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ABSTRACT 
As a large and complex application platform, the World Wide 
Web is capable of delivering a broad range of sophisticated 
applications. However, many Web applications go through rapid 
development phases with extremely short turnaround time, 
making it difficult to eliminate vulnerabilities. Here we analyze 
the design of Web application security assessment mechanisms in 
order to identify poor coding practices that render Web 
applications vulnerable to attacks such as SQL injection and 
cross-site scripting. We describe the use of a number of software-
testing techniques (including dynamic analysis, black-box testing, 
fault injection, and behavior monitoring), and suggest 
mechanisms for applying these techniques to Web applications. 
Real-world situations are used to test a tool we named the Web 
Application Vulnerability and Error Scanner (WAVES, an open-
source project available at http://waves.sourceforge.net) and to 
compare it with other tools. Our results show that WAVES is a 
feasible platform for assessing Web application security. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Techniques – 
Modules and interfaces; D.2.5 [Software Engineering]: Testing 
and Debugging – Code inspections and walk-throughs, and 
Testing tools; H.3.1 [Information Storage and Retrieval]: 
Content Analysis and Indexing – Dictionaries and Indexing 
Method; K.6.5 [Management of Computing and Information 
Systems]: Security and Protection – Invasive software and 
Unauthorized access 

General Terms 

Security, Design. 

Keywords 
Web Application Testing, Security Assessment, Fault Injection, 
Black-Box Testing, Complete Crawling. 

1. INTRODUCTION 
Web masters and system administrators all over the world are 

witnessing a rapid increase in the number of attacks on Web 
applications. Since vendors are becoming more adept at writing 
secure code and developing and distributing patches to counter 

traditional forms of attack (e.g., buffer overflows), hackers are 
increasingly targeting Web applications. Most networks are 
currently guarded by firewalls, and port 80 of Web servers is 
being viewed as the only open door. Furthermore, many Web 
applications (which tend to have rapid development cycles) are 
written by corporate MIS engineers, most of whom have less 
training and experience in secure application development 
compared to engineers at Sun, Microsoft, and other large software 
firms. 

Web application security can be enhanced through the 
increased enforcement of secure development practices. Yet 
despite numerous efforts [42] and volumes of literature [20] [59] 
promoting such procedures, vulnerabilities are constantly being 
discovered and exploited. A growing number of researchers are 
developing solutions to address this problem. For instance, Scott 
and Sharp [54] have proposed a high-level input validation 
mechanism that blocks malicious input to Web applications. Such 
an approach offers protection through the enforcement of strictly 
defined policies, but fails to assess the code itself or to identify 
the actual weaknesses. 

Our goal in this paper is to adopt software-engineering 
techniques to design a security assessment tool for Web 
applications. A variety of traditional software engineering tools 
and techniques have already been successfully used in assuring 
security for legacy software. In some studies (e.g., MOPS [18] 
and SPlint [24]), static analysis techniques have been used to 
identify vulnerabilities in UNIX programs; static analysis can also 
be used to analyze Web application code, for instance, ASP or 
PHP scripts. However, this technique fails to adequately consider 
the runtime behavior of Web applications. It is generally agreed 
that the massive number of runtime interactions that connect 
various components is what makes Web application security such 
a challenging task [30] [54]. 

In contrast, the primary difficulty in applying dynamic 
analysis to Web applications lies in providing efficient interface 
mechanisms. Since Web applications interact with users behind 
browsers and act according to user input, such interfaces must 
have the ability to mimic both the browser and the user. In other 
words, the interface must process content that is meant to be 
rendered by browsers and later interpreted by humans. Our 
interface takes the form of a crawler, which allows for a black-
box, dynamic analysis of Web applications. Using a “complete 
crawling” mechanism, a reverse engineering of a Web application 
is performed to identify all data entry points. Then, with the help 
of a self-learning injection knowledge base, fault injection 
techniques are applied to detect SQL injection vulnerabilities. 
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Using our proposed Topic Model, the knowledge base selects the 
best injection patterns according to experiences learned through 
previous injection feedback, and then expands the knowledge 
base as more pages are crawled. Both previous experiences and 
knowledge expansion contribute to the generation of better 
injection patterns. We also propose a novel reply analysis 
algorithm in order to help the crawler interpret injection replies. 
By improving the observability [66] of the Web application being 
tested, the algorithm helps facilitate a “deep injection” mechanism 
that eliminates false negatives.  

To imitate real-world interactions with Web applications, our 
crawler is equipped with the same capabilities as a full-fledged 
browser, thus making it vulnerable to malicious scripts that may 
have been inserted into a Web application via cross-site scripting. 
Since a malicious script that is capable of attacking an interacting 
browser is also capable of attacking the crawler, a secure 
execution environment (SEE) that enforces an anomaly detection 
model was built around the crawler. During the reverse 
engineering phase, all pages of a Web application are loaded into 
the crawler and executed. Input stimuli (i.e., simulated user events) 
are generated by the crawler to test the behavior of the page’s 
dynamic components. Any abnormal behavior will cause the SEE 
to immediately halt the crawler and audit the information. Thus, 
while offering self-protection, this layer also detects malicious 
scripts hidden inside Web applications. 

This paper is organized as follows: SQL injection and cross-
site scripting, along with our proposed detection models, are 
described in Section 2. The overall system architecture is 
introduced in Section 3. Comparisons with similar projects are 
made in Section 4, and experimental results are presented in 
Section 5. Conclusions are offered in Section 6. 

2. DETECTING WEB APPLICATION 
VULNERABILITIES 

We chose SQL injection and cross-site scripting 
vulnerabilities as our primary detection targets for two reasons: a) 
they exist in many Web applications, and b) their avoidance and 
detection are still considered difficult. Here we will give a brief 
description of each vulnerability, followed by our proposed 
detection models. 

2.1 SQL Injection 
Web applications often use data read from a client to 

construct database queries. If the data is not properly processed 
prior to SQL query construction, malicious patterns that result in 
the execution of arbitrary SQL or even system commands can be 
injected [6] [16] [25] [36] [60]. 

