
Web Application Security Assessment by Fault Injection
and Behavior Monitoring

Yao-Wen Huang, Shih-Kun Huang,
and Tsung-Po Lin

Institute of Information Science, Academia Sinica
Nankang 115 Taipei, Taiwan

{ywhuang,skhuang,lancelot}
@iis.sinica.edu.tw

Chung-Hung Tsai
Department of Computer Science and Information

Engineering,
 National Chiao Tung University

300 Hsinchu, Taiwan
chotsai@csie.nctu.edu.tw

ABSTRACT
As a large and complex application platform, the World Wide
Web is capable of delivering a broad range of sophisticated
applications. However, many Web applications go through rapid
development phases with extremely short turnaround time,
making it difficult to eliminate vulnerabilities. Here we analyze
the design of Web application security assessment mechanisms in
order to identify poor coding practices that render Web
applications vulnerable to attacks such as SQL injection and
cross-site scripting. We describe the use of a number of software-
testing techniques (including dynamic analysis, black-box testing,
fault injection, and behavior monitoring), and suggest
mechanisms for applying these techniques to Web applications.
Real-world situations are used to test a tool we named the Web
Application Vulnerability and Error Scanner (WAVES, an open-
source project available at http://waves.sourceforge.net) and to
compare it with other tools. Our results show that WAVES is a
feasible platform for assessing Web application security.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
Modules and interfaces; D.2.5 [Software Engineering]: Testing
and Debugging – Code inspections and walk-throughs, and
Testing tools; H.3.1 [Information Storage and Retrieval]:
Content Analysis and Indexing – Dictionaries and Indexing
Method; K.6.5 [Management of Computing and Information
Systems]: Security and Protection – Invasive software and
Unauthorized access

General Terms

Security, Design.

Keywords
Web Application Testing, Security Assessment, Fault Injection,
Black-Box Testing, Complete Crawling.

1. INTRODUCTION
Web masters and system administrators all over the world are

witnessing a rapid increase in the number of attacks on Web
applications. Since vendors are becoming more adept at writing
secure code and developing and distributing patches to counter

traditional forms of attack (e.g., buffer overflows), hackers are
increasingly targeting Web applications. Most networks are
currently guarded by firewalls, and port 80 of Web servers is
being viewed as the only open door. Furthermore, many Web
applications (which tend to have rapid development cycles) are
written by corporate MIS engineers, most of whom have less
training and experience in secure application development
compared to engineers at Sun, Microsoft, and other large software
firms.

Web application security can be enhanced through the
increased enforcement of secure development practices. Yet
despite numerous efforts [42] and volumes of literature [20] [59]
promoting such procedures, vulnerabilities are constantly being
discovered and exploited. A growing number of researchers are
developing solutions to address this problem. For instance, Scott
and Sharp [54] have proposed a high-level input validation
mechanism that blocks malicious input to Web applications. Such
an approach offers protection through the enforcement of strictly
defined policies, but fails to assess the code itself or to identify
the actual weaknesses.

Our goal in this paper is to adopt software-engineering
techniques to design a security assessment tool for Web
applications. A variety of traditional software engineering tools
and techniques have already been successfully used in assuring
security for legacy software. In some studies (e.g., MOPS [18]
and SPlint [24]), static analysis techniques have been used to
identify vulnerabilities in UNIX programs; static analysis can also
be used to analyze Web application code, for instance, ASP or
PHP scripts. However, this technique fails to adequately consider
the runtime behavior of Web applications. It is generally agreed
that the massive number of runtime interactions that connect
various components is what makes Web application security such
a challenging task [30] [54].

In contrast, the primary difficulty in applying dynamic
analysis to Web applications lies in providing efficient interface
mechanisms. Since Web applications interact with users behind
browsers and act according to user input, such interfaces must
have the ability to mimic both the browser and the user. In other
words, the interface must process content that is meant to be
rendered by browsers and later interpreted by humans. Our
interface takes the form of a crawler, which allows for a black-
box, dynamic analysis of Web applications. Using a “complete
crawling” mechanism, a reverse engineering of a Web application
is performed to identify all data entry points. Then, with the help
of a self-learning injection knowledge base, fault injection
techniques are applied to detect SQL injection vulnerabilities.

Copyright is held by the author/owner(s).
WWW 2003, May 20-24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.

148

Using our proposed Topic Model, the knowledge base selects the
best injection patterns according to experiences learned through
previous injection feedback, and then expands the knowledge
base as more pages are crawled. Both previous experiences and
knowledge expansion contribute to the generation of better
injection patterns. We also propose a novel reply analysis
algorithm in order to help the crawler interpret injection replies.
By improving the observability [66] of the Web application being
tested, the algorithm helps facilitate a “deep injection” mechanism
that eliminates false negatives.

To imitate real-world interactions with Web applications, our
crawler is equipped with the same capabilities as a full-fledged
browser, thus making it vulnerable to malicious scripts that may
have been inserted into a Web application via cross-site scripting.
Since a malicious script that is capable of attacking an interacting
browser is also capable of attacking the crawler, a secure
execution environment (SEE) that enforces an anomaly detection
model was built around the crawler. During the reverse
engineering phase, all pages of a Web application are loaded into
the crawler and executed. Input stimuli (i.e., simulated user events)
are generated by the crawler to test the behavior of the page’s
dynamic components. Any abnormal behavior will cause the SEE
to immediately halt the crawler and audit the information. Thus,
while offering self-protection, this layer also detects malicious
scripts hidden inside Web applications.

This paper is organized as follows: SQL injection and cross-
site scripting, along with our proposed detection models, are
described in Section 2. The overall system architecture is
introduced in Section 3. Comparisons with similar projects are
made in Section 4, and experimental results are presented in
Section 5. Conclusions are offered in Section 6.

2. DETECTING WEB APPLICATION
VULNERABILITIES

We chose SQL injection and cross-site scripting
vulnerabilities as our primary detection targets for two reasons: a)
they exist in many Web applications, and b) their avoidance and
detection are still considered difficult. Here we will give a brief
description of each vulnerability, followed by our proposed
detection models.

2.1 SQL Injection
Web applications often use data read from a client to

construct database queries. If the data is not properly processed
prior to SQL query construction, malicious patterns that result in
the execution of arbitrary SQL or even system commands can be
injected [6] [16] [25] [36] [60].

Consider the following scenario: a Web site includes a form
with two edit boxes in its login.html to ask for a username and
password. The form declares that the values of the two input
fields should be submitted with the variables strUserName and
strPassword to login.cgi, which includes the following code:

SQLQuery = “SELECT * FROM Users WHERE (UserName='” +
strUserName + “') AND (Password='” + strPassword + “');”
If GetQueryResult(SQLQuery) = 0 Then bAuthenticated = false;
Else bAuthenticated = true;

If a user submits the username “Wayne” and the password
“0308Wayne, ” the SQLQuery variable is interpreted as:

“SELECT * FROM Users WHERE (strUserName= 'Wayne') AND
(Password='0308Wayne');

GetQueryResult() is used to execute SQLQuery and retrieve the
number of matched records. Note that user inputs (stored in the
strUserName and strPassword variables) are used directly in SQL
command construction without preprocessing, thus making the
code vulnerable to SQL injection attacks. If a malicious user
enters the following string for both the UserName and Password
fields:
X' OR 'A' = 'A

then the SQLQuery variable will be interpreted as:
“SELECT * FROM Users WHERE (strUserName='X' OR 'A' = 'A')
AND (Password='X' OR 'A' = 'A');

Since the expression 'A' = 'A' will always be evaluated as TRUE,
the WHERE clause will have no actual effect, and the SQL
command will always be the equivalent of “SELECT * FROM
Users”. Therefore, GetQueryResult() will always succeed, thus
allowing the Web application’s authentication mechanism to be
bypassed.

2.2 SQL Injection Detection
Our approach to SQL injection detection entails fault injection–

a dynamic analysis process used for software verification and
software security assessment. For the latter task, specially crafted
malicious input patterns are deliberately used as input data,
allowing developers to observe the behavior of the software under
attack. Our detection model works in a similar manner–that is, we
identify vulnerabilities in Web applications by observing the
output resulting from the specially prepared SQL injection
patterns.

