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Abstract—In this paper, we use vertically invariant morpho- 2) Rank-order operationsThe median filter [8] seems to
logical filters for time-varying or adaptive signal processing. be the simplest nonlinear edge-preserving smoothing

The morphological filters adopted in this paper are vertically approach and has been generalized to filters that incor-
invariant openings and closings. Vertically invariant openings

and closings have intuitive geometric interpretations and can porate rar_1k-.0r(.1er Operation_s (multilevel median filters,
provide different filtering scales with respect to different spacial order statistic filters, stack filters, and so on). The rank-
positions. Hence, they are suitable for adaptive signal filtering. To order filter is fast and easy to implement. However,

adaptively asssign structuring elements of the vertically invariant
openings or closings, we develop the progressive umbra-filling
(PUF) procedure. Experimental results have shown that our

rank-order operations are not appropriate for signal
smoothing and noise removal if the signal or noise

approach can successfully eliminate noises without oversmoothing mOdel_S are nons_tationary. _

the important features of a signal. 3) Adaptive smoothingThe concept of adaptive smooth-
Index Terms—Adaptive signal processing, mathematical mor- Ing '_S to removg noises Wh'l_e preserving featu_res by

phology. varying the filtering scales with respect to spatial po-

sitions [1], [20], [24], [27], [31]. Hence, an adaptive
smoothing method usually contains two major steps: a
feature-detection stepnd ascale-assignment stejm the

N THE PAST, many approaches have been proposed for feature-detection step, the feature parts (e.g., jumping

edge-preserving signal smoothing. It is well known that be-  edges) are extracted from a signal; then, in the scale-
cause all linear filters confuse and remove the high frequency assignment step, different filtering scales are assigned to
components of the recovered signals along with the noise, the feature parts and the other parts, respectively. The
the linear smoothing procedures are no longer a good choice advantage of the adaptive smoothing approach is that it
if the signal is subjected to jump changes. For this reason, is not only fast but can also be utilized even if the signal
linear filters cause a typical effect of “edge blurring” when or noise models are nonstationary.

applied to the signals with jumps. Hence, to avoid the effect |, this paper, we develop a new approach for adaptive signal
of edge blurring, nonlinear filters are required. The existingmoothing using vertically invariant morphological filters. In
methods for edge-preserving filtering can be classified INKRirticular, the morphological filters adopted in our work are

the following three categories: vertically invariant morphological openingéMV openings)

1) Optimization approachedn an optimization approach, andvertically invariant morphological closingdV closings),
filtering is achieved by minimizing an error function. Anas introduced below. First, we recall some notations and
error function usually contains two terms:data term terminologies in mathematical morphology that we will use
and asmooth termFor example, in [17], an error func-in the sequel. Lef' be the functional space containing all the

tion was derived based on the statistical analysis Witinctions fromR" to R U {£oc}. By an operator, we mean
Markov random fields and was then minimized using mapping ST" — I". An operators is said to be

a GNC algorithm. In [23], two Kalman filters (running , ; P P

forward and backward in time, respectively) coupled in I{ﬁ:g?;?gg{;ﬁ(g@;&ﬂgzlfiq]efi;n?!l fogel

a nonlinear fashion were used to explore a new class of, idempotentf 52 = 5 (whereS? = § o S)"

nonlinear edge-preserving filtering algorithms. However, extensivef f < 5[f], and antiextensivef S[}]<f.

due to the computation burden, an optimization approa%h Y : ) :

is usually difficult to implement efficiently. n operatc_)r thgt is increasing gnd |demp_oten_t is called a
morphological filter[29]. An opening(or closing is a mor-
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Fig. 1. One-dimensional example of the structural V opening with circular SE.

the following property holds for vertically invariant openingsSE’s. That is,O[f] can be visualized as sliding, under f,

(namely, V openings). with the shape oft, varying by positionz, and where the
Property 1: Every V opening can be represented as tHecus of all the highest points reached by some part of

supremum of a set dftructural V openingswhere the struc- (x € R™) during the slide then constitutes the MV opening

tural V opening is defined in the following (see [28]). result. MV closing is a dual operator of MV opening, and its

Definition 1—Structural V OpeningFor each functioy € geometric interpretation is shown in Fig. 2(b).
I, the corresponding structural V opening is defined as MV openings (or MV closings) are specified morphological
a;f[f] = Suplg+alg +a< f,a € R}. (1.1 filters that have great potential for signal filtering applications.