Consider the following scenario: a Web site includes a form 
with two edit boxes in its login.html to ask for a username and 
password. The form declares that the values of the two input 
fields should be submitted with the variables strUserName and 
strPassword to login.cgi, which includes the following code: 

SQLQuery = “SELECT * FROM Users WHERE (UserName='” + 
strUserName + “') AND (Password='” + strPassword + “');” 
If GetQueryResult(SQLQuery) = 0 Then bAuthenticated = false; 
Else bAuthenticated = true; 

If a user submits the username “Wayne” and the password 
“0308Wayne, ” the SQLQuery variable is interpreted as: 

“SELECT * FROM Users WHERE (strUserName= 'Wayne') AND 
(Password='0308Wayne'); 

GetQueryResult() is used to execute SQLQuery and retrieve the 
number of matched records. Note that user inputs (stored in the 
strUserName and strPassword variables) are used directly in SQL 
command construction without preprocessing, thus making the 
code vulnerable to SQL injection attacks. If a malicious user 
enters the following string for both the UserName and Password 
fields: 
X' OR 'A' = 'A 

then the SQLQuery variable will be interpreted as: 
“SELECT * FROM Users WHERE (strUserName='X' OR 'A' = 'A') 
AND (Password='X' OR 'A' = 'A'); 

Since the expression 'A' = 'A' will always be evaluated as TRUE, 
the WHERE clause will have no actual effect, and the SQL 
command will always be the equivalent of “SELECT * FROM 
Users”. Therefore, GetQueryResult() will always succeed, thus 
allowing the Web application’s authentication mechanism to be 
bypassed. 

2.2 SQL Injection Detection 
Our approach to SQL injection detection entails fault injection–

a dynamic analysis process used for software verification and 
software security assessment. For the latter task, specially crafted 
malicious input patterns are deliberately used as input data, 
allowing developers to observe the behavior of the software under 
attack. Our detection model works in a similar manner–that is, we 
identify vulnerabilities in Web applications by observing the 
output resulting from the specially prepared SQL injection 
patterns. 

Similar to other research on Web site testing and analysis [9] 
[48] [52], we adopted a black-box approach in order to analyze 
Web applications externally without the aid of source code. 
Compared with a white-box approach (which requires source 
code), a black-box approach to security assessment holds many 
benefits in real-world applications. Consider a government entity 
that wishes to ensure that all Web sites within a specific network 
are protected against SQL injection attacks. A black-box security 
analysis tool can perform an assessment very quickly and produce 
a useful report identifying vulnerable sites. To assure high 
security standards, white-box testing can be used as a complement 
[54]. 

In order to perform a black-box fault injection into a Web 
application, a reverse engineering process must first take place to 
discover all data entry points. To perform this task, we designed a 
crawler to crawl the Web application–an approach adopted in 
many Web site analysis [9] [48] [52] and reverse engineering [49] 
[50] [51] studies. We designed our crawler to discover all pages in 
a Web site that contain HTML forms, since forms are the primary 
data entry points in most Web applications. From our initial tests, 
we learned that ordinary crawling mechanisms normally used for 
indexing purposes [12] [19] [35] [38] [56] [62] are unsatisfactory 
in terms of thoroughness. Many pages within Web applications 
currently contain such dynamic content as Javascripts and 
DHTML. Other applications emphasize session management, and 
require the use of cookies to assist navigation mechanisms. Still 
others require user input prior to navigation. Our tests show that 
all traditional crawlers (which use static parsing and lack script 
interpretation abilities) tend to skip pages in Web sites that have 
these features. In both security assessment and fault injection, 
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completeness is an important issue–that is, all data entry points 
must be correctly identified. No attempt was made to exhaust 
input space, but we did emphasize the importance of 
comprehensively identifying all data entry points, since a single 
unidentified link would nullify the tests conducted for all other 
links. A description of our Web crawler is offered in Section 3. 

During the reverse engineering process, HTML pages are 
parsed with a Document Object Model (DOM) [5] parser, and 
HTML forms are parsed and stored in XML format. These forms 
contain such data as submission URLs, available input fields and 
corresponding variables, input limits, default values, and available 
options. 

Upon completion of the reverse engineering process, an 
attempt was made to inject malicious SQL patterns into the 
server-side program that processes the form’s input. We 
referenced the existing literature on SQL injection techniques to 
create a set of SQL injection patterns [6] [16] [25] [36] [60]. The 
first step is to determine the variable on which to place these 
patterns. A typical example of HTML form source code is 
presented in Figure 1: 

<Form action="submit.cgi" method="GET"> 
strUserName:  <Input type="text" name="strUserName" size="20" 
maxlength="20"><br> 
strPassword:  <Input type="password" name="strPassword" 
size="20" maxlength="20"><br> 
… (skipped) 

Figure 1. A typical example of HTML form source code. 
An example of a URL generated by submitting the form in 

Figure 1 is: 

http://waves.net/~lancelot/submit.cgi?strUserName=Wayne&strPas
sword=0308Wayne 

Note that two variables were submitted. If the SQL injection 
pattern is placed on strUserName, then the submitted URL will 
appear as: 

http://waves.net/~lancelot/submit.cgi?strUserName= X' OR 'A' = 'A 
&strPassword= 

Depending on the SQL injection technique being used, 
patterns are placed on either the first or last variable. If the server-
side program does not incorporate a pre-processing function to 
filter malicious input, and if it does not validate the correctness of 
input variables before constructing and executing the SQL 
command, the injection will be successful. 

However, if the server-side program detects and filters 
malicious patterns, or if the filtering mechanism is provided on a 
global scale (e.g., Scott and Sharp [54]), then injection will fail, 
and a false negative report will be generated. Many server-side 
programs execute validation procedures prior to performing 
database access. An example of a typical validation procedure 
added to the code presented in Figure 1 is shown below: 

If Length(strUserName < 3)  OR Length(strUserName > 20) Then 
OutputError(“Invalid User Name”) Else 

If Length(strPassword <6) OR Length(strPassword) > 11) Then 
OutputError(“Invalid Password”) Else Begin 
SQLQuery = “SELECT * FROM Users WHERE UserName='” + 
strUserName + “AND Password='” + strPassword + “';” 
If GetQueryResult(SQLQuery) = 0 Then bAuthenticated = false; 
Else bAuthenticated = true; 

End; 

For the above code, our injection URL will fail because it 
lacks a password. The code requires that the variable strPassword 
carry text containing between 6 and 11 characters; if a random 6-
11 character text is assigned to strPassword, injection will still 
succeed. We propose the use of a “deep injection” mechanism to 
eliminate these types of false negatives.  

To bypass the validation procedure, the Injection Knowledge 
Manager (IKM) must decide not only on which variable to place 
the injection pattern, but also how to fill other variables with 
potentially valid data. Here we looked at related research in the 
area of automated form completion–that is, the automatic filling-
out of HTML forms. A body of information approximately 500 
times larger than the current indexed Internet is believed to be 
hidden behind query interfaces [10]–for example, patent 
information contained in the United States Patent and Trademark 
Office’s Web site [64]. Since only query (and not browsing) 
interfaces are provided, these types of document repositories 
cannot be indexed by current crawling technologies. To 
accomplish this task, a crawler must be able to perform automatic 
form completion and to send queries to Web applications. These 
crawlers are referred to as “deep crawlers” [10] or “hidden 
crawlers” [29] [34] [46]. Here we adopted an approach similar to 
[46], but with a topic model that enhances submission correctness 
and provides a self-learning knowledge expansion model. 
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Figure 2. The Topic Model. 

