called EVAL2, is used to evaluate the 

system’s performance on the D2 dataset. 

The third measurement is used for the D3 dataset. For this dataset, 

the metadata in BibTeX that we collected from the Internet should 

be consistent with the metadata of the citation string. 

Unfortunately, some of the BibTeX metadata from the Internet 

does not fit the corresponding citation string. To resolve this 

problem, we developed the following measurement to determine 

whether the data is correctly parsed. 

]Token[Token#

]Token[Token#
 PrecisionField

BibTexcitationquery

fieldBibTexfieldparsed

where
fieldparsedToken  denotes tokens that appear in the parsed 

subfield; 
citationqueryToken denotes tokens that appear in the query 

citation string; 
fieldBibTexToken  denotes tokens that appear in a 

specific subfield in the BibTeX file; and 
BibTexToken denotes all 

tokens that appear in the BibTeX file. 

The denominator represents the number of the tokens in both the 

citation string and the BibTeX file, while numerator represents 

the number of correctly parsed  tokens. We use this measurement, 

called EVAL3, to compare BibPro with ParaCite. 

Using these three measurements, we can compare BibPro with 

other systems and derive more reliable experiment results. 

3.3 Experimental Results 
3.3.1 Comparison with INFOMAP 
The first experiment compares BibPro with INFOMAP [11, 12]. 

We used EVAL1 on the D1 dataset; the results are shown in Table 

2. BibPro outperforms INFOMAP with an overall average 

accuracy for the six styles of 97.68% versus 92.39% for 

INFOMAP. Furthermore, in all fields, except the journal field, 

BibPro achieves a higher average accuracy level than INFOMAP. 

More specifically, BibPro is at least 5% more accurate in the 

author, title, issue and page fields. Similarly, of the six different 

citation styles mentioned earlier, BibPro excels in all styles except 

the MISQ style. To verify the scalability, we use the same 

template database and evaluation to test the full 150,000 citation 

strings, and the overall average accuracy is 94.85% as shown in 

Table 3. The results show that BibPro can achieve a better 

performance than INFOMAP. Furthermore, it is reliable when the 

dataset is regular and clean. 



Table 2. Extraction results of BibPro and INFOMAP on D1 
using EVAL1. 

Citation 
Style Author Title Journal Volume Issue Year Page

Overall 

Avg.

APA

IEEE

ACM

ISR 

MISQ 

JMIS 

Bib 

Pro

Avg.

APA

IEEE

ACM

ISR 

MISQ 

JMIS 

INFO 

MAP

Avg.

Table 3. Extraction results of BibPro on 150,000 citation 
strings using EVAL1. 

Citation
style Author Title Journal Volume Issue Year Page

Overall

Avg.

APA

IEEE

ACM

ISR 

MISQ 

JMIS 

Avg. 

3.3.2 Comparison with CRF and HMM 
In the second experiment, we compared BibPro with the CRF and 

HMM systems, using EVAL2 as the performance measurement 

for the D2 dataset. The results are shown in Table 4. We compare 

BibPro with these systems because it is designed to extract the 

most common fields for citation strings; therefore, we could only 

measure the accuracy of the author, title, journal, volume, issue, 

page, month and year fields in a citation string. Moreover, we use 

the month and year fields to represent the date field and ignore the 

issue field because it was not included in the D2 dataset. The 

results show that BibPro is more accurate than HMM, but less 

accurate than CRF. However, since the D2 dataset only contains 

500 records, it is not large enough to evaluate the performance of 

a real-world system. Furthermore, the D2 dataset comprises 

multiple styles that are difficult to differentiate. However, since 

BibPro automatically builds a feature list for each known template 

during the token matching step, it does not work very well with 

citation strings that have ambiguous tokens, such as those in D2. 

Thus, the results suggest that the size of the dataset and the 

variety of the citation strings in the dataset may have a strong 

impact on the system’s performance. 

Table 4 Extraction results of HMM, CRF and BibPro on D2 
using EVAL2. 

HMM CRF BibPro 

acc. F1 acc. F1 acc. F1 

Author 

Booktitle

Date 

Editor 

Institution

Journal 

Location

Note

Pages 

Publisher

Tech 

Title 

Volume

3.3.3 Comparison with ParaCite 
In this experiment, we compared BibPro with ParaCite [16] using 

EVAL3 as the performance measurement on the D3 dataset. The 

results are detailed in Table 5. Since the source code for ParaCite 

is available on the Internet, we can use the D3 dataset, which was 

compiled by our automatic programs to compare ParaCite’s 

performance with that of BibPro. Because ParaCite does not 

automatically build templates, we use ParaCite’s default template 

database to test the D3 dataset, which contains about 4000 records. 