In particular, they can be appropriately used for adaptive signal

For instance, Fig. 1 shows a 1-D example of a structural 3, 4thing. This comes mainly from their following three
opening ifg is a circular function of radius, that is

characteristics.
g(z) = { 2 —(x—c)?, !f |z —c| <7 (1.2) 1) They are invariant with respect to DC biases.
— 00, if |z —c[>r 2) Their filtering scales can be varying with spatial axes
In practice, we can also treat a single structural V opening  (or time axis in the 1-D case) by using different shapes
defined in (1.1) as the V opening in whighis regarded as a or sizes of SE’s in different spatial positions.
single structuring elemen{SE). 3) Their behavior can be explained by easy-to-understand

In this paper, a special kind of V opening [MV openings  geometric interpretations (as described in Property 4).
(_resp. MV closings)] is used for adaptive signal or imagﬁ] principle, according to Properties 3 and 4, using MV
filtering. The reason why the MV openings and MV closinggpenings (or MV closings) for signal processing applications
are adopted in our work for adaptive signal filtering is owings equivalent to finding a set of SEkswith respect to different
to their space-varying(or time-varying nature. MV opening gpatial positions. This is called t1BE assignmerin this paper.
can be computed by the composition of a V erosion and i&,|tion of the SE-assignment problem is a critical issue if
adjunctive V dilation [28] as introduced in the following. v openings (or MV closings) are used for adaptive signal

Given a set of SE'% = {k, € I'|]x € R™} processing.

Property 2—Computation of V Erosion: In practice, signals usually cannot be modeled in a stationary
Ex[fl(z) =Inf{f(x + 2z) — k.(2)|]z € R*}, forall feI'. manner; therefore, a good filtering scheme should be able

(1.3) to adapt to the local data characteristics. Remember that the
definition of adaptive smoothing is that of making the filtering
scales adaptive to the local property of each position of a
signal. A good adaptive-smoothing method should be able to
Dy [f](z) = Sup{f(x — z) + kp—-(2)|z €R"} eliminate noises without oversmoothing the important features

forall feT. of signals. To achieve this goal, an useful scale-assignment
(1.4) scheme in adaptive smoothing is to smooth the highly varying
} ] parts (or feature parts) with smaller filtering scales and to
Property 3—Computation of MV Opening: smooth the flat parts with larger scales [5], [12], [20], [25].
Okl f] = D[Ex[f]]- (1.5) In fact, this is equivalent to assigning smaller SE’s to the
highly varying parts and larger SE’s to the flat parts if an MV
opening (or MV closing) is used. In this paper, we develop an
Oklf] =Suplk, +d< f,d € R,z € R"}. (1.6) adaptive signal smoothing approach based on MV openings
and MV closings. We propose thgrogressive umbra-filling
To give a more explicit explanation, Fig. 2(a) shows a 1-[PUF) procedure to solve the SE-assignment problem. The
example of MV openings using a set of radius-varying circul&UF procedure can be intuitively realized to reconstruct the

The V dilation D, which can causg FEx,Dx) to be an
adjunction, is defined as

Property 4—Geometric Interpretation of MV Opening:
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Fig. 2. (a) Geometric interpretation of MV opening using radius-varying circles. (b) Geometric interpretation of MV closing using radius-uatgsg c