Automated form completion requires the selection of 
syntactically or even semantically correct data for each required 
variable. For example, the variable names “strUserName” and 
“strPassword” shown in Figure 1 reveal both syntactic and 
semantic information. The “str” prefix indicates text as the 
required data type, and the “UserName” suggests the text 
semantics (i.e., a person’s name). Supplying the IKM with 
knowledge to provide a valid input for each variable requires the 
design and implementation of a self-learning knowledge base. 
Input values are grouped into “topics”–for example, the words or 
phrases “name,” “nick,” “nickname,” “first name,” “last name,” 
and “surname” are all indicators of human names, and are 
therefore grouped under the “Human Name” topic. Any value 
within this topic (e.g., Wayne or Ricky) can serve as semantically 
correct input data. These phrases form the value set elements of 
the topic.  

Figure 2 is an illustration of the Topic Model. At its center is 
the “topic”–e.g., “Human Names,” “Company Names,” “River 
Names,” “Star Names,” and “Addresses.” Each topic is associated 
with a set (labeled STerm_TopicName) that includes all possible word 
and phrases that describe the topic. Accordingly, STerm_Company 
might include “Company,” “Firm,” and “Affiliation,” and 
STerm_Sex might include “Sex” and “Gender.” Each topic is 
associated with a second SValue_TopicName set containing a list of 
possible values. For instance, SValue_Company might include “IBM”, 
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“Sun”, and “Microsoft”. For any pair of topics (i.e., TopicA and 
TopicB), |SValue_TopicA∩SValue_TopicB|≧0 (in other words, values 
can belong to more than one SValue_TopicName). Thus, the value 
“Amazon” may appear in both SValue_Company and SValue_Rivers, and 
“Sun” may appear in both SValue_Company and SValue_Stars.  
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Figure 3. The Self-Learning Knowledge Base Model. 

The self-learning knowledge base that was constructed 
according to this model is shown in Figure 3. The IKM provides 
the following functions to the crawler: 

Get_Topic(String InputTerm [in], String Topic[out]); 
Get_Value(String InputTerm [in], String CandidateValue[out]); 
Expand_Values(String InputTerm [in], String Array 
PredefinedValues[out]); 
Feedback(String Term [in], String Candidate [in], Boolean 
Succeeded [in]); 

When confronted with a text box that carries no default value, 
the crawler calls IKM’s Get_Value(InputTerm, CandidateValue) 
to retrieve the best possible guess, where InputTerm is the 
variable name associated with the text box. Internally, Get_Value() 
utilizes Get_Topic(InputTerm, Topic), which checks whether a 
topic can be associated with InputTerm. The definitions of 
Get_Topic() and Get_Value() are given as follows: 

Get_Topic(String InputTerm [in], String Topic [out]); 
InputTerm – The newly encountered variable name or 
descriptive keyword. Denoted TermInput. 
Topic – Name of the topic containing InputTerm, if any. 
Denoted TopicTerm. 

(1) Using TermInvertedFile, find TermMatch that is a term most 
similar to TermInput: 

 a. ∀ Termi ∈TermInvertedFile, 
 Similarity(Termi)= 1/NearestEditDist(TermInput, Termi). 

 b. max = Max(Similarity(Term1), ..., Similarity(Termn)),  

 if max > ρ then 
  ∃ TermMatch ∈  TermInvertedFile, 
  Similarity(TermMatch) = max 
  else TopicTerm = “”; return 

(2) Return the name of the topic containing TermMatch: 
 a. TopicTerm = TermInvertedFile.GetTopicName(TermMatch) 

Get_Value(String InputTerm [in], String CandidateValue 
[out]); 

InputTerm – The newly encountered variable name or 
descriptive keyword. Denoted TermInput. 
CandidateValue – The candidate value having highest 
confidence. Denoted ValueMatchedTerm. 

(1) Check whether TermInput can be associated with a topic: 
 a. Get_Topic(TermInput, TopicTerm) 
 b. if TopicTerm equal to “” then 
  ValueMatchedTerm = “”; return 
(2) Retrieve the candidate having the highest confidence: 

 a. SValue_MatchedTerm = TopicTable.GetValueSet(TopicTerm) 
 b. ∀ Valuei ∈  SValue_MatchedTerm, 

 max = Max(Conf(Value1), ..., Conf(Valuen)),  
 c. ∃ValueMatchedTerm ∈  SValue_MatchedTerm, 
  Conf(ValueMatchedTerm) = max 

Get_Topic() uses a simple string similarity-matching 
algorithm to compute InputTerm’s nearest edit distances to every 
term from every topic contained in the knowledge base. This 
approach ensures that similar phrases (e.g., “User_Name” and 
“UserName”) are marked as having a short distance. To reduce 
computation complexity, matching is performed using the 
TermInvertedFile table stored in memory (Figure 3). A minimum 
threshold ρ is set so that Get_Topic() may fail and return an 
empty string. 

After an associated topic is identified, Get_Value() uses the 
ValueTableName field in TermInvertedFileTable to locate the 
corresponding SValue_MatchedTerm, from which the candidate value 
with the highest confidence (denoted ValueMatchedTerm) is selected. 
If two or more candidates with the same confidence are identified, 
one is randomly selected. ValueMatchedTerm is then returned to the 
crawler, which calls Get_Value() iteratively until it has enough 
values to construct a deep SQL injection URL. Following an 
injection, the crawler calls Feedback() to supply the IKM with 
feedback on the successfulness of the injection. Confidence is 
adjusted for each value involved in the injection session. 

The key terms used in the process just described consist of 
variable names gathered from the HTML form’s source code. 
Though programmers with good practices are likely to follow 
proper naming conventions, doing so is not considered as 
mandatory, and poor-looking codes will not affect a form’s 
appearance or functionality. For this reason, it is not possible to 
rely solely on these variable names to provide descriptive 
(syntactic or semantic) information regarding input fields. 
Raghavan [46] has proposed an algorithm called LITE (Layout-
based Information Extraction Technique) to help identify input 
field semantics. In LITE, the HTML is sent to an approximate 
DOM parser, which calculates the location of each DOM element 
rendered on the screen; text contained in the element nearest the 
input field is considered descriptive. We took a similar approach: 
our crawler is equipped with a fully functional DOM parser, and 
thus contains knowledge on the precise layout of every DOM 
component. While variable names are extracted, the crawler also 
calculates the square-distance between input fields and all other 
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DOM components. The text from the nearest component is 
extracted as a second descriptive text. Keywords are further 
extracted from the text by filtering stop words. The keywords are 
used to call Get_Value() if the first call using the variable name 
fails.  