Similar to other research on Web site testing and analysis [9]
[48] [52], we adopted a black-box approach in order to analyze
Web applications externally without the aid of source code.
Compared with a white-box approach (which requires source
code), a black-box approach to security assessment holds many
benefits in real-world applications. Consider a government entity
that wishes to ensure that all Web sites within a specific network
are protected against SQL injection attacks. A black-box security
analysis tool can perform an assessment very quickly and produce
a useful report identifying vulnerable sites. To assure high
security standards, white-box testing can be used as a complement
[54].

In order to perform a black-box fault injection into a Web
application, a reverse engineering process must first take place to
discover all data entry points. To perform this task, we designed a
crawler to crawl the Web application–an approach adopted in
many Web site analysis [9] [48] [52] and reverse engineering [49]
[50] [51] studies. We designed our crawler to discover all pages in
a Web site that contain HTML forms, since forms are the primary
data entry points in most Web applications. From our initial tests,
we learned that ordinary crawling mechanisms normally used for
indexing purposes [12] [19] [35] [38] [56] [62] are unsatisfactory
in terms of thoroughness. Many pages within Web applications
currently contain such dynamic content as Javascripts and
DHTML. Other applications emphasize session management, and
require the use of cookies to assist navigation mechanisms. Still
others require user input prior to navigation. Our tests show that
all traditional crawlers (which use static parsing and lack script
interpretation abilities) tend to skip pages in Web sites that have
these features. In both security assessment and fault injection,

149

completeness is an important issue–that is, all data entry points
must be correctly identified. No attempt was made to exhaust
input space, but we did emphasize the importance of
comprehensively identifying all data entry points, since a single
unidentified link would nullify the tests conducted for all other
links. A description of our Web crawler is offered in Section 3.

During the reverse engineering process, HTML pages are
parsed with a Document Object Model (DOM) [5] parser, and
HTML forms are parsed and stored in XML format. These forms
contain such data as submission URLs, available input fields and
corresponding variables, input limits, default values, and available
options.

Upon completion of the reverse engineering process, an
attempt was made to inject malicious SQL patterns into the
server-side program that processes the form’s input. We
referenced the existing literature on SQL injection techniques to
create a set of SQL injection patterns [6] [16] [25] [36] [60]. The
first step is to determine the variable on which to place these
patterns. A typical example of HTML form source code is
presented in Figure 1:

<Form action="submit.cgi" method="GET">
strUserName: <Input type="text" name="strUserName" size="20"
maxlength="20">

strPassword: <Input type="password" name="strPassword"
size="20" maxlength="20">

… (skipped)

Figure 1. A typical example of HTML form source code.
An example of a URL generated by submitting the form in

Figure 1 is:

http://waves.net/~lancelot/submit.cgi?strUserName=Wayne&strPas
sword=0308Wayne

Note that two variables were submitted. If the SQL injection
pattern is placed on strUserName, then the submitted URL will
appear as:

http://waves.net/~lancelot/submit.cgi?strUserName= X' OR 'A' = 'A
&strPassword=

Depending on the SQL injection technique being used,
patterns are placed on either the first or last variable. If the server-
side program does not incorporate a pre-processing function to
filter malicious input, and if it does not validate the correctness of
input variables before constructing and executing the SQL
command, the injection will be successful.

However, if the server-side program detects and filters
malicious patterns, or if the filtering mechanism is provided on a
global scale (e.g., Scott and Sharp [54]), then injection will fail,
and a false negative report will be generated. Many server-side
programs execute validation procedures prior to performing
database access. An example of a typical validation procedure
added to the code presented in Figure 1 is shown below:

If Length(strUserName < 3) OR Length(strUserName > 20) Then
OutputError(“Invalid User Name”) Else

If Length(strPassword <6) OR Length(strPassword) > 11) Then
OutputError(“Invalid Password”) Else Begin
SQLQuery = “SELECT * FROM Users WHERE UserName='” +
strUserName + “AND Password='” + strPassword + “';”
If GetQueryResult(SQLQuery) = 0 Then bAuthenticated = false;
Else bAuthenticated = true;

End;

For the above code, our injection URL will fail because it
lacks a password. The code requires that the variable strPassword
carry text containing between 6 and 11 characters; if a random 6-
11 character text is assigned to strPassword, injection will still
succeed. We propose the use of a “deep injection” mechanism to
eliminate these types of false negatives.

To bypass the validation procedure, the Injection Knowledge
Manager (IKM) must decide not only on which variable to place
the injection pattern, but also how to fill other variables with
potentially valid data. Here we looked at related research in the
area of automated form completion–that is, the automatic filling-
out of HTML forms. A body of information approximately 500
times larger than the current indexed Internet is believed to be
hidden behind query interfaces [10]–for example, patent
information contained in the United States Patent and Trademark
Office’s Web site [64]. Since only query (and not browsing)
interfaces are provided, these types of document repositories
cannot be indexed by current crawling technologies. To
accomplish this task, a crawler must be able to perform automatic
form completion and to send queries to Web applications. These
crawlers are referred to as “deep crawlers” [10] or “hidden
crawlers” [29] [34] [46]. Here we adopted an approach similar to
[46], but with a topic model that enhances submission correctness
and provides a self-learning knowledge expansion model.

Company River

Amazon
Microsoft

Intel
Lucent
Cisco

...

Company
CompName

Affiliate
Corp
Comp

...

Amazon
Nile

Danube
Yangtze
Potomac

...

River
Canal
Stream
Branch

Waterway
...

TTeerrmm__CCoommppaannyy VVaalluuee __CCoommppaannyy TTeerrmm__RRiivveerr VVaalluuee__RRiivveerr

SSTTeerrmm__CCoommppnnaayy

TTooppiicc TTooppiicc

SSVVaalluuee__CCoommppaannyy SSVVaalluuee RRiivveerrSSTTeerrmm__RRiivveerr

Figure 2. The Topic Model.

Automated form completion requires the selection of
syntactically or even semantically correct data for each required
variable. For example, the variable names “strUserName” and
“strPassword” shown in Figure 1 reveal both syntactic and
semantic information. The “str” prefix indicates text as the
required data type, and the “UserName” suggests the text
semantics (i.e., a person’s name). Supplying the IKM with
knowledge to provide a valid input for each variable requires the
design and implementation of a self-learning knowledge base.
Input values are grouped into “topics”–for example, the words or
phrases “name,” “nick,” “nickname,” “first name,” “last name,”
and “surname” are all indicators of human names, and are
therefore grouped under the “Human Name” topic. Any value
within this topic (e.g., Wayne or Ricky) can serve as semantically
correct input data. These phrases form the value set elements of
the topic.

Figure 2 is an illustration of the Topic Model. At its center is
the “topic”–e.g., “Human Names,” “Company Names,” “River
Names,” “Star Names,” and “Addresses.” Each topic is associated
with a set (labeled STerm_TopicName) that includes all possible word
and phrases that describe the topic. Accordingly, STerm_Company
might include “Company,” “Firm,” and “Affiliation,” and
STerm_Sex might include “Sex” and “Gender.” Each topic is
associated with a second SValue_TopicName set containing a list of
possible values. For instance, SValue_Company might include “IBM”,

150

“Sun”, and “Microsoft”. For any pair of topics (i.e., TopicA and
TopicB), |SValue_TopicA∩SValue_TopicB|≧0 (in other words, values
can belong to more than one SValue_TopicName). Thus, the value
“Amazon” may appear in both SValue_Company and SValue_Rivers, and
“Sun” may appear in both SValue_Company and SValue_Stars.

TNS_Amazon

Company

Rivers

TNS _Sun
Company

Stars

TNS _IBM
Company DB

Crawler
 Injection Knowledge

Manager

Search/Update

Response

ValueInvertedFile
Value TopicNameSet

Amazon TNS_Amazon

Sun TNS_Sun

IBM TNS_IBM

… …

TermInvertedFile
Term TopicName

Company Company

Affiliation Company

Sex Sex

Gender Sex

d

Mirror Mirror
Memory

TopicTable
TopicName TermTableName ValueTableName

Company Term_Company Value_Company

Title Term_Title Value_Title

Sex Term_Sex Value_Sex

Value _Company

Value Conf

Sun 10

Amazon 8

Term_Company
Term

Company

Affiliation

Value _Sex
Value Conf

Male 10

Female 10

Term_Sex
Term

Sex

Gender

Figure 3. The Self-Learning Knowledge Base Model.