umbra of a signal using many size-varying SE’s. During theessignment. Since it is desirable to remove noise while pre-
reconstruction process, a coarse-to-fine representation of sleeving the original signal shape as much as possible, a
signal can be obtained as well. In each level of the coarse-teasonable guideline for selecting the SE’s in MV openings
fine representation, a connected morphological operator [X4] MV closings) is that small-size SE’s should be assigned
is used to extract features and remove irrelevant nbises to positions containing important features (such as the high-
This paper is organized as follows. In Section Il, the PUffequency or highly varying parts of a signal); on the other
procedure is introduced, which can be effectively used fband, all SE's assigned to positions with low frequency (such
adaptive signal and image filtering. In Section Ill, experimeras low-variation parts or flat regions) should be large enough
tal results are presented. Finally, conclusions and discussitiegause small noises may cause large SNR degradation in
are presented in Section IV. flat regions. To achieve this goal, a quantitative measure is
required to estimate the variation in each position. In fact,
to independently treat the variation estimation phase and the
filtering phase as two separate processes could be inefficient.
Hence, in this paper, we unify these two phases into a well-
As mentioned above, a critical issue of applying M\&tryctured procedure, i.e., the PUF procedure. Without lost
openings (or MV closings) for signal processing is the Skt generality, we describe the PUF procedure only with MV
1 . _ openings in the following. Notice that the PUF procedure can
In our early work, MV openings and MV closings are referred tepace- . - .
varying openingsndspace-varying closingg], [6]. In [2], we have proposed also be easily modified to use MV openings.
an adaptive filtering method for smoothing noisy range images using a single

MV opening (or MV closing). In [6], we have also performed a simplified

statistical analysis of MV openings using flat SE’s by adopting a standapd The PUF Procedure
analysis method proposed in [21] and [22]. However, in our experience, it ) ] ] ]
is easily affected by noise if only a single MV opening is used for adaptive Before introducing the PUF procedure in detail, let us look

signal filtering because the SE assignment is usually not an easy task in g@sa simplified example. In Fig. 3(a), the umbra of a given

case. Hence, in this paper, we use multiple MV openings (or MV closings) in .o . . ,
a hierarchical process, which can solve the SE-assignment problem in a rrﬂgnal is filled with many overlapped circular SE’s of the same

stable way. scale. Those SE’s are treated here as basic units to reconstruct

Il. MV OPENINGS AND MV CLOSINGS
IN ADAPTIVE SIGNAL FILTERING
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The PUF procedure is an iterative process. In each iteration,
a specified MV opening is used to filter the signal obtained
from the last iteration. According to the geometric interpre-
tation of MV openings, an MV opening can be completely
described by specifying the SE used in each position. In the
implementation of the PUF procedure, the class of SE’s used
is {rk|lr € R,0 < r < r}, where

k e T' convex function;

r size of the SE;

r largest size allowed to be used (which is selected

depending on applications).

Hence, the MV openings used in the PUF procedure can be
specified by a function: R™ — [0, 7], wherek, = s(z)k is
the SE assigned to positiane R™. Here, we call functiors(-)
the scale-functiorof this MV opening, and: is referred to as
themother SErespectively. In the PUF procedure, the domain
of the selected mother SE (that ifx € R"|k(z) > —o0})
should be bounded, ari@k) is used to denote the area of the
domain of the mother SE. For example, in Fig. 1{(k) is
equal to2r. Assume thajf is the input signal. Some operations
to be used in the PUF procedure is formally defined as follows.

¢ O; (a mapping fromI" to I'): the MV opening whose

Wer=
L5y

9D

©

Fig. 3. Interpretation of the PUF procedure (a special case that the same size
of SE’s are used with each spatial position in each iteration): (a) Filtering with

the largest scale SE’s. (b) Reconstruct the feature regions of (a) using middle
scale SE’s. (c) Reconstruct the feature regions of (b) using the smallest SE’s.

the umbra. Since the SE'’s used in Fig. 3(a) are large in size,
small bumping noises can be considerably deleted, whereas
some highly varying regions that cannot be filled in with
SE'’s of this scale will remain unchanged. In Fig. 3(b), some
of the regions remaining in Fig. 3(a) (which are consider
to be feature regions) are filled with SE’'s of smaller sizes.
Finally, in Fig. 3(c), some fine features are constructed by thel)
smallest SE’s; hence, the filtered result is verly similar to the 2)
natural shape of the given signal. The total effect of the above
hierarchical procedure is that it tends to reconstruct the shape
of the given signal. In fact, any shape can be reconstructed with
such a procedure if the smallest size of the SE degenerates t8)
a single point. Using this filtering process, important features
can be preserved, and irrelative noises are removed. Although
a morphological opening is used in the above description, this
method can be easily extended to the use of morphological
closing.

scale function iss(-);

es (a mapping fronT" to I'): e;[f] = f — Os[f], which

is the opening residueof f(f € I') with respect to the
scale functions;