After the query and ranking mechanisms are in place and the 
IKM begins to feed high-confidence terms to the crawlers, the 
next issue involves populating and automatically expanding the 
knowledge base. The IKM primarily relies on option lists found in 
HTML forms for the expansion of SValue. Such option lists are 
rendered as “Combo Boxes” on the screen; when clicked, they 
present drop-down menus containing available options (e.g., a list 
of countries to be included in a registration form). When 
requesting data that has a fixed set of possible values–such as the 
country name in an address field, an option list is a commonly 
chosen input method.  

When the crawler confronts an input variable with an attached 
option list, it calls Expand_Values(InputTerm, PredefinedValues), 
where InputTerm is the variable name and PredefinedValues the 
associated options list. According to InputTerm and 
PredefinedValues, Expand_Values() expands the knowledge base. 
We define Expand_Values() as follows: 

Expand_Values (String InputTerm [in], String Array 
PredefinedValues[out]); 

InputTerm – The newly encountered variable name or 
descriptive keyword. Denoted TermInput. 
PredefinedValues – The value returned to the caller. 
Denoted SPred. 

(1) Check whether TermInput can be associated with a topic: 
a. Get_Topic(TermInput, TopicMatch); 
b. if TopicMatch not equal to “” then goto step (3) 

(2) TermInput not found in knowledge base, try to add TermInput 
a. try to find some value set SSim_i that resembles SPred: 
 ∀ topic Topic_i, 

 SSim_i =  {Valuei | Valuei∈ValuePred, 
  Valuej∈ValueInvertedFile, 
  EditDist(Valuei, Valuej) <ρ, 
  ValueInvertedFile.GetTopic(Valuei)=Topic_i} 

 SValue_i = TopicTable.GetValueTable(Topic_i) 

 
Value_i

Sim_i

S
S

  (Topic_i) Score =  

b. max = MAX (Score(Topic_0,…,Score(Topic_n)) 
d. If max < ρ then return 
e. ∃ TopicMatch ∈TopicTable, Score(TopicMatch) = max 
 STermMatch  = TopicTable.GetTermTable(TopicMatch) 
f. STermMatch  = STermMatch ∪ SPred 

1STermMatch is thus expanded. 
(3) TermInput associated with or added to a topic. Expand SValue of 

the topic containing TermInput: 
a. SValueMatch=TopicTable.GetValueTable(TopicMatch) 
c. If |Spred- SValueMatch | > 0 then  

 SValueMatch = SValueMatch∪(Spred- SValueMatch) 
  SValueMatch is thus expanded. 

 If Expand_Values() is able to associate a topic with 
InputTerm, it appends to the topic’s value set all possible values 
extracted from the newly encountered option list. This enabled the 
expansion of the value sets as pages are crawled. To expand the 
term sets, Expand_Values() search the ValueInvertedFile and 

identify the existing value set SValue that is most similar to the 
input set PredefinedValues. If one is identified, InputTerm is 
added to the term set of the topic of the matched SValue. In the 
following example, assume that for the topic Company, 
STerm_Company = {“Company,“ “Firm”} and SValue_Company = {“IBM,” 
“HP,” “Sun,” “Lucent,” “Cisco”}. Then assume that a crawler 
encounters an input variable “Affiliation” that is associated with 
SValue_Input = {“HP,” “Lucent,” “Cisco,” “Dell”}. The crawler calls 
Expand_Values() with “Affiliation” and SValue_Input. After failing 
to find a nearest term for “Affiliation,” the Knowledge Manager 
notes that SValue_Company is very close to SValue_Input, and inserts the 
term “Affiliation” into STerm_Company and the value SValue_Input - 
SValue_Company = {“Dell”} into SValue_Company. In this scenario, both 
STerm_Company and SValue_Company are expanded. 

Here we will describe the mechanism for observing injection 
results. Injections take the form of HTTP requests that trigger 
responses from a Web application. Fault injection observability is 
defined as the probability that a failure will be noticeable in the 
output space [66]. The observability of a Web application’s 
response is extremely low for autonomous programs, which 
presents a significant challenge when building hidden crawlers 
[46]. After submitting a form, a crawler receives a reply to be 
interpreted by humans; it is difficult for a crawler to interpret 
whether a particular submission has succeeded or failed. 
Raghavan [46] [47] addresses the problem with a variation of the 
LITE algorithm: the crawler examines the top-center part of a 
screen for predefined keywords that indicate errors (e.g., 
“invalid,” “incorrect,” “missing,” and “wrong”). If one is found, 
the previous request is considered as having failed. 

For successful injections, observability is considered high 
because the injection pattern causes a database to output certain 
error messages. By scanning for key phrases in the replied HTML 
(e.g. “ODBC Error”), a crawler can easily determine whether an 
injection has succeeded. However, if no such phrases are detected, 
the crawler is incapable of determining whether the failure is 
caused by an invalid input variable, or if the Web application 
filtered the injection and therefore should be considered 
invulnerable. To resolve this problem, we propose a simple yet 
effective algorithm called negative response extraction (NRE). If 
an initial injection fails, the returned page is saved as R1. The 
crawler then sends an intentionally invalid request to the targeted 
Web application–for instance, a random 50-character string for 
the UserName variable. The returned page is retrieved and saved 
as R2. Finally, the crawler sends to the Web application a request 
generated by the IKM with a high likelihood of validity, but 
without injection strings. The returned page is saved as R3. R2 and 
R3 are then compared using WinMerge [67], an open-source text 
similarity tool. 

The return of similar R2 and R3 pages raises one of two 
possibilities: a) no validation algorithm was enforced by the Web 
application, therefore both requests succeeded; or b) validation 
was enforced and both requests failed. In the first situation, the 
failure of R1 allows for the assumption that the Web application is 
not vulnerable to the injection pattern, even though it did not 
validate the input data. In the second situation, the crawler enters 
an R3 regeneration and submission loop. If a request produces an 
R3 that is not similar to R2, it is assumed to have bypassed the 
validation process; in such cases, a new SQL injection request is 
generated based on the parameter values used in the new, 
successful R3. If the crawler still receives the same reply after ten 
loops, it is assumed that either a) no validation is enforced but the 
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application is invulnerable, or b) a tight validation procedure is 
being enforced and automated completion has failed. Further 
assuming under this condition that the Web application is 
invulnerable induces a false negative (discussed in Section 5 as 
P(FL|V,D)). If an injection succeeds, it serves as an example of 
the IKM learning from experience and eventually producing a 
valid set of values. Together with the self-learning knowledge 
base, NRE makes a deep injection possible. A list of all possible 
reply combinations and their interpretations are presented in 
Figure 4. 

Combinations Interpretation 

R1= R2= R3 1. All requests are filtered by validation procedure. 
Automated assessment is impossible. 

2. Requests are not filtered, but Web application is 
not vulnerable. 

R1= R2≠R3 R3 bypassed validation. Regenerate R1 with R3
parameters and inject. 

R2= R3≠R1 Malicious pattern recognized by filtering 
mechanism. Page not vulnerable. 