The self-learning knowledge base that was constructed
according to this model is shown in Figure 3. The IKM provides
the following functions to the crawler:

Get_Topic(String InputTerm [in], String Topic[out]);
Get_Value(String InputTerm [in], String CandidateValue[out]);
Expand_Values(String InputTerm [in], String Array
PredefinedValues[out]);
Feedback(String Term [in], String Candidate [in], Boolean
Succeeded [in]);

When confronted with a text box that carries no default value,
the crawler calls IKM’s Get_Value(InputTerm, CandidateValue)
to retrieve the best possible guess, where InputTerm is the
variable name associated with the text box. Internally, Get_Value()
utilizes Get_Topic(InputTerm, Topic), which checks whether a
topic can be associated with InputTerm. The definitions of
Get_Topic() and Get_Value() are given as follows:

Get_Topic(String InputTerm [in], String Topic [out]);
InputTerm – The newly encountered variable name or
descriptive keyword. Denoted TermInput.
Topic – Name of the topic containing InputTerm, if any.
Denoted TopicTerm.

(1) Using TermInvertedFile, find TermMatch that is a term most
similar to TermInput:

 a. ∀ Termi ∈TermInvertedFile,
 Similarity(Termi)= 1/NearestEditDist(TermInput, Termi).

 b. max = Max(Similarity(Term1), ..., Similarity(Termn)),

 if max > ρ then
 ∃ TermMatch ∈ TermInvertedFile,
 Similarity(TermMatch) = max
 else TopicTerm = “”; return

(2) Return the name of the topic containing TermMatch:
 a. TopicTerm = TermInvertedFile.GetTopicName(TermMatch)

Get_Value(String InputTerm [in], String CandidateValue
[out]);

InputTerm – The newly encountered variable name or
descriptive keyword. Denoted TermInput.
CandidateValue – The candidate value having highest
confidence. Denoted ValueMatchedTerm.

(1) Check whether TermInput can be associated with a topic:
 a. Get_Topic(TermInput, TopicTerm)
 b. if TopicTerm equal to “” then
 ValueMatchedTerm = “”; return
(2) Retrieve the candidate having the highest confidence:

 a. SValue_MatchedTerm = TopicTable.GetValueSet(TopicTerm)
 b. ∀ Valuei ∈ SValue_MatchedTerm,

 max = Max(Conf(Value1), ..., Conf(Valuen)),
 c. ∃ValueMatchedTerm ∈ SValue_MatchedTerm,
 Conf(ValueMatchedTerm) = max

Get_Topic() uses a simple string similarity-matching
algorithm to compute InputTerm’s nearest edit distances to every
term from every topic contained in the knowledge base. This
approach ensures that similar phrases (e.g., “User_Name” and
“UserName”) are marked as having a short distance. To reduce
computation complexity, matching is performed using the
TermInvertedFile table stored in memory (Figure 3). A minimum
threshold ρ is set so that Get_Topic() may fail and return an
empty string.

After an associated topic is identified, Get_Value() uses the
ValueTableName field in TermInvertedFileTable to locate the
corresponding SValue_MatchedTerm, from which the candidate value
with the highest confidence (denoted ValueMatchedTerm) is selected.
If two or more candidates with the same confidence are identified,
one is randomly selected. ValueMatchedTerm is then returned to the
crawler, which calls Get_Value() iteratively until it has enough
values to construct a deep SQL injection URL. Following an
injection, the crawler calls Feedback() to supply the IKM with
feedback on the successfulness of the injection. Confidence is
adjusted for each value involved in the injection session.

The key terms used in the process just described consist of
variable names gathered from the HTML form’s source code.
Though programmers with good practices are likely to follow
proper naming conventions, doing so is not considered as
mandatory, and poor-looking codes will not affect a form’s
appearance or functionality. For this reason, it is not possible to
rely solely on these variable names to provide descriptive
(syntactic or semantic) information regarding input fields.
Raghavan [46] has proposed an algorithm called LITE (Layout-
based Information Extraction Technique) to help identify input
field semantics. In LITE, the HTML is sent to an approximate
DOM parser, which calculates the location of each DOM element
rendered on the screen; text contained in the element nearest the
input field is considered descriptive. We took a similar approach:
our crawler is equipped with a fully functional DOM parser, and
thus contains knowledge on the precise layout of every DOM
component. While variable names are extracted, the crawler also
calculates the square-distance between input fields and all other

151

DOM components. The text from the nearest component is
extracted as a second descriptive text. Keywords are further
extracted from the text by filtering stop words. The keywords are
used to call Get_Value() if the first call using the variable name
fails.

After the query and ranking mechanisms are in place and the
IKM begins to feed high-confidence terms to the crawlers, the
next issue involves populating and automatically expanding the
knowledge base. The IKM primarily relies on option lists found in
HTML forms for the expansion of SValue. Such option lists are
rendered as “Combo Boxes” on the screen; when clicked, they
present drop-down menus containing available options (e.g., a list
of countries to be included in a registration form). When
requesting data that has a fixed set of possible values–such as the
country name in an address field, an option list is a commonly
chosen input method.

When the crawler confronts an input variable with an attached
option list, it calls Expand_Values(InputTerm, PredefinedValues),
where InputTerm is the variable name and PredefinedValues the
associated options list. According to InputTerm and
PredefinedValues, Expand_Values() expands the knowledge base.
We define Expand_Values() as follows:

Expand_Values (String InputTerm [in], String Array
PredefinedValues[out]);

InputTerm – The newly encountered variable name or
descriptive keyword. Denoted TermInput.
PredefinedValues – The value returned to the caller.
Denoted SPred.

(1) Check whether TermInput can be associated with a topic:
a. Get_Topic(TermInput, TopicMatch);
b. if TopicMatch not equal to “” then goto step (3)

(2) TermInput not found in knowledge base, try to add TermInput
a. try to find some value set SSim_i that resembles SPred:
 ∀ topic Topic_i,

 SSim_i = {Valuei | Valuei∈ValuePred,
 Valuej∈ValueInvertedFile,
 EditDist(Valuei, Valuej) <ρ,
 ValueInvertedFile.GetTopic(Valuei)=Topic_i}

 SValue_i = TopicTable.GetValueTable(Topic_i)

Value_i

Sim_i

S
S

 (Topic_i) Score =

b. max = MAX (Score(Topic_0,…,Score(Topic_n))
d. If max < ρ then return
e. ∃ TopicMatch ∈TopicTable, Score(TopicMatch) = max
 STermMatch = TopicTable.GetTermTable(TopicMatch)
f. STermMatch = STermMatch ∪ SPred

1STermMatch is thus expanded.
(3) TermInput associated with or added to a topic. Expand SValue of

the topic containing TermInput:
a. SValueMatch=TopicTable.GetValueTable(TopicMatch)
c. If |Spred- SValueMatch | > 0 then

 SValueMatch = SValueMatch∪(Spred- SValueMatch)
 SValueMatch is thus expanded.

 If Expand_Values() is able to associate a topic with
InputTerm, it appends to the topic’s value set all possible values
extracted from the newly encountered option list. This enabled the
expansion of the value sets as pages are crawled. To expand the
term sets, Expand_Values() search the ValueInvertedFile and

identify the existing value set SValue that is most similar to the
input set PredefinedValues. If one is identified, InputTerm is
added to the term set of the topic of the matched SValue. In the
following example, assume that for the topic Company,
STerm_Company = {“Company,“ “Firm”} and SValue_Company = {“IBM,”
“HP,” “Sun,” “Lucent,” “Cisco”}. Then assume that a crawler
encounters an input variable “Affiliation” that is associated with
SValue_Input = {“HP,” “Lucent,” “Cisco,” “Dell”}. The crawler calls
Expand_Values() with “Affiliation” and SValue_Input. After failing
to find a nearest term for “Affiliation,” the Knowledge Manager
notes that SValue_Company is very close to SValue_Input, and inserts the
term “Affiliation” into STerm_Company and the value SValue_Input -
SValue_Company = {“Dell”} into SValue_Company. In this scenario, both
STerm_Company and SValue_Company are expanded.