D (a mapping froml" to I';), wherel’, is the functional
space containing all of the functions froRf* to {True,
False}): D[f] is the extraction of thdeature partsof

a function f(f € I'), where D[f](x) = True implies
that = is a feature point; otherwise; is not a feature
point. The extraction procedure used in our work is based
on a morphological connected-operator, which will be
described in detail in Section II-B;

F (a mapping fronT" to I'): F[f] is the featurizationof
f(f € I') that

Flf]() = {f (@)

0,

if D[f](z) = True

if D[f](x) = False; (1)

A (mapping fromD" to R): A[f] is the scale function
assigned for the MV opening used for filtering. The
principle used for scale-assignment is described in detail
in Section II-C.

The basic hierarchy of the PUF procedure can be described
p follows.
Basic hierarchy of the PUF procedure

Input a signal f.

Initially, let the scale functios(z) = r for all z € R™

(i.e., the largest scale is assigned to each position in

the beginning). In addition, let the intermediate signal

h = f, and let the iteration counter= 0.

While (s(z) is not a zero function)do 2.1-2.8

a) [MV opening using the assigned scales} O;[h].

b) [compute the opening residuel= es[h] = h — g.

c) [feature-parts extraction and featurizationeptom-
pute ¢’ = F(e).

d) [restoration of the feature partd] = g + ¢’
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Fig. 4. Interpretations of the fixed region, the nonfixed region, and the grain.

e) h — h. signal at a given point is exclusively determined by thmone
f) [scale reassignment] Reassign the SE’s of the M¥f the partition of the input signal that containg14], where
opening to be used in the next iteration according #® zone of a se#l is a connected component of eithéror A°.

] , . _ Grain operators are used for the extraction of the feature
s'(x) = {](;Z Al @), gtr?e[rf].(x) = True parts. For each regiofi,,m € {1,2,---,n,}, a measure3(-)
’ wise is used to evaluate ittness of being a featurdéf B(C,,) is
for all = € R*, wherek; is a constant) < k; < 12, larger than a given thresholfi. .., then featurgC;,,) = Truc;

and ki1 < k; for all 4. else feature(C,,) = False. Basically, T;.,, is allowed to be
g) s — 5. - varying with the iteration counter Some possible selections
h) i — i+ 1. of h(C,,) are discussed below. For example, we have the
4) Output h. following:
5) End.2 volumeof C,,
There are two major steps in the PUF procedure. One is the B(C,) = volume (Cy,) = Z e(x) (2.2)
featurization of the opening residue, i.e., the computation of *€Chp,

LIle], and the other is the reassignment of the scale function

Ale’]. They will be described in detail in Sections II-B and

II-C, respectively. B(Cm) = energy (C) = > () (2.3)
rz€C,,

energyof C,,

B. Extraction of the Feature Parts height of C,,

For eachz € R, if e¢(z) = 0, thenx is labeled as a

fixed point elsez is anonfixed pointLet thefixed regionbe
the set consisting of all the fixed-points, and let tienfixed ,
regionbe the set consisting of all the nonfixed points, as shown 5,04 of C.,
in Fig. 4(a). In principle, the signal within a nonfixed region
can be referred to as the convex highly varying parts of a B(C,,) = area (C,,) = Z 1. (2.5)
signal. Assume that the nonfixed region can be divided into #ECy,
n; connected subreglons, nametyy, Cy, cdots, Cri, Where  Thg following equation is used to extract the feature parts:
C;;NCp=oforall j, ke {1,2,---,n,;}. EachC; is referred ] .
to as agrain, and each segment of the intermediate signal True, if there is anm € {1,2,---,n;}
h.. el . such thate € C,,

Dlp](x) =

. and feature (C,,,) = True

ho(g) — hz), ifxeC; False, otherwise.

silx) =

- therwi
>0, omenwise After that, I'[h] can then be computed by (2.1).