R1≠R2≠R3 R1 is recognized as injection pattern, R2 failed 
validation, R3 succeeded. Regenerate R1 with R3
parameters and inject. 

 

Figure 4. The NRE for deep injection. 

2.3 Cross-Site Scripting 
As with SQL injection, cross-site scripting [2] [15] [17] is 

also associated with undesired data flow. To illuminate the basic 
concept, we offer the following scenario. 

A Web site for selling computer-related merchandise holds a 
public on-line forum for discussing the newest computer products. 
Messages posted by users are submitted to a CGI program that 
inserts them into the Web application’s database. When a user 
sends a request to view posted messages, the CGI program 
retrieves them from the database, generates a response page, and 
sends the page to the browser. In this scenario, a hacker can post 
messages containing malicious scripts into the forum database. 
When other users view the posts, the malicious scripts are 
delivered on behalf of the Web application [15]. Browsers enforce 
a Same Origin Policy [37] [40] that limits scripts to accessing 
only those cookies that belong to the server from which the scripts 
were delivered. In this scenario, even though the executed script 
was written by a malicious hacker, it was delivered to the browser 
on behalf of the Web application. Such scripts can therefore be 
used to read the Web application’s cookies and to break through 
its security mechanisms. 

2.4 Cross-Site Scripting Detection 
Indications of cross-site scripting are detected during the 

reverse engineering phase, when a crawler performs a complete 
scan of every page within a Web application. Equipping a crawler 
with the functions of a full browser results in the execution of 
dynamic content on every crawled page (e.g., Javascripts, 
ActiveX controls, Java Applets, and Flash scripts). Any malicious 
script that has been injected into a Web application via cross-site 
scripting will attack the crawler in the same manner that it attacks 
a browser, thus putting our WAVES-hosting system at risk. We 
used the Detours [28] package to create a SEE that intercepts 

system calls made by a crawler. Calls with malicious parameters 
are rejected. 

The SEE operates according to an anomaly detection model. 
During the initial run, it triggers a learning mode in WAVES as it 
crawls through predefined links that are the least likely to contain 
malicious code that induces abnormal behavior. Well-known and 
trusted pages that contain ActiveX controls, Java Applets, Flash 
scripts, and Javascripts are carefully chosen as crawl targets. As 
they are crawled, normal behavior is studied and recorded. Our 
results reveal that during startup, Microsoft Internet Explorer (IE)  
1. locates temporary directories. 
2. writes temporary data into registry. 
3. loads favorite links and history lists. 
4. loads the required DLL and font files. 
5. creates named pipes for internal communication. 
 

During page retrieval and rendering, IE 

1. checks registry settings. 
2. writes files to the user’s local cache. 
3. loads a cookie index if a page contains cookies. 
4. loads corresponding plug-in executables if a page contains plug-
in scripts. 
 

The SEE uses the behavioral monitoring specification 
language (BMSL) [45] [55] to record these learned normal 
behaviors. This design allows users to easily modify the 
automatically generated specifications if necessary. Figure 5 
presents an example of a SEE-generated BMSL description. 

allowFile = 
{"C:\WINDOWS\System32\mshtml.dll" , … (skipped) } 
CreateFileW (filepath,access_mode,share_mode,SD, 

create_mode,attribute,temp_handle)  
| ( filepath ∉  allowFile )  deny 

Figure 5. A SEE-generated BMSL description. 

The SEE pre-compiles BMSL descriptions into a hashed 
policy database. During page execution and behavior stimulation, 
parameters of intercepted system calls are compared with this 
policy database. If the parameters do not match the normal 
behavior policy (e.g., using “C:\autoexec.bat” as a parameter to 
call CreateFileEx), the call is considered malicious, since IE was 
not monitored to make any file access under the C:\ directory 
during the learning phase. Figure 6 illustrates the SEE mechanism. 
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Figure 6. The Secure Execution Environment (SEE). 
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The SEE provides a) a self-protection mechanism to guard 
against malicious code, and b) a method to detect malicious code 
inserted into Web applications. One deficiency is that the 
mechanism only detects code that has already been inserted, and 
not the weaknesses of Web applications that make them 
vulnerable to attack. Detecting such vulnerabilities requires an 
off-line static analysis of Javascripts retrieved during the reverse 
engineering phase. We are still in the initial phase of designing 
and experimenting with this analytical procedure. 

3. SYSTEM ARCHITECTURE AND 
IMPLEMENTATION DETAILS 

Figure 7 depicts the entire WAVES system architecture, 
which we will briefly describe in this section. 

The crawlers act as interfaces between Web applications and 
software testing mechanisms. Without them we would not be able 
to apply our testing techniques to Web applications. To make 
them exhibit the same behaviors as browsers, they were equipped 
with IE’s DOM parser and scripting engine. We chose IE’s 
engines over others (e.g. Gecko [39] from Mozilla) because IE is 
the target of most attacks. User interactions with Javascript-
created dialog boxes, script error pop-ups, security zone transfer 
warnings, cookie privacy violation warnings, dialog boxes (e.g. 
“Save As” and “Open With”), and authentication warnings were 
all logged but suppressed to ensure continuous crawler execution. 
Please note that a subset of the above events is triggered by Web 
application errors. An obvious example is a Javascript error event 
produced by a scripting engine during a runtime interpretation of 
Javascript code. The crawler suppresses the dialog box that is 
triggered by the event, but more importantly, it logs the event and 
prepares corresponding entries generating an assessment report. 

When designing the crawler, we looked at ways that HTML 
pages reveal the existence of other pages, and came up with the 
following list: 

1. Traditional HTML anchors. 
 Ex: <a href = “http://www.google.com“>Google</a> 
2. Framesets. 
 Ex: <frame src = “http://www.google.com/top_frame.htm”> 
3. Meta refresh redirections. 
 Ex: <meta http-equiv="refresh"  
  content="0; URL=http://www.google.com">  
4. Client-side image maps. 
 Ex: <area shape=”rect” href =”http://www.google.com”> 
5. Javascript variable anchors. 
 Ex: document.write(“\” + LangDir + ”\index.htm”); 
6. Javascript new windows and redirections. 
 Ex: window.open(“\” + LangDir + ”\index.htm”); 
 Ex: window.href = “\” + LangDir + “\index.htm”; 
7. Javascript event-generated executions. 
 Ex: HierMenus [21]. 
8. Form submissions. 