Here we will describe the mechanism for observing injection
results. Injections take the form of HTTP requests that trigger
responses from a Web application. Fault injection observability is
defined as the probability that a failure will be noticeable in the
output space [66]. The observability of a Web application’s
response is extremely low for autonomous programs, which
presents a significant challenge when building hidden crawlers
[46]. After submitting a form, a crawler receives a reply to be
interpreted by humans; it is difficult for a crawler to interpret
whether a particular submission has succeeded or failed.
Raghavan [46] [47] addresses the problem with a variation of the
LITE algorithm: the crawler examines the top-center part of a
screen for predefined keywords that indicate errors (e.g.,
“invalid,” “incorrect,” “missing,” and “wrong”). If one is found,
the previous request is considered as having failed.

For successful injections, observability is considered high
because the injection pattern causes a database to output certain
error messages. By scanning for key phrases in the replied HTML
(e.g. “ODBC Error”), a crawler can easily determine whether an
injection has succeeded. However, if no such phrases are detected,
the crawler is incapable of determining whether the failure is
caused by an invalid input variable, or if the Web application
filtered the injection and therefore should be considered
invulnerable. To resolve this problem, we propose a simple yet
effective algorithm called negative response extraction (NRE). If
an initial injection fails, the returned page is saved as R1. The
crawler then sends an intentionally invalid request to the targeted
Web application–for instance, a random 50-character string for
the UserName variable. The returned page is retrieved and saved
as R2. Finally, the crawler sends to the Web application a request
generated by the IKM with a high likelihood of validity, but
without injection strings. The returned page is saved as R3. R2 and
R3 are then compared using WinMerge [67], an open-source text
similarity tool.

The return of similar R2 and R3 pages raises one of two
possibilities: a) no validation algorithm was enforced by the Web
application, therefore both requests succeeded; or b) validation
was enforced and both requests failed. In the first situation, the
failure of R1 allows for the assumption that the Web application is
not vulnerable to the injection pattern, even though it did not
validate the input data. In the second situation, the crawler enters
an R3 regeneration and submission loop. If a request produces an
R3 that is not similar to R2, it is assumed to have bypassed the
validation process; in such cases, a new SQL injection request is
generated based on the parameter values used in the new,
successful R3. If the crawler still receives the same reply after ten
loops, it is assumed that either a) no validation is enforced but the

152

application is invulnerable, or b) a tight validation procedure is
being enforced and automated completion has failed. Further
assuming under this condition that the Web application is
invulnerable induces a false negative (discussed in Section 5 as
P(FL|V,D)). If an injection succeeds, it serves as an example of
the IKM learning from experience and eventually producing a
valid set of values. Together with the self-learning knowledge
base, NRE makes a deep injection possible. A list of all possible
reply combinations and their interpretations are presented in
Figure 4.

Combinations Interpretation

R1= R2= R3 1. All requests are filtered by validation procedure.
Automated assessment is impossible.

2. Requests are not filtered, but Web application is
not vulnerable.

R1= R2≠R3 R3 bypassed validation. Regenerate R1 with R3
parameters and inject.

R2= R3≠R1 Malicious pattern recognized by filtering
mechanism. Page not vulnerable.

R1≠R2≠R3 R1 is recognized as injection pattern, R2 failed
validation, R3 succeeded. Regenerate R1 with R3
parameters and inject.

Figure 4. The NRE for deep injection.

2.3 Cross-Site Scripting
As with SQL injection, cross-site scripting [2] [15] [17] is

also associated with undesired data flow. To illuminate the basic
concept, we offer the following scenario.

A Web site for selling computer-related merchandise holds a
public on-line forum for discussing the newest computer products.
Messages posted by users are submitted to a CGI program that
inserts them into the Web application’s database. When a user
sends a request to view posted messages, the CGI program
retrieves them from the database, generates a response page, and
sends the page to the browser. In this scenario, a hacker can post
messages containing malicious scripts into the forum database.
When other users view the posts, the malicious scripts are
delivered on behalf of the Web application [15]. Browsers enforce
a Same Origin Policy [37] [40] that limits scripts to accessing
only those cookies that belong to the server from which the scripts
were delivered. In this scenario, even though the executed script
was written by a malicious hacker, it was delivered to the browser
on behalf of the Web application. Such scripts can therefore be
used to read the Web application’s cookies and to break through
its security mechanisms.

2.4 Cross-Site Scripting Detection
Indications of cross-site scripting are detected during the

reverse engineering phase, when a crawler performs a complete
scan of every page within a Web application. Equipping a crawler
with the functions of a full browser results in the execution of
dynamic content on every crawled page (e.g., Javascripts,
ActiveX controls, Java Applets, and Flash scripts). Any malicious
script that has been injected into a Web application via cross-site
scripting will attack the crawler in the same manner that it attacks
a browser, thus putting our WAVES-hosting system at risk. We
used the Detours [28] package to create a SEE that intercepts

system calls made by a crawler. Calls with malicious parameters
are rejected.

The SEE operates according to an anomaly detection model.
During the initial run, it triggers a learning mode in WAVES as it
crawls through predefined links that are the least likely to contain
malicious code that induces abnormal behavior. Well-known and
trusted pages that contain ActiveX controls, Java Applets, Flash
scripts, and Javascripts are carefully chosen as crawl targets. As
they are crawled, normal behavior is studied and recorded. Our
results reveal that during startup, Microsoft Internet Explorer (IE)
1. locates temporary directories.
2. writes temporary data into registry.
3. loads favorite links and history lists.
4. loads the required DLL and font files.
5. creates named pipes for internal communication.

During page retrieval and rendering, IE

1. checks registry settings.
2. writes files to the user’s local cache.
3. loads a cookie index if a page contains cookies.
4. loads corresponding plug-in executables if a page contains plug-
in scripts.

The SEE uses the behavioral monitoring specification
language (BMSL) [45] [55] to record these learned normal
behaviors. This design allows users to easily modify the
automatically generated specifications if necessary. Figure 5
presents an example of a SEE-generated BMSL description.

allowFile =
{"C:\WINDOWS\System32\mshtml.dll" , … (skipped) }
CreateFileW (filepath,access_mode,share_mode,SD,

create_mode,attribute,temp_handle)
| (filepath ∉ allowFile) deny

Figure 5. A SEE-generated BMSL description.

The SEE pre-compiles BMSL descriptions into a hashed
policy database. During page execution and behavior stimulation,
parameters of intercepted system calls are compared with this
policy database. If the parameters do not match the normal
behavior policy (e.g., using “C:\autoexec.bat” as a parameter to
call CreateFileEx), the call is considered malicious, since IE was
not monitored to make any file access under the C:\ directory
during the learning phase. Figure 6 illustrates the SEE mechanism.

CCrraawwlleerr
Crawl

A
llow

 Logs

OOppeerraattiinngg SSyysstteemm

System
 C

alls
U

nm
onitored

Policy
Database

CCoommppaarree

Response

DDeennyy

Monitored
System calls

Active
Content

Dynamic Page

Script Engine

Figure 6. The Secure Execution Environment (SEE).

153

The SEE provides a) a self-protection mechanism to guard
against malicious code, and b) a method to detect malicious code
inserted into Web applications. One deficiency is that the
mechanism only detects code that has already been inserted, and
not the weaknesses of Web applications that make them
vulnerable to attack. Detecting such vulnerabilities requires an
off-line static analysis of Javascripts retrieved during the reverse
engineering phase. We are still in the initial phase of designing
and experimenting with this analytical procedure.

3. SYSTEM ARCHITECTURE AND
IMPLEMENTATION DETAILS

Figure 7 depicts the entire WAVES system architecture,
which we will briefly describe in this section.

The crawlers act as interfaces between Web applications and
software testing mechanisms. Without them we would not be able
to apply our testing techniques to Web applications. To make
them exhibit the same behaviors as browsers, they were equipped
with IE’s DOM parser and scripting engine. We chose IE’s
engines over others (e.g. Gecko [39] from Mozilla) because IE is
the target of most attacks. User interactions with Javascript-
created dialog boxes, script error pop-ups, security zone transfer
warnings, cookie privacy violation warnings, dialog boxes (e.g.
“Save As” and “Open With”), and authentication warnings were
all logged but suppressed to ensure continuous crawler execution.
Please note that a subset of the above events is triggered by Web
application errors. An obvious example is a Javascript error event
produced by a scripting engine during a runtime interpretation of
Javascript code. The crawler suppresses the dialog box that is
triggered by the event, but more importantly, it logs the event and
prepares corresponding entries generating an assessment report.