B(Cy,) = height (Cy,) = max{e(z)|z € Cy,} (2.4)

is referred to as aconnected highly varying portiopnas
shown in Fig. 4(b). Basically, there is a unique partitioC. Scale Reassignment
C1,Cs,---,C,; that satisfies that eaci; is connected and
that each paifC;, C;) is disjoint. Aconnected operatdi 4] is o
an operator that coarsens this partition for every input sign g
In particular, the connected operators used in our work £
grain operators where an operator is called a grain operator
it has the following “local property”: The value of the output

In the above, the current signal was filtered using an MV
ening and then was restored by adding back the feature
rt of it. In this step, a new scale function will be assigned
filtering the new generated signal in the next iteration.
ince each of the restored connected highly varying portion is
maller than the SE used to filter them in the current iteration,
2Basically, k; is a damping factor depending on the iteration counter ~Smaller scales have to be assigned for filtering the restored
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scale

C G Cs Cy space

Fig. 5. One-dimensional example of the scale function assigned in an iteration of the PUF procedure. The scale function is piecewise conswint. Each gr
C; (here, four grains are shown) corresponds to a nonzero piece. The larger the widths of the grains, the larger the scales assigned.

parts in the next iteration. The scale reassignment functiontputs of the MV opening are the same as the input signals
used in the PUF procedure is in the region of the zero pieces, only the outputs of the
regions of the nonzero pieces have to be computed. Hence,

/
Al](z) ] the computation can be speeded up because only the nonzero
ko - (area (Cpn)/U(K)), if D[f](z) = Truc and  pieces really have to be considered in implementation.
= x e Crn In fact, if the scales assigned in a piece are all the same
0, if D[f](z) = False with spatial positions, an MV opening degenerates to as a

(2.6) shift-invariant opening A shift-invariant opening is an MV
wherek, is a constant) < kg < i(k)/arca (Cy) ope'n.ing whose SE’s.ar'e the' same Wit.h respect tp every spe}tial
Remember that k) is the area of the domain of the functionpOS'tlonS' In_fact, shlft-mv_anant openings are widely used in
k. Basically, area(C,,)/l(k) is the ratio of the area of the ade and signal processing [7], [16], [18], [19], [30] and are

grain C,,, to I(k). Hence, by using a proportional constarjgtmduced by many textbooks [1.0]' [11], _[1§]Hence, the .
' ' UF procedure can also be equivalently implemented using

k., < 1, it follows that the smaller SE’s will be assigned_, ... . . . L :
! ) : - shift-invariant openings by considering that the scale function

to the narrower connected highly varying portions and vic : ; : . LT .
f the MV opening) assigned in each iteration is piecewise

versa. In particular, the illustrative example shown in Fig.

is a special case that, = I(k)/arca(C,,) (but k; < 1), i.e,, constant.

the scale reassignment only depends on the iteration counter.

In this special case, the scales assigned to the feature reglon§x@mple

(i.e.,{z € Cp,lm=1,2,---,n;}) in each iteration are all the A 1-D signal is used to examine the effectiveness of the

same. However, in general, the scales assigned for the feafekd= procedure. This signal consists of part of a triangular

regions in each iteration are allowed to be different in th@ave and part of a square wave, which can be referred to as a

PUF procedure. roof edge and a step edge in an image, respectively. A random
It is obvious that the PUF procedure introduced below camise, which is uniformly distributed in-5, 5] is added to

be easily modified to use MV closings. In the followingthis signal, as shown in Fig. 6(a). The class of SE’s used in

PUF openingis used to denote the PUF procedure using Mthis experiment is the circular one, that{igk|r € R}, where

opening, andPUF closingis used to denote the PUF proceduréhe mother SE: is selected to be a unit circular-function as

using MV closing, respectively. In practice, we usually adoptefined in

the combined procedurBUF close-openPUF closing after .
Kx) = { V1—22, if 2| £1

PUF opening) oPUF open-close(PUF opening after PUF .
—c0, if |z >1.

closing) for signal filtering in real applications.