We established a sample site to test several commercial and 
academic crawlers, including Teleport [62], WebSphinx [38], 
Harvest [12], Larbin [56], Web-Glimpse [35], and Google. None 
were able to crawl beyond the fourth level of revelation–about 
one-half of the capability of the WAVES crawler. Revelations 5 
and 6 were made possible by WAVES’ ability to interpret 
Javascripts. Revelation 7 also refers to link-revealing Javascripts, 
but only following an onClick, onMouseOver, or similar user-
generated event. As described in Section 2.4, WAVES performs 
an event-generation process to stimulate the behavior of active 
content. This allows WAVES to detect malicious components and 

assists in the URL discovery process. During stimulation, 
Javascripts located within the assigned event handlers of dynamic 
components are executed, possibly revealing new links. Many 
current Web sites incorporate DHTML menu systems to aid user 
navigation. These and similar Web applications contain many 
links that can only be identified by crawlers capable of handling 
level-7 revelations. Also note that even though IKM’s main goal 
is to produce variable candidates so as to bypass validation 
procedures, the same knowledge can also be used during the 
crawl process. When a crawler encounters a form, it queries the 
IKM; the data produced by the IKM is submitted by the crawler 
to the Web application for deep page discovery. 

 
Figure 7. System architecture of WAVES. 

In the interest of speed, we implemented a URL hash (in 
memory) in order to completely eliminate disk access during the 
crawl process. A separate 100-record cache helps to reduce global 
bottlenecks at the URL hash. See Cho [19] for a description of a 
similar implementation strategy. The database feeder does not 
insert retrieved information into the underlying database until the 
crawl is complete. The scheduler is responsible for managing a 
breadth-first crawl of targeted URLs; special care has been taken 
to prevent crawls from inducing harmful impacts on the Web 
application being tested. The dispatcher directs selected target 
URLs to the crawlers and controls crawler activity. Results from 
crawls and injections are organized in HTML format by the report 
generator. Work is still being performed on the static analyzer and 
UML generator. 

4. RELATED WORK 
Offutt [41] surveyed Web managers and developers on quality 

process drivers and found that while time-to-market is still 
considered the most important quality criteria for traditional 
software, security is now very high on the list of concerns for 
Web application development. Though not specifically aimed at 
improving security attributes, there has been a recent burst of 
activity in developing methods and tools for Web application 
testing [9] [27] [48], analysis [48] [52], and reverse engineering 
[22] [23] [49] [50] [51] [63]. Many of these studies took black-
box approaches to Web application analysis and reverse 
engineering. WAVES uses a similar process for identifying data 
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entry points, but also uses what we call a “complete crawling” 
mechanism to attempt more complete crawls. This is 
accomplished by three strategies–browser emulation, user event 
generation, and automated form completion. Similar efforts were 
made for the VeriWeb [9] project, which addresses the automated 
testing of dynamic Web applications. VeriWeb embeds Gecko [39] 
for browser emulation, while WAVES embeds IE. IE was our first 
choice because most browser attacks are aimed at IE instead of 
Netscape Navigator. Both VeriWeb and WAVES perform 
automated form submissions, a reflection of studies on searching 
the hidden Web [10] [29] [34] [46]. To automatically generate 
valid input data, VeriWeb uses Smart Profiles, which represents 
sets of user-specified attribute-value pairs. In contrast, WAVES 
incorporates a self-learning knowledge base. 

Scott and Sharp [54] take a different approach to protecting 
against SQL injection and cross-site scripting attacks: a global 
input validation mechanism. They argue that Web application 
vulnerabilities are essentially unavoidable, meaning that security 
assurance needs to be “abstracted” to a higher level. However, to 
adapt this mechanism to a legacy Web application requires that 
rules be defined for every single data entry point–perhaps a 
difficult task for Web applications that have been developed over 
a long time period, since they often contain complicated 
structures with little documentation. It would be unusual for a 
Web manager to be familiar with all of the data entry points for a 
site with thousands of pages. Another protection approach, the 
<bigwig> project [14], also provides Web application input 
validation mechanisms. The mechanism is designed to 
automatically generate server- and client-side validation routines. 
However, it only works with Web applications developed with the 
<bigwig> language. In contrast, WAVES provides security 
assurance without requiring modifications to existing Web 
application architectures. 

The authors of MOPS [18] and SPlint [24] have adopted a 
software-engineering approach to security assessment; however, 
they targeted traditional applications rather than Web applications. 
The Open Web Application Security Project (OWASP) [42] has 
launched a WebScarab [42] project aimed at developing a security 
assessment tool very similar to WAVES. Sanctum has recently 
incorporated routines to detect SQL injection vulnerabilities in 
Web applications into its AppScan [53]. Two other available 
commercial scanners include SPI Dynamics’ WebInspect [61] and 
Kavado’s ScanDo [32]. Reviews of these tools can be found in [4]. 
At the time of this writing, WebScarab has yet to be released, and 
no demo versions exist for the other scanners, therefore we were 
unable to compare their features with those in WAVES. 

To expedite the reverse engineering and fault injection 
processes, the multi-threaded WAVES crawler performs parallel 
crawls. We adopted many of the ideas and strategies reviewed in 
[19] and [58] to construct fast, parallel crawlers. For the 
automated form completion task, we followed suggestions offered 
by Bergman [10] and Raghavan [46], but incorporated a more 
complex self-learning knowledge base. 

Behavior monitoring has attracted research attention due to its 
potential to protect against unknown or polymorphic viruses [7] 
[8] [11] [13]. In addition to self-protection, we used behavior 
monitoring to detect malicious content before it reaches users. 
Furthermore, WAVES performs behavior stimulation to induce 
malicious behavior in the monitored components. In other words, 
it uses behavior monitoring for both reactive and proactive 
purposes. 

We employed sandboxing technology to construct a self-
contained SEE. Our SEE implementation is based on descriptions 
in [28] [31] [33]. In [31], a generic model is proposed for 
sandboxing downloaded components. Regarding the actual 
implementation, we had a choice between two open-source 
toolkits–Detours [28] and GSWTK [33]. We selected Detours 
because of its lighter weight. For a standard description of normal 
behaviors, we used BMSL [45] [55]. We compared our SEE with 
other commercial sandboxes, including Finjan’s SurfinShield [26], 
Aladin’s ESafe [1], and Pelican’s SafTnet [43] [44]. Surveys of 
commercially available sandboxes can be found in [3] and [65]. 

5. EXPERIMENTAL RESULTS 
A snapshot of WAVES performing SQL injection is presented 

in Figure 8. We tested for thoroughness by comparing the number 
of pages retrieved by various crawlers. Teleport [62] proved to be 
the most thorough of a group of crawlers that included 
WebSphinx [38], Larbin [56], and Web-Glimpse [35]. This may 
be explained by Teleport’s incorporation of both HTML tag 
parsing and regular expression-matching mechanisms, as well as 
its ability to statically parse Javascripts and to generate simple 
form submission patterns for URL discovery. 

On average, WAVES retrieved 28 percent more pages than 
Teleport when tested with a total of 14 sites (Figure 9). We 
attribute the discovery of the extra pages to WAVES’ script 
interpretation and automated form completion capabilities. 

 
Figure 8. A snapshot of WAVES at work. 