When designing the crawler, we looked at ways that HTML
pages reveal the existence of other pages, and came up with the
following list:

1. Traditional HTML anchors.
 Ex: Google
2. Framesets.
 Ex: <frame src = “http://www.google.com/top_frame.htm”>
3. Meta refresh redirections.
 Ex: <meta http-equiv="refresh"
 content="0; URL=http://www.google.com">
4. Client-side image maps.
 Ex: <area shape=”rect” href =”http://www.google.com”>
5. Javascript variable anchors.
 Ex: document.write(“\” + LangDir + ”\index.htm”);
6. Javascript new windows and redirections.
 Ex: window.open(“\” + LangDir + ”\index.htm”);
 Ex: window.href = “\” + LangDir + “\index.htm”;
7. Javascript event-generated executions.
 Ex: HierMenus [21].
8. Form submissions.

We established a sample site to test several commercial and
academic crawlers, including Teleport [62], WebSphinx [38],
Harvest [12], Larbin [56], Web-Glimpse [35], and Google. None
were able to crawl beyond the fourth level of revelation–about
one-half of the capability of the WAVES crawler. Revelations 5
and 6 were made possible by WAVES’ ability to interpret
Javascripts. Revelation 7 also refers to link-revealing Javascripts,
but only following an onClick, onMouseOver, or similar user-
generated event. As described in Section 2.4, WAVES performs
an event-generation process to stimulate the behavior of active
content. This allows WAVES to detect malicious components and

assists in the URL discovery process. During stimulation,
Javascripts located within the assigned event handlers of dynamic
components are executed, possibly revealing new links. Many
current Web sites incorporate DHTML menu systems to aid user
navigation. These and similar Web applications contain many
links that can only be identified by crawlers capable of handling
level-7 revelations. Also note that even though IKM’s main goal
is to produce variable candidates so as to bypass validation
procedures, the same knowledge can also be used during the
crawl process. When a crawler encounters a form, it queries the
IKM; the data produced by the IKM is submitted by the crawler
to the Web application for deep page discovery.

Figure 7. System architecture of WAVES.

In the interest of speed, we implemented a URL hash (in
memory) in order to completely eliminate disk access during the
crawl process. A separate 100-record cache helps to reduce global
bottlenecks at the URL hash. See Cho [19] for a description of a
similar implementation strategy. The database feeder does not
insert retrieved information into the underlying database until the
crawl is complete. The scheduler is responsible for managing a
breadth-first crawl of targeted URLs; special care has been taken
to prevent crawls from inducing harmful impacts on the Web
application being tested. The dispatcher directs selected target
URLs to the crawlers and controls crawler activity. Results from
crawls and injections are organized in HTML format by the report
generator. Work is still being performed on the static analyzer and
UML generator.

4. RELATED WORK
Offutt [41] surveyed Web managers and developers on quality

process drivers and found that while time-to-market is still
considered the most important quality criteria for traditional
software, security is now very high on the list of concerns for
Web application development. Though not specifically aimed at
improving security attributes, there has been a recent burst of
activity in developing methods and tools for Web application
testing [9] [27] [48], analysis [48] [52], and reverse engineering
[22] [23] [49] [50] [51] [63]. Many of these studies took black-
box approaches to Web application analysis and reverse
engineering. WAVES uses a similar process for identifying data

154

entry points, but also uses what we call a “complete crawling”
mechanism to attempt more complete crawls. This is
accomplished by three strategies–browser emulation, user event
generation, and automated form completion. Similar efforts were
made for the VeriWeb [9] project, which addresses the automated
testing of dynamic Web applications. VeriWeb embeds Gecko [39]
for browser emulation, while WAVES embeds IE. IE was our first
choice because most browser attacks are aimed at IE instead of
Netscape Navigator. Both VeriWeb and WAVES perform
automated form submissions, a reflection of studies on searching
the hidden Web [10] [29] [34] [46]. To automatically generate
valid input data, VeriWeb uses Smart Profiles, which represents
sets of user-specified attribute-value pairs. In contrast, WAVES
incorporates a self-learning knowledge base.

Scott and Sharp [54] take a different approach to protecting
against SQL injection and cross-site scripting attacks: a global
input validation mechanism. They argue that Web application
vulnerabilities are essentially unavoidable, meaning that security
assurance needs to be “abstracted” to a higher level. However, to
adapt this mechanism to a legacy Web application requires that
rules be defined for every single data entry point–perhaps a
difficult task for Web applications that have been developed over
a long time period, since they often contain complicated
structures with little documentation. It would be unusual for a
Web manager to be familiar with all of the data entry points for a
site with thousands of pages. Another protection approach, the
<bigwig> project [14], also provides Web application input
validation mechanisms. The mechanism is designed to
automatically generate server- and client-side validation routines.
However, it only works with Web applications developed with the
<bigwig> language. In contrast, WAVES provides security
assurance without requiring modifications to existing Web
application architectures.

The authors of MOPS [18] and SPlint [24] have adopted a
software-engineering approach to security assessment; however,
they targeted traditional applications rather than Web applications.
The Open Web Application Security Project (OWASP) [42] has
launched a WebScarab [42] project aimed at developing a security
assessment tool very similar to WAVES. Sanctum has recently
incorporated routines to detect SQL injection vulnerabilities in
Web applications into its AppScan [53]. Two other available
commercial scanners include SPI Dynamics’ WebInspect [61] and
Kavado’s ScanDo [32]. Reviews of these tools can be found in [4].
At the time of this writing, WebScarab has yet to be released, and
no demo versions exist for the other scanners, therefore we were
unable to compare their features with those in WAVES.

To expedite the reverse engineering and fault injection
processes, the multi-threaded WAVES crawler performs parallel
crawls. We adopted many of the ideas and strategies reviewed in
[19] and [58] to construct fast, parallel crawlers. For the
automated form completion task, we followed suggestions offered
by Bergman [10] and Raghavan [46], but incorporated a more
complex self-learning knowledge base.

Behavior monitoring has attracted research attention due to its
potential to protect against unknown or polymorphic viruses [7]
[8] [11] [13]. In addition to self-protection, we used behavior
monitoring to detect malicious content before it reaches users.
Furthermore, WAVES performs behavior stimulation to induce
malicious behavior in the monitored components. In other words,
it uses behavior monitoring for both reactive and proactive
purposes.

We employed sandboxing technology to construct a self-
contained SEE. Our SEE implementation is based on descriptions
in [28] [31] [33]. In [31], a generic model is proposed for
sandboxing downloaded components. Regarding the actual
implementation, we had a choice between two open-source
toolkits–Detours [28] and GSWTK [33]. We selected Detours
because of its lighter weight. For a standard description of normal
behaviors, we used BMSL [45] [55]. We compared our SEE with
other commercial sandboxes, including Finjan’s SurfinShield [26],
Aladin’s ESafe [1], and Pelican’s SafTnet [43] [44]. Surveys of
commercially available sandboxes can be found in [3] and [65].

5. EXPERIMENTAL RESULTS
A snapshot of WAVES performing SQL injection is presented

in Figure 8. We tested for thoroughness by comparing the number
of pages retrieved by various crawlers. Teleport [62] proved to be
the most thorough of a group of crawlers that included
WebSphinx [38], Larbin [56], and Web-Glimpse [35]. This may
be explained by Teleport’s incorporation of both HTML tag
parsing and regular expression-matching mechanisms, as well as
its ability to statically parse Javascripts and to generate simple
form submission patterns for URL discovery.

On average, WAVES retrieved 28 percent more pages than
Teleport when tested with a total of 14 sites (Figure 9). We
attribute the discovery of the extra pages to WAVES’ script
interpretation and automated form completion capabilities.

Figure 8. A snapshot of WAVES at work.