2.7)

_ _ _ Both the height and the area of a connected highly varying
D. Piecewise-Constant Scale Function portion [as, respectively, defined in (2.4) and (2.5)] are used

Notice that by using (2.6), the scale function of the MV _ o
. di h iteration imEcewise constant function In‘ fact, the PUF_procedure can also be dgscrlbeq via shlft-m\_/anant
open!ng usedin ea_c I P - openings. However, since the concept of the spatially variant scale assignment
That is, the same size SE’s are used to filter the same conneeteche more concisely explained using MV openings rather than using shift-

hiahlv varvin ortions. In principle, in théth iteration, the invariant ones, the MV openings are used to explain the PUF procedure in
gnly ying p P P this paper. In addition, the use of MV openings has the advantage that it has

neWIy aSS|gned Scalfa function hﬂsnon;ero_p|eces, Whereas{he potential to be generalized to the case that the scale functions assigned in
others have zero pieces (as shown in Fig. 5). Because #aenh iteration are not piecewise constant.
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Fig. 6. (a) Signal contains a roof edge and a step edge, which is corrupted by a random noise distributed5Sh (b) Filtering result after the first
iteration using PUF opening. (c) Filtering result after two iterations of using PUF opening. (d) Filtering result after five iterations using R~ @en
Final filtering result after eight iterations of using PUF opening. (f) Output filtering result after using PUF close-open.

for feature detection, as shown in to the current SE size is that the noises occurred in large
slow-varying regions can be better removed because larger

1, if height (Cn) > T}, and thresholds are applied to them; likewise, the small features

B(Cw) = arca (Cp) > Tfm (2.8) occurring in the highly varying region can be better preserved

0, otherwise by applying smaller thresholds. The largest radius used in this

. " ] experiment i3 = 100, and the SE size-reduction factors used
whereT;%,, and Ty, are referred to adeight thresholdand gre 1. — 0.5 and&; = 1. The experimental results are shown

size thresholdrespectively. In our settings, these thresholdg Fig. 6(b)—(f). In Fig. 6(b)—(d), the filtering results using
(e, 775, andTy;,) are also varied with the iteration numbetne pyF opening after iterations 1, 2, and 5 are shown. In
i. In each iteration of the PUF procedufg]], and7;,, are these consecutive results, noises were gradually reduced, and
reduced according to half of the current SE size until thelje important features in this signal were preserved precisely.

reach some predefined minimal values, as shown in The PUF opening procedure converged at the eighth iteration
. _ in this experiment, and the converged result is shown in

iim = minf0.5 - s(z) - [(K), a], z€Cn Fig. 6(e). Finally, the result of using PUF close-open is shown

T;}m = min[0.5 - s(x) - I(k), as], x€eCpy in Fig. 6(f). Generally, this experiment shows that the PUF

procedure can remove noises in a progressive way and, hence,
where a, and ¢;, are the predefined minimal values. Thean be effectively used for adaptive signal filtering and noise
advantage of varying these thresholds adaptively with respeetmoval.
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(b)

Fig. 7. (a) Original range image of a model head. The height of this model head is about 200 mm. (b) Nonfixed region (shown in black) of (a) obtained
by using the 2-D PUF procedure using MV openings after the first iteration with a spherical SE with radius 10 mm.

F. Computational Complexity [24], [32]. In [32], an iterative-decomposition approach was

Assume that in the first iteration of the PUF procedure, tfR§OPosed for texture classification and segmentation. The
signal to be filtered is quantized t data points, and the advantage of using a re3|due-anegS|s strategy is that small
average length of the SE's used in the MV opening contaif@MpPonents with high contrast will be preserved in the seg-

1, data points. Basically, the computational complexity of affentation result as well. In [24], an algorithm for noise

MV opening isO(L., - 1,,). Suppose that in theth iteration of reduction of intensity images based on a _r_e3|due-_analy5|s
the PUF procedure, there drg; data points in total contained 2PProach has also been proposed. A significant difference
in the nonzero pieces, and the average size of the SE uB&gveen their approaches and the PUF procedure is that the

can be quantized th,.; data points. Then, the computationaPreV_iOUS|}’ cited methqu use the shift-invariant opening (or
complexity in theith iteration iSO(Im;; - Ln;; ). Hence, the total closing) in each iteration; therefore, SE's of the same size

complexity of the PUF proceduredsur = 3t_; O(lmii-lns) are used for each position in the same iteration (somewhat
wheret is the number of iterations. Driving the exact form ofKe the case shown in Fig. 3). On the other hand, the PUF

the computational complexity is not an easy task because f}f@cedure uses an MV opening (or MV closing) in each
terms ¢, 1,,.; and l,..; are all signal dependent. In principle iteration; therefore, the SE size can be adaptively varied with

I, and l,,.; will decay rapidly with respect to the iteration"SPect to the size of each connected highly varying portion.