To test the injection algorithm, WAVES was configured to 
identify all forms of interest (i.e., those containing textboxes; see 
column 2 of Figure 9), to perform an NRE for each form, to fill in 
and submit the form, and to make a judgment on submission 
success based on the reply page and the previously retrieved NRE. 
WAVES creates detailed logs of the data used for each automated 
form completion, the resulting HTML page, and submission 
success judgments. In Figure 10 (produced from a manual 
inspection of the logs), P(S) denotes the probability that the 
semantics of an input textbox have been successfully extracted; 
P(C|S) denotes the conditional probability that a form completion 
is successful given that semantic extraction was successful; 
P(CL|S) denotes the same probability, but after a learning process 
in which the IKM expands its knowledge base; P(N) denotes the 
probability of a successful NRE process; and P(F|V,D) denotes 
the probability of false negatives given that a form is both 
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validated and defected (i.e., vulnerable). False negatives are 
induced when all of the following conditions are true: a) the form 
is defected (vulnerable); b) the form is validated; c) WAVES 
cannot correctly complete the form; and d) the NRE process fails, 
but WAVES is unable to recognize the failure. Therefore, a 
general definition of the probability of false negatives given that 
the form being tested enforces validation can be defined as 
P(F|V,D) = (1-P(C|S) - P(C|X)) * (1-P(N)), where P(C|X) denotes 
the probability that form completion has succeeded given that 
semantic extraction failed. In our analysis, we used the 
pessimistic definition of P(C|X) = 0, meaning that we assumed 
zero probability of correctly filling a validated form whose 
semantics could not be extracted. 

Site Forms of 
Interest Waves Teleport WAVES’

Advantage
www.nai.com 52 14,589 11,562 21%
www.lucent.com 21 8,198 7,929 3%
www.trendmicro.com 70 5,781 2,939 49%
www.palm.com 43 4,459 4,531 -2%
www.olympic.org 9 4,389 3,069 30%
www.apache.org  5 3,598 3,062 15%
www.verisign.com 42 3,231 3,069 5%
www.ulead.com 3 1,624 1,417 13%
www.cert.org 3 1,435 1,267 12%
www.maxtor.com 4 1,259 863 31%
www.mazda.com 1 1,030 356 65%
www.linuxjournal.com 7 871 167 81%
www.cadillac.com 2 673 598 11%
www.web500.com 3 564 237 58%

Figure 9. Crawling statistics for WAVES and Teleport. 

As a part of our approach, both self-learning (to assist 
automated submissions) and NRE are used in order to decrease 
false negative rates when injecting a validated form. To evaluate 
these mechanisms, we define three probabilities derived from 
P(F|V,D): P(F0|V,D), P(FL|V,D), and P(FLN|V,D). P(F0|V,D) 
denotes the probability of P(F|V,D) when neither the self-learning 
nor the NRE algorithms are applied. P(FL|V,D) denotes the 
probability of P(F|V,D) when the learning mode is enabled. 
P(FLN|V,D) denotes the probability when applying both learning 
and NRE. As Figure 10 shows, the P(F|V,D) average decreased 
more than 5 percent (from the 18.76% of P(F0|V,D) to the 13.62% 
of P(FL|V,D))–in other words, during this experiment, the 
WAVES’ learning mechanism decreased the rate of false 
negatives by 5 percent. An additional drop of 11 percent occurred 
between P(FL|V,D) and P(FLN|V,D) due to a contribution from the 
NRE algorithm. In total, WAVES’ self-learning knowledge base 
and the NRE algorithm combined contributed to a 16 percent 
decrease in false negatives, to a final rate of 2.46 percent. 

In order to use behavior monitoring for malicious script 
detection, the WAVES crawler was modified to accommodate IE 
version 5.5 instead of 6.0 because of the greater vulnerability of 
the older version. To incorporate the most recent version would 
mean that we could only detect new and unknown forms of 
attacks. Furthermore, the behavior monitoring process is also 
dependent upon the crawler’s ability to simulate user-generated 
events as test cases, and IE versions older than 5.5 do not support 
event simulation functions. 

Site P(S) P(C|S) P(CL|S) P(N) P 
(F0|V,D)

P 
(FL|V,D)

P 
(FLN|V,D)

NAI 18.69 80.32 81.93 70.58 19.68 18.07 05.31
Lucent 83.90 79.87 83.76 77.70 20.13 16.24 03.62
Trend 
Micro 90.72 78.52 84.04 98.60 21.48 15.96 00.22

Palm 43.56 88.63 92.20 100 11.37 07.80 0
Olympic 88.23 100 100 100 0 0 0
Apache 75.00 77.77 77.77 100 22.23 22.23 22.23
Verisign 89.93 86.06 95.27 93.02 13.94 04.73 00.33
Ulead 100 83.72 91.86 100 16.28 08.14 0
Cert 55.55 100 100 100 0 0 0
Maxtor 96.77 36.66 51.66 100 63.34 48.34 0
Mazda 100 100 100  100 0 0 0
Linux 
Journal 100 84.61 84.61 100 15.39 15.39 0

Cadillac 100 73.30 86.60 25.00 26.70 13.40 10.05
Web500 91.30 67.80 79.50 100 32.20 20.50 0
Average 80.93 81.13 86.06 90.99 18.76 13.62 02.46

Figure 10. Automated submission results. 

SecurityGlobal.net classified the impacts of vulnerabilities 
discovered between April, 2001 and March, 2002 into 16 
categories [57]. We believe the items on this list can be grouped 
into four general categories: 1) restricted resource access, 2) 
arbitrary command execution, 3) private information disclosure, 
and 4) denial of service (DoS). We gathered 26 working exploits 
that demonstrated impacts associated with the first three 
categories, and used them to create a site to test our behavior 
monitoring mechanism. For this test, WAVES was installed into 
an unpatched version of Windows 2000. Figure 11 lists the impact 
categories and observed detection ratios.  

Class of Impact Exploits Detection Ratio
1) Restricted resource access 9 9/9 
2) Arbitrary command execution 9 9/9 
3) Private information disclosure 6 0/6 
4) Denial of service (DOS) 2 0/2 

Figure 11. Detection ratios for each class of impact. 

WAVES successfully detected category 1 and 2 impacts. One 
reason for this high accuracy rate is that IE exhibited very regular 
behavior during the normal-behavior learning phase. The system 
calls that IE makes are fixed, as are the directories and files that it 
accesses; such clearly defined behavior makes it easier to detect 
malicious behavior. Our exploits that demonstrate category 3 
impacts operate by taking advantage of certain design flaws of IE. 
By tricking IE into misinterpreting the origins of Javascripts, 
these exploits break the Same Origin Policy [37] [40] enforced by 
IE and steals user cookies. Since these design flaws leak 
application-specific data, they are more transparent to a SEE and 
are therefore more difficult to detect. This is reflected in our test 
using three commercial sandboxes–SurfinShield [26], ESafe [1], 
and SafTnet [43] [44]. Similar to WAVES, none of the sandboxes 
was able to detect any of the six exploits of Category 3. As well 
as for impacts of Category 4, a more sophisticated mechanism 
must be implemented for detection, and is an area of our future 
research. 