Moreover, because ParaCite can only extract one author name per 

citation string, its accuracy in the author field is much lower than 

that of BibPro. From Table 5, we observe that, in terms of 

accuracy, BibPro outperforms the ParaCite system by more than 

20% in all fields, except the title field, and by as much as 90% in 

the page field. BibPro achieves a better performance than 

ParaCite because the D3 dataset consists of real data, which is 

more complex than regular datasets. However, comparing the 

accuracy level of the different fields in BibPro, it is interesting to 

note that the average accuracy for the title and journal fields is 

consistently lower than it is for other fields. This is probably due 

to the frequent variability (the variability in punctuation e.g., "-", 

".", and "?") in the title and journal fields. 



Table 5 Extraction results of ParaCite and BibPro on D3 
using EVAL3. 

Author Title Journal Volume Page Issue Month Year

Bib 

Pro

Para

Cite 

3.4 Analysis 
We now consider several important factors that can influence the 

performance of BibPro. The factors are the benchmark, score 

matrix, knowledge database, and template database. Our 

experiment results suggest that the origin of target datasets affects 

the performance substantially. In addition, the more regular the 

dataset is, the higher the level of accuracy will be. To determine 

what other factors reduced the accuracy level, we checked the 

datasets manually. Our findings are listed below. 

[Template Creating Error]: Since the process of 

transforming a citation string into its STYLE FORM depends 

on token matching, problems may arise when tokens with 

ambiguous meanings are encountered. For example, the 

inclusion of numbers or people’s names in the title field may 

affect the accuracy of the author and year fields. We applied a 

template filter to alleviate this problem, but it still affects 

BibPro’s performance to some degree.  

[Extraction Alignment Error]: Even though BLAST can find 

templates with a high degree of similarity to the target citation 

strings during the online parsing phase, errors in alignment 

continue to occur during the extraction process. There may be 

several different alignments with templates that have the same 

similarity score. Hence, in the trace-back stage of global 

alignment, there may be many paths to trace back, but it is 

very difficult to choose the correct path automatically. 

[Database Completeness Problem]: Because we use the 

template database as training data, the comprehensiveness of 

the template database and knowledge database has a strong 

influence on the performance of BibPro. 

Since BibPro’s performance depends to a large extent on the 

template database, our primary interest is to determine how we 

can automatically generate each template’s feature index as 

precisely and efficiently as possible. However, as we use a token 

matching technique to recognize templates, it is difficult to create 

the correct feature index when citation styles are very complex. 

This is an interesting problem that we will consider in our future 

work. 

We also applied two sequence alignment techniques in BibPro: 

BLAST and the Needleman-Wunsch algorithm. Both techniques 

are based on dynamic programming, so they need score matrices 

to evaluate the alignment results. The score matrix can be 

adjusted as necessary to meet different requirements. In this paper, 

we adjusted the score matrix to fit our experiments, as detailed in 

Appendix 1. 

4. CONCLUSION AND FUTURE WORK 
Parsing citations is a challenging problem due to the diverse 

nature of citation styles. In this paper, we have proposed a 

template-based citation parsing system called “BibPro.” It not 

only adds new citation templates easily, but also searches for the 

most similar templates so that it can extract metadata from 

citation strings rapidly. In BibPro, we use the order of punctuation 

marks in a citation string as features of the string’s citation style. 

We then transform citation strings into protein sequences and 

apply two sequence alignment techniques, BLAST and the 

Needleman-Wunsch algorithm, to find the most similar template 

for the online parsing process. To evaluate the performance of 

BibPro, we compare it with some other systems by implementing 

experiments with various evaluation measures and datasets. The 

experiment results show that BibPro performs well when good 

quality template databases are used for training. 

There are still several challenges to address when implementing 

BibPro in real world applications. One challenge is that it is 

difficult to get accurate, large-scale training datasets to cover all 

kinds of citation styles. Moreover, the training data we can collect 

from the Internet may contain a variety of errors, such as missing 

values, spelling errors, inconsistent abbreviations, and extraneous 

tokens [9]. Another challenge is that different publication types 

use a variety of information fields. It is difficult to extract all the 

information fields from each of the publication types. Therefore, 

in this paper, we concentrate on the most common information 

(fields) for all publication types. In the future, we will try to 

determine how we can generate the system templates more 

precisely and efficiently, and thus make BibPro more practical for 

real-world applications. 
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6. APPENDIX 1: DEFAULT PARAMETER 
BLAST and the Needleman-Wunsch algorithm both use score 

tables to evaluate their alignment results. Figure 16 shows the 

score table used for BLAST, while Figure 17 shows the score 

table used for the Needleman-Wunsch algorithm. 

Figure 17. The score table used in Needleman-Wunsch 
algorithm. 

Figure 16. The score table used in BLAST. 