number: for most cases. If the decay &f,.; and/,.; can be
approximately modeled by an average fraction fadtef< 1), H. Dimensionality Considerations
i.e., i =d-l,-1 andl,; = d-1,;_1, and assume that

t — oo, thentpyr = (1/1 —d) - O(_lm ). Fo_r example, if N, then it is called anV-dimensional {V-D) PUF procedure.

d = 0.5, thentpur = 2-O(l,1,). Sincel/1—dis aconstant, np important property is that in each iteration of the 1-D PUF
the computatlo_nal _complexny of the PUF procedure IS ro‘_JghB/rocedure, the area of each grain [defined as (2.5)] is smaller
Ol - 1), which is equal to that of a single MV Opening.y,,, the area of the domain of the used SE. On the other hand,
Consequently, although the PUF procedure uses multiple MYthe N-D casegN > 2), the area of each grain may be larger
openings iteratively, i_ts computationr_;ll cqmplexity is still th‘?han that of the domain of the SE. For example, Fig. 7 shows
same as that of a single MV opening in the case that the, \\,nfixed region of a range image obtained by using the 2-D
total area of the domains to be processed in each iterationpig - procedure (after the first iteration). In Fig. 7(b), almost

exponentially decayed. all the points in the nonfixed region are connected to each
other and, hence, are contained in the same grain. The area of
this grain is, then, very large, and both noises and features are

possibly contained in it. In this case, noises contained in this

~ Infact, the PUF procedure can be viewed as a method thakin (in particular, slender noise stripes) will be preserved in
is based on theesidue-analysis strategysually, a residue- yhe cyrrent iteration. Hence, in the 2-D PUF procedure, some

analysis strategy contains three main steps in one iterationnremovable noises may remain in each iteration, which will
i) computing the opening-residues or closing-residues; significantly reduce the quality of the obtained filtering result.
ii) identifying each local portion of a signal as a feature Therefore, in this paper, we suggest using 1-D PUF pro-
or noise based on these residues; cedure for signal filtering. In fact, to filter a 2-D signal,
iii) restoring features from the opening (or closing) resultg;sing 2-D window operators is not definitely necessary. In
Hence, an inherent assumpption in a residue-analysis strategy approach, the row-column decomposition of this signal is
is that features and noises can be separated by using openpeyformed, and each row (or column) signal is filtered using a
(or closings) with SE’s of different sizes. In the past, residue-D PUF procedure. It is worth noting that filtering 2-D signals
analysis strategies have also been adopted in some reseasthg row-column decompositions has been widely adopted in

If the dimenstion of the SE's used in a PUF procedure is

G. Residue-Analysis Strategy
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Fig. 8. Adaptive filtering result of a model head object using the PUF procedure. (a) Range image captured by a laser-stereo range finder. (b) Filtering
result of applying the 1-D PUF opening procedure to each row of 8(a). (c) Filtering result of applying the 1-D PUF opening procedure to each column
of 8(b). (d) Filtering result using the procedure of 1-D PUF-closings to filter the rows and columns of 8(c). (e)—(h) Corresponding zero-crossings of
the second-order derivative of 8(a)—(d), respectively.

many signal processing applications, for example, in the digitalature detection was the volume of a connected highly varying
image compression area [11], [26]. In addition, notice thabrtion as defined in (2.6), and the threshold was fixed to be
one of the reasons why the 1-D row-column decompositiah).,, = 5.0 mm?. The largest radius used in this experiment
is popular in signal processing is that its time complexity iwas» = 20 mm, and the SE size-reduction factors used were

smaller than using 2-D operations. ks = 0.5 and k; = 1. In Fig. 8(a), a noisy range image
of a model head is shown, where the height of this model
Ill. EXPERIMENTAL RESULTS head was about 200 mm. After the filtering of each row of

In this section, we describe how the PUF procedure whid 8(a) using the procedure of PUF opening, the result is
applied to the area of adaptive signal filtering. Two typeshown in Fig. 8(b). Fig. 8(c) shows the result obtained by
of signals were presented in our experiments. First, the P@ltering each column of Fig. 8(b) using the PUF opening. It
procedure was applied for adaptive filtering of noisy ranggan be observed that the noises have been greatly removed,
images. Second, it was applied to adaptive filtering of a@s shown in Fig. 8(c). Finally, Fig. 8(d) shows the filtering

intensity image corrupted with pepper and salt noises. result after applying the PUF close-open procedure [i.e., using
PUF closing to filter the output signal shown in Fig. 8(c)]. In
A. Adaptive-Smoothing of Noisy Range Images principle, the bumping noises that occurred in a range image

In this experiment, the range images were obtained froffuld be gradually removed through this procedure. To make
a laser-stereo range finder [4]. Due to the limited precisiciy™® that the resulting object surface was smoother than the
of such a 3-D scanning system, some bumping noises co@riginal one, the zero crossings of the second-order derivatives
occur in the range of about 1.0 mm if the distance betwe8h Fig. 8(a)—(d) are shown in Fig. 8(e)—(h), respectively. The
the camera and the object was about 1.0 m. To show tht of these zero crossings is the union of the sets of the 1-D
object surface in a clear way, a standard shading technig&fo-crossings computed through each row and each column,
known as the Phong shading [9] was used to shade the objetiere a pointx is a zero crossing iff”(z + 1) >0 and
contained in range images. The SE’s used in this experimefi{z — 1) <9, and f“(z + 1) — f"(z — 1) >e (where f”
for adaptive signal filtering were also circular ones, and the the second derivative of, and ¢ is a threshold). From
procedure used was PUF close-open. The criterion used fag. 8(e)-(h), we can observe that the original range image
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(b)

Fig. 9. (a) Original range image. (b) Smoothed range image using the PUF close-open procedure.

has been smoothed progressively. Fig. 9 shows the filteriteging scheme that can achieve feature-preserving smoothing.

result of a range image containing another model head objdet.principle, MV openings and MV closings have intuitive
geometric interpretations and can provide different filtering

B. Adaptive Noise-Removal of Intensity Images scales with respect to different spatial positions. Hence, they

Fig. 10(a) is an intensity image corrupted by 5% pepper aft€ sgitable for .adapt.ive sign-al filtering. B-asically, SE as;ign—
salt noises, where the pepper noises have gray level 0, andfHt is the key issue in applying MV openings or MV closings
salt noises have gray level 255. Flat SE’s were used in tifs adaptive signal smoothing. To solve the SE-assignment
experiment. Notice that if the size of a flat SE wasthen the Problem, we propose the PUF procedure in this paper. The
opening could remove a connected salt noise with size |68dF procedure can gradually fill the umbra of a signal with
than w. The idea of SE assignment in this experiment us@sset of overlapping SE’s that are larger to smaller in scale.
a flat SE with sizew to remove noises with sizes — 1. To We have presented several examples and have shown that the
achieve this goal, the PUF procedure was slightly modifiddJF procedure can successfully reduce the bumping noises
such that the size of the SE was decreased by one in eadthout oversmoothing the signal.
iteration, i.e.,s;+1(z) = s;(z) — 1, in this experiment. In this  In fact, the PUF procedure also equivalently performs a
experiment, the operation of V open-close was used. The sipaltiscale feature-extraction scheme. This is because the PUF
of the largest SE used was 3 in MV closing and was 5 jorocedure is a process that reconstructs the umbra of a signal
MV opening since the precedence MV closing could enlarge a coarse to fine manner. Basically, the PUF procedure can
the size of the pepper noises. The feature-detection criteriog used to extract features at different scales by applying the
of the PUF opening (or PUF closing) procedure used herefiglowing strategy:
that a grainC' is a noise if there arev — 1 salt (or pepper)  The features extracted in prior iterations of the PUF proce-
noises inC, wherew is the current SE size; otherwis€,is dure are referred to athe features of larger scalesnd the
a feature and should be preserved for processing in the nfsdtures extracted in the later iterations are referred tihas
iteration. Fig. 10(b) shows the filtering result after applyingeatures of smaller scales
the 1-D PUF opening procedure for each row and column of n principle, the types of features extracted in the PUF
F?g_ 10(a). Notice thgt the pepper noises 'are'well removed dfocedure are the highly varying parts (or the roof edges
Fig 10(b). Finally, Fig. 10(c) shows the filtering result afte[16]) of a signal. An important characteristic