156



File Management Process Management 
CreateFile CreateProcess 
WriteFile CreateProcessAsUser 
CreateFileMapping CreateProcessWithLogonW 
Directory Management OpenProcess 
CreateDirectory TerminateProcess 
RemoveDirectory Communication 
SetCurrentDirectory CreatePipe 
Hook CreateProcessWithLogonW 
SetWindowsHookEx Registry Access 
System Information RegSetValueEx 
GetComputerName RegOpenKeyEx 
GetSystemDirectory RegQueryValueEx 
GetSystemInfo User Profiles 
GetSystemMetrics GetAllUsersProfileDirectory 
GetSystemWindowsDirectory LoadUserProfile 
GetUserName GetProfilesDirectory 
GetVersion Windows Networking 
GetWindowsDirectory WNetGetConnection 
SetComputerName Socket 
SystemParametersInfo Bind 
 Listen 

Figure 12. System calls intercepted by the SEE. 

The SEE does not intercept all system calls. Doing so may 
allow the SEE to gather more information, but will also induce 
unacceptable overhead. Therefore, the set of intercepted system 
calls was carefully chosen to contain calls that IE does not 
normally make, but that malicious components needs to make. A 
list of intercepted system calls is given in Figure 12. The Detours 
interception module has a maximum penalty of 77 clock cycles 
per intercepted system call. Even for a slow CPU such as the 
Pentium Pro, this only amounts to approximately 15 μs. Since IE 
does not call most intercepted calls after initialization, the 
interception mechanism costs little in terms of overhead. Greater 
overhead potential lies in the policy matching process that 
determines whether a call is legal by looking at its parameters. 
The regular behavior exhibited by IE resulted in only 33 rules 
being generated by the learning process. Since the rules 
(expressed in BMSL) are pre-compiled and stored in memory 
using a simple hash, matching call parameters against these rules 
cost little in terms of overhead. 

For i:=1 to TotalElements do Begin 
  If Assigned(Elements[i].onmouseover) then do Begin 
 Event = Doc.CreateEvent(); 
 Doc.FireEvent(Elements[i], “onmouseover”, Event);End; 
End; 

Figure 13. Our event-generation routine. 

In addition, the event generation process was inexpensive in 
terms of CPU cost. Our experimental scans show that the index 
page of http://www.lucent.com/ contained 635 DOM elements, 
126 of which carried the onMouseOver event handler. In other 
words, the 126 elements execute a block of pre-assigned code 
whenever the user moves a mouse over the elements. The routine 
used to generate the onMouseOver event for all 126 elements is 
shown in Figure 13. For a 2 GHz Pentium IV, this routine took 
approximately 300 milliseconds. 

Thus, we conclude that while successfully intercepting 
malicious code of category 1 and 2, the behavior monitoring 
mechanism was cost-effective and feasible. However, as more 
sophisticated strategies are used to detect category 3 and 4 

impacts, larger overheads may be induced. Note that the event-
generation routine contributes not only to behavior monitoring, 
but also to a more complete URL discovery. 

6. CONCLUSION 
Our proposed mechanisms for assessing Web application 

security were constructed from a software engineering approach. 
We designed a crawler interface that incorporates and mimics 
Web browser functions in order to test Web applications using 
real-world scenarios. During the first assessment phase, the 
crawler attempts to perform a complete reverse engineering 
process to identify all data entry points–possible points of attack–
of a Web application. These entry points then serve as targets for 
a fault injection process in which malicious patterns are used to 
determine the most vulnerable points. We also proposed the NRE 
algorithm to eliminate false negatives and to allow for “deep 
injection.” In “deep injection”, the IKM formulates an invalid 
input pattern to retrieve a negative response page, then uses an 
automated form completion algorithm to formulate the most likely 
injection patterns. After sending the injection, WAVES analyzes 
the resulting pages using the NRE algorithm, which is simpler, 
yet more accurate than the LITE approach [46]. A summary of 
our contributions is presented in Figure 14. 

Mechanisms Based on Facilitates 

Self-learning 
knowledge base Topic Model 1. Complete crawling 

2. Deep injection 
Negative 
response 
extraction (NRE)

Page similarity Deep injection 

Intelligent form 
parser DOM object locality Deep injection 

Complete 
crawling 

1.Javascript engine 
2.DOM parser 
3.Javascript event 
generation 

Web application 
testing interface 

Behavior 
monitoring 

1.Self-training,  
anomaly detection  
model 
2.Event simulation 
(Test case generation) 
3. Detours 
(Sandboxing) 

1. Self-protection 
2. Cross-site scripting 
detection 
3. Unknown malicious
script detection 

Behavior 
stimulation  

Event simulation 
(Test case generation) 

1. Behavior monitoring
2. Complete crawling 

Figure 14. A summary of our contributions. 

One contribution is an automated form submission algorithm 
that is used by both the crawler and IKM. Here we propose two 
strategies to assist this algorithm. To extract the semantics of a 
form’s input fields, we designed an “intelligent form parser” 
(similar to the one used in LITE [46]) that uses DOM object 
locality information to assist in automated form completion. 
However, our implementation is enhanced by incorporating a 
fully-functional DOM parser, as opposed to an approximate DOM 
parser used in [46]. To automatically provide semantically correct 
values for a form field, we propose a self-learning knowledge 
base based on the Topics model. 

Finally, we added a secure execution environment (SEE) to 
the crawler in order to detect malicious scripts by means of 
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behavior monitoring. The crawler simulates user-generated events 
as test cases to produce more comprehensive behavior 
observations–a process that also aids in terms of crawl 
thoroughness. While functioning as a self-protection mechanism, 
the SEE also allows for the detection of both known and unknown 
malicious scripts. 

As a testing platform, WAVES provides the following 
functions, most of which are commonly required for Web 
application security tests: 

1. Identifying data entry points. 
2. Extracting the syntax and semantics of an input field. 
3. Generating potentially valid data for an input field. 
4. Injecting malicious patterns on a selected input field. 
5. Formatting and sending HTTP requests. 
6. Analyzing HTTP replies. 
7. Monitoring a browser’s behavior as it executes active content 

delivered by a Web application. 

As an interface between testing techniques and Web 
applications, WAVES can be used to conduct a wide variety of 
vulnerability tests, including cookie poisoning, parameter 
tampering, hidden field manipulation, input buffer overflow, 
session hijacking, and server misconfiguration–all of which would 
otherwise be difficult and time-consuming tasks. 
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