To test the injection algorithm, WAVES was configured to
identify all forms of interest (i.e., those containing textboxes; see
column 2 of Figure 9), to perform an NRE for each form, to fill in
and submit the form, and to make a judgment on submission
success based on the reply page and the previously retrieved NRE.
WAVES creates detailed logs of the data used for each automated
form completion, the resulting HTML page, and submission
success judgments. In Figure 10 (produced from a manual
inspection of the logs), P(S) denotes the probability that the
semantics of an input textbox have been successfully extracted;
P(C|S) denotes the conditional probability that a form completion
is successful given that semantic extraction was successful;
P(CL|S) denotes the same probability, but after a learning process
in which the IKM expands its knowledge base; P(N) denotes the
probability of a successful NRE process; and P(F|V,D) denotes
the probability of false negatives given that a form is both

155

validated and defected (i.e., vulnerable). False negatives are
induced when all of the following conditions are true: a) the form
is defected (vulnerable); b) the form is validated; c) WAVES
cannot correctly complete the form; and d) the NRE process fails,
but WAVES is unable to recognize the failure. Therefore, a
general definition of the probability of false negatives given that
the form being tested enforces validation can be defined as
P(F|V,D) = (1-P(C|S) - P(C|X)) * (1-P(N)), where P(C|X) denotes
the probability that form completion has succeeded given that
semantic extraction failed. In our analysis, we used the
pessimistic definition of P(C|X) = 0, meaning that we assumed
zero probability of correctly filling a validated form whose
semantics could not be extracted.

Site Forms of
Interest Waves Teleport WAVES’

Advantage
www.nai.com 52 14,589 11,562 21%
www.lucent.com 21 8,198 7,929 3%
www.trendmicro.com 70 5,781 2,939 49%
www.palm.com 43 4,459 4,531 -2%
www.olympic.org 9 4,389 3,069 30%
www.apache.org 5 3,598 3,062 15%
www.verisign.com 42 3,231 3,069 5%
www.ulead.com 3 1,624 1,417 13%
www.cert.org 3 1,435 1,267 12%
www.maxtor.com 4 1,259 863 31%
www.mazda.com 1 1,030 356 65%
www.linuxjournal.com 7 871 167 81%
www.cadillac.com 2 673 598 11%
www.web500.com 3 564 237 58%

Figure 9. Crawling statistics for WAVES and Teleport.

As a part of our approach, both self-learning (to assist
automated submissions) and NRE are used in order to decrease
false negative rates when injecting a validated form. To evaluate
these mechanisms, we define three probabilities derived from
P(F|V,D): P(F0|V,D), P(FL|V,D), and P(FLN|V,D). P(F0|V,D)
denotes the probability of P(F|V,D) when neither the self-learning
nor the NRE algorithms are applied. P(FL|V,D) denotes the
probability of P(F|V,D) when the learning mode is enabled.
P(FLN|V,D) denotes the probability when applying both learning
and NRE. As Figure 10 shows, the P(F|V,D) average decreased
more than 5 percent (from the 18.76% of P(F0|V,D) to the 13.62%
of P(FL|V,D))–in other words, during this experiment, the
WAVES’ learning mechanism decreased the rate of false
negatives by 5 percent. An additional drop of 11 percent occurred
between P(FL|V,D) and P(FLN|V,D) due to a contribution from the
NRE algorithm. In total, WAVES’ self-learning knowledge base
and the NRE algorithm combined contributed to a 16 percent
decrease in false negatives, to a final rate of 2.46 percent.

In order to use behavior monitoring for malicious script
detection, the WAVES crawler was modified to accommodate IE
version 5.5 instead of 6.0 because of the greater vulnerability of
the older version. To incorporate the most recent version would
mean that we could only detect new and unknown forms of
attacks. Furthermore, the behavior monitoring process is also
dependent upon the crawler’s ability to simulate user-generated
events as test cases, and IE versions older than 5.5 do not support
event simulation functions.

Site P(S) P(C|S) P(CL|S) P(N) P
(F0|V,D)

P
(FL|V,D)

P
(FLN|V,D)

NAI 18.69 80.32 81.93 70.58 19.68 18.07 05.31
Lucent 83.90 79.87 83.76 77.70 20.13 16.24 03.62
Trend
Micro 90.72 78.52 84.04 98.60 21.48 15.96 00.22

Palm 43.56 88.63 92.20 100 11.37 07.80 0
Olympic 88.23 100 100 100 0 0 0
Apache 75.00 77.77 77.77 100 22.23 22.23 22.23
Verisign 89.93 86.06 95.27 93.02 13.94 04.73 00.33
Ulead 100 83.72 91.86 100 16.28 08.14 0
Cert 55.55 100 100 100 0 0 0
Maxtor 96.77 36.66 51.66 100 63.34 48.34 0
Mazda 100 100 100 100 0 0 0
Linux
Journal 100 84.61 84.61 100 15.39 15.39 0

Cadillac 100 73.30 86.60 25.00 26.70 13.40 10.05
Web500 91.30 67.80 79.50 100 32.20 20.50 0
Average 80.93 81.13 86.06 90.99 18.76 13.62 02.46

Figure 10. Automated submission results.

SecurityGlobal.net classified the impacts of vulnerabilities
discovered between April, 2001 and March, 2002 into 16
categories [57]. We believe the items on this list can be grouped
into four general categories: 1) restricted resource access, 2)
arbitrary command execution, 3) private information disclosure,
and 4) denial of service (DoS). We gathered 26 working exploits
that demonstrated impacts associated with the first three
categories, and used them to create a site to test our behavior
monitoring mechanism. For this test, WAVES was installed into
an unpatched version of Windows 2000. Figure 11 lists the impact
categories and observed detection ratios.

Class of Impact Exploits Detection Ratio
1) Restricted resource access 9 9/9
2) Arbitrary command execution 9 9/9
3) Private information disclosure 6 0/6
4) Denial of service (DOS) 2 0/2

Figure 11. Detection ratios for each class of impact.

WAVES successfully detected category 1 and 2 impacts. One
reason for this high accuracy rate is that IE exhibited very regular
behavior during the normal-behavior learning phase. The system
calls that IE makes are fixed, as are the directories and files that it
accesses; such clearly defined behavior makes it easier to detect
malicious behavior. Our exploits that demonstrate category 3
impacts operate by taking advantage of certain design flaws of IE.
By tricking IE into misinterpreting the origins of Javascripts,
these exploits break the Same Origin Policy [37] [40] enforced by
IE and steals user cookies. Since these design flaws leak
application-specific data, they are more transparent to a SEE and
are therefore more difficult to detect. This is reflected in our test
using three commercial sandboxes–SurfinShield [26], ESafe [1],
and SafTnet [43] [44]. Similar to WAVES, none of the sandboxes
was able to detect any of the six exploits of Category 3. As well
as for impacts of Category 4, a more sophisticated mechanism
must be implemented for detection, and is an area of our future
research.

156

File Management Process Management
CreateFile CreateProcess
WriteFile CreateProcessAsUser
CreateFileMapping CreateProcessWithLogonW
Directory Management OpenProcess
CreateDirectory TerminateProcess
RemoveDirectory Communication
SetCurrentDirectory CreatePipe
Hook CreateProcessWithLogonW
SetWindowsHookEx Registry Access
System Information RegSetValueEx
GetComputerName RegOpenKeyEx
GetSystemDirectory RegQueryValueEx
GetSystemInfo User Profiles
GetSystemMetrics GetAllUsersProfileDirectory
GetSystemWindowsDirectory LoadUserProfile
GetUserName GetProfilesDirectory
GetVersion Windows Networking
GetWindowsDirectory WNetGetConnection
SetComputerName Socket
SystemParametersInfo Bind
 Listen

Figure 12. System calls intercepted by the SEE.

The SEE does not intercept all system calls. Doing so may
allow the SEE to gather more information, but will also induce
unacceptable overhead. Therefore, the set of intercepted system
calls was carefully chosen to contain calls that IE does not
normally make, but that malicious components needs to make. A
list of intercepted system calls is given in Figure 12. The Detours
interception module has a maximum penalty of 77 clock cycles
per intercepted system call. Even for a slow CPU such as the
Pentium Pro, this only amounts to approximately 15 μs. Since IE
does not call most intercepted calls after initialization, the
interception mechanism costs little in terms of overhead. Greater
overhead potential lies in the policy matching process that
determines whether a call is legal by looking at its parameters.
The regular behavior exhibited by IE resulted in only 33 rules
being generated by the learning process. Since the rules
(expressed in BMSL) are pre-compiled and stored in memory
using a simple hash, matching call parameters against these rules
cost little in terms of overhead.

For i:=1 to TotalElements do Begin
 If Assigned(Elements[i].onmouseover) then do Begin
 Event = Doc.CreateEvent();
 Doc.FireEvent(Elements[i], “onmouseover”, Event);End;
End;

Figure 13. Our event-generation routine.

In addition, the event generation process was inexpensive in
terms of CPU cost. Our experimental scans show that the index
page of http://www.lucent.com/ contained 635 DOM elements,
126 of which carried the onMouseOver event handler. In other
words, the 126 elements execute a block of pre-assigned code
whenever the user moves a mouse over the elements. The routine
used to generate the onMouseOver event for all 126 elements is
shown in Figure 13. For a 2 GHz Pentium IV, this routine took
approximately 300 milliseconds.

Thus, we conclude that while successfully intercepting
malicious code of category 1 and 2, the behavior monitoring
mechanism was cost-effective and feasible. However, as more
sophisticated strategies are used to detect category 3 and 4

impacts, larger overheads may be induced. Note that the event-
generation routine contributes not only to behavior monitoring,
but also to a more complete URL discovery.

6. CONCLUSION
Our proposed mechanisms for assessing Web application

security were constructed from a software engineering approach.
We designed a crawler interface that incorporates and mimics
Web browser functions in order to test Web applications using
real-world scenarios. During the first assessment phase, the
crawler attempts to perform a complete reverse engineering
process to identify all data entry points–possible points of attack–
of a Web application. These entry points then serve as targets for
a fault injection process in which malicious patterns are used to
determine the most vulnerable points. We also proposed the NRE
algorithm to eliminate false negatives and to allow for “deep
injection.” In “deep injection”, the IKM formulates an invalid
input pattern to retrieve a negative response page, then uses an
automated form completion algorithm to formulate the most likely
injection patterns. After sending the injection, WAVES analyzes
the resulting pages using the NRE algorithm, which is simpler,
yet more accurate than the LITE approach [46]. A summary of
our contributions is presented in Figure 14.

Mechanisms Based on Facilitates

Self-learning
knowledge base Topic Model 1. Complete crawling

2. Deep injection
Negative
response
extraction (NRE)

Page similarity Deep injection

Intelligent form
parser DOM object locality Deep injection

Complete
crawling

1.Javascript engine
2.DOM parser
3.Javascript event
generation

Web application
testing interface

Behavior
monitoring

1.Self-training,
anomaly detection
model
2.Event simulation
(Test case generation)
3. Detours
(Sandboxing)

1. Self-protection
2. Cross-site scripting
detection
3. Unknown malicious
script detection

Behavior
stimulation

Event simulation
(Test case generation)

1. Behavior monitoring
2. Complete crawling

Figure 14. A summary of our contributions.

One contribution is an automated form submission algorithm
that is used by both the crawler and IKM. Here we propose two
strategies to assist this algorithm. To extract the semantics of a
form’s input fields, we designed an “intelligent form parser”
(similar to the one used in LITE [46]) that uses DOM object
locality information to assist in automated form completion.
However, our implementation is enhanced by incorporating a
fully-functional DOM parser, as opposed to an approximate DOM
parser used in [46]. To automatically provide semantically correct
values for a form field, we propose a self-learning knowledge
base based on the Topics model.

Finally, we added a secure execution environment (SEE) to
the crawler in order to detect malicious scripts by means of

157

behavior monitoring. The crawler simulates user-generated events
as test cases to produce more comprehensive behavior
observations–a process that also aids in terms of crawl
thoroughness. While functioning as a self-protection mechanism,
the SEE also allows for the detection of both known and unknown
malicious scripts.

As a testing platform, WAVES provides the following
functions, most of which are commonly required for Web
application security tests:

1. Identifying data entry points.
2. Extracting the syntax and semantics of an input field.
3. Generating potentially valid data for an input field.
4. Injecting malicious patterns on a selected input field.
5. Formatting and sending HTTP requests.
6. Analyzing HTTP replies.
7. Monitoring a browser’s behavior as it executes active content

delivered by a Web application.

As an interface between testing techniques and Web
applications, WAVES can be used to conduct a wide variety of
vulnerability tests, including cookie poisoning, parameter
tampering, hidden field manipulation, input buffer overflow,
session hijacking, and server misconfiguration–all of which would
otherwise be difficult and time-consuming tasks.

7. REFERENCES
[1] Aladdin Knowledge Systems. “eSafe Proactive Content

Security.” http://www.ealaddin.com/
[2] Apache. “Cross Site Scripting Info.”

http://httpd.apache.org/info/css-security/
[3] Armstrong, I. “Mobile Code Stakes its Claim.” In: SC

Magazine, Cover Story, Nov 2000.
[4] Auronen, L. “Tool-Based Approach to Assessing Web

Application Security.” Helsinki University of Technology,
Nov 2002.

[5] W3C. “Document Object Model (DOM).”
http://www.w3.org/DOM/

[6] Anley Chris. “Advanced SQL Injection In SQL Server
Applications.” An NGSSoftware Insight Security Research
(NISR) Publication, 2002.

[7] Apap, F., Honig, A., Hershkop, S. Eskin E., Stolfo S.,
“Detecting Malicious Software by Monitoring Anomalous
Windows Registry Accesses.” In: Fifth International
Symposium on Recent Advances in Intrusion Detection
(Zurich, Switzerland, Oct 2002).

[8] Balzer, R., “Assuring the safety of opening email
attachments.” In: DARPA Information Survivability
Conference & Exposition II, 2, 257-262, 2001.

[9] Benedikt M., Freire J., Godefroid P., “VeriWeb:
Automatically Testing Dynamic Web Sites.” In: Proceedings
of the 11th International Conference on the World Wide Web
(Honolulu, Hawaii, May 2002).

[10] Bergman, M. K. “The Deep Web: Surfacing Hidden Value.”
Deep Content Whitepaper, 2001.

[11] Bernaschi, M., Gabrielli, E., Mancini, L.V., “Operating
system enhancements to prevent the misuse of system calls.”
In: Proceedings of the 7th ACM conference on Computer
and communications security (Athens, Greece, 2000).

[12] Bowman, C. M., Danzig, P., Hardy, D., Manber, U.,
Schwartz, M., Wessels, D. “Harvest: A Scalable,
Customizable Discovery and Access System." In: Technical
Report CU-CS-732-94.”, Department of Computer Science,
University of Colorado, Boulder, 1995.

[13] Bowen, T., Segal, M., and Sekar, R. “On preventing
intrusions by process behavior monitoring.” In: Eighth
USENIX Security Symposium (Washington, D.C., Aug
1999).

[14] Brabrand, C., Møller, A., M. I. “The <bigwig> project.”
ACM Transactions on Internet Technology, 2(2), 79-114,
May 2002.

[15] CERT. “CERT® Advisory CA-2000-02 Malicious HTML
Tags Embedded in Client Web Requests.”
http://www.cgisecurity.com/articles/xss-faq.shtml

[16] Cesar Cerrudo. “Manipulating Microsoft SQL Server Using
SQL Injection.” Whitepaper, 2002.

[17] CGISecurity. “The Cross Site Scripting FAQ.”
[18] Chen, H., Wagner, D. “MOPS: an Infrastructure for

Examining Security Properties of Software.” In: ACM
conference on computer and communication security
(Washington, D.C., Nov 2002).

[19] Cho, J., Garcia-Molina, H. “Parallel Crawlers.” In:
Proceedings of the 11th International Conference on the
World Wide Web (Honolulu, Hawaii, May 2002), 124-135.

[20] Curphey et. al. Mark. “A Guide to Building Secure Web
Applications.” The Open Web Application Security Project,
Sep 2002.

[21] DHTML Central. HierMenus.
http://www.webreference.com/dhtml/hiermenus/

[22] Di Lucca, G.A.; Di Penta, M.; Antoniol, G.; Casazza, G. “An
approach for reverse engineering of web-based applications.”
In: Proceedings of the Eighth Working Conference on
Reverse Engineering (Stuttgart, Germany, Oct 2001), 231-
240.

[23] Di Lucca, G.A., Fasolino, A.R., Pace, F., Tramontana, P., De
Carlini, U. “WARE: a tool for the reverse engineering of
web applications.” In: Proceedings of the Sixth European
Conference on Software Maintenance and Reengineering
(Budapest, Hungary, Mar 2002), 241- 250.

[24] Evans D., Larochelle, D. “Improving Security Using
Extensible Lightweight Static Analysis.” In: IEEE Software,
Jan 2002.

[25] Finnigan, P., “SQL Injection and Oracle.” SecurityFocus,
2002. http://online.securityfocus.com/infocus/1644

[26] Finjan Software. “Your Window of Vulnerability - Why
Anti-Virus Isn't Enough.”
http://www.finjan.com/mcrc/overview.cfm

[27] Gold, R. “HttpUnit.” http://httpunit.sourceforge.net/
[28] Hunt, G., Brubacher, D. “Detours: Binary Interception of

Win32 Functions.” In: USENIX Technical Program -
Windows NT Symposium 99, 1999.

[29] Ipeirotis P., Gravano L., “Distributed Search over the Hidden
Web: Hierarchical Database Sampling and Selection.” In:
The 28th International Conference on Very Large Databases
(Hong Kong, China, Aug 2002), 394-405.

158

[30] Joshi, J., Aref, W., Ghafoor, A., Spafford, E. “Security
Models for Web-Based Applications.” Communications of
the ACM, 44(2), 38-44, Feb 2001.

[31] Kaiya, H., Kaijiri, K. “Specifying runtime environments and
functionalities of downloadable components under the
sandbox model.” In: Proceedings of the International
Symposium on Principles of Software Evolution (Kanazawa,
Japan, Nov 2000), 138-142.

[32] KaVaDo. “Application-Layer Security: InterDo 2.1.”
KaVaDo Whitepaper, 2001.

[33] Ko, C., Fraser, T., Badger, L., Kilpatrick, D. “Detecting and
Countering System Intrusions Using Software Wrappers.” In:
Proceedings of the 9th USENIX Security Symposium
(Denver, Colorado, Aug 2000).

[34] Liddle, S., Embley, D., Scott, D., Yau, S.H., “Extracting
Data Behind Web Forms.” In: Proceedings of the Workshop
on Conceptual Modeling Approaches for e-Business
(Tampere, Finland, Oct 2002).

[35] Manber, U., Smith, M., Gopal B., “WebGlimpse -
Combining Browsing and Searching.” In: Proceedings of the
USENIX 1997 Annual Technical Conference (Anaheim,
California, Jan, 1997).

[36] Meer, H. “SQL Insertion,” 2000.
[37] Microsoft. “Scriptlet Security.” Getting Started with

Scriptlets, MSDN Library, 1997.
http://msdn.microsoft.com/library/default.asp?url=/library/en
-us/dnindhtm/html/instantdhtmlscriptlets.asp

[38] Miller, R. C., Bharat, K. “SPHINX: A Framework for
Creating Personal, Site-Specific Web Crawlers.” In:
Proceedings of the 7th International World Wide Web
Conference (Brisbane, Australia, April 1998), 119-130.

[39] Mozilla.org. “Mozilla Layout Engine.”
http://www.mozilla.org/newlayout/

[40] Netscape. “JavaScript Security in Communicator 4.x.”
http://developer.netscape.com/docs/manuals/communicator/j
ssec/contents.htm#1023448

[41] Offutt, J. “Quality Attributes of Web Software
Applications.” IEEE Software, 19(2), 25-32, Mar 2002.

[42] OWASP. “WebScarab Project.”
http://www.owasp.org/webscarab/

[43] Pelican Security Inc. “Active Content Security: Risks and
Solutions.” Pelican Security Whitepaper, 1999.

[44] Privateer, P., “Making the Net Safe for eBusiness: Solving
the Problem of Malicious Internet Mobile Code.” In:
Proceedings of the eSolutions World 2000 Conference
(Philiadelphia, Pennsylvania, Sep 2000).

[45] Uppuluri, P., Sekar, R. “Experiences with Specification
Based Intrusion Detection System.” In: Fourth International
Symposium on Recent Advances in Intrusion Detection
(Davis, California, Oct. 2001).

[46] Raghavan, S., Garcia-Molina, H. “Crawling the Hidden
Web.” In: Proceedings of the 27th VLDB Conference (Roma,
Italy, Sep 2001), 129-138.

[47] Raghavan, S., Garcia-Molina, H. “Crawling the Hidden
Web.” In: Technical Report 2000-36, Database Group,
Computer Science Department, Stanford (Nov 2000).

[48] Ricca, F., Tonella, P. “Analysis and Testing of Web
Applications.” In: Proceedings of the 23rd IEEE
International Conference on Software Engineering (Toronto,
Ontario, Canada, May 2001), 25 –34.

[49] Ricca, F., Tonella, P., Baxter, I. D. “Restructuring Web
Applications via Transformation Rules.” Information and
Software Technology, 44(13), 811-825, Oct 2002.

[50] Ricca, F., Tonella, P. “Understanding and Restructuring Web
Sites with ReWeb.” IEEE Multimedia, 8(2), 40-51, Apr 2001.

[51] Ricca, F., Tonella, P. “Web Application Slicing.” In:
Proceedings of the IEEE International Conference on
Software Maintenance (Florence, Italy, Nov 2001), 148-157.

[52] Ricca, F., Tonella, P. “Web Site Analysis: Structure and
Evolution.” In: Proceedings of the IEEE International
Conference on Software Maintenance (San Jose, California,
Oct 2000), 76-86.

[53] Sanctum Inc. “Web Application Security Testing – AppScan
3.5.” http://www.sanctuminc.com

[54] Scott, D., Sharp, R. “Abstracting Application-Level Web
Security.” In: The 11th International Conference on the
World Wide Web (Honolulu, Hawaii, May 2002), 396-407.

[55] Sekar, R., Uppuluri, P., “Synthesizing Fast Intrusion
Detection/Prevention Systems from High-Level
Specifications.” In: USENIX Security Symposium, 1999.

[56] Sebastien@ailleret.com. “Larbin – A Multi-Purpose Web
Crawler.” http://larbin.sourceforge.net/index-eng.html

[57] SecurityGlobal.net. Security Tracker Statistics. Apr 2002 –
Mar 2002. http://securitytracker.com/learn/statistics.html

[58] Shkapenyuk, V., Suel, T. “Design and Implementation of a
High-Performance Distributed Web Crawler.” In:
Proceedings of the 18th IEEE International Conference on
Data Engineering (San Jose, California, Feb 2002), 357-368.

[59] SPI Dynamics. “Complete Web Application Security: Phase
1–Building Web Application Security into Your
Development Process.” SPI Dynamics Whitepaper, 2002.

[60] SPI Dynamics. “SQL Injection: Are Your Web Applications
Vulnerable.” SPI Dynamics Whitepaper, 2002.

[61] SPI Dynamics. “Web Application Security Assessment.” SPI
Dynamics Whitepaper, 2003.

[62] Tennyson Maxwell Information Systems, Inc. “Teleport
Webspiders.”
http://www.tenmax.com/teleport/home.htm

[63] Tilley, S., Huang, S. “Evaluating the Reverse Engineering
Capabilities of Web Tools for Understanding Site Content
and Structure: A Case Study.” In: Proceedings of the 23rd
IEEE International Conference on Software Engineering
(Toronto, Ontario, Canada, May 2001), 514-523.

[64] United States Patent and Trademark Office.
http://www.uspto.gov/patft/

[65] Vibert, R., “AV Alternatives: Extending Scanner Range.” In:
Information Security Magazine, Feb 2001.

[66] Voas, J., McGraw, G., “Software Fault Injection: Inoculating
Programs against Errors.” John Wiley & Sons, 47-48, New
York, 1997.

[67] WinMerge. “WinMerge: A visual text file differencing and
merging tool for Win32 platforms.”
http://winmerge.sourceforge.net

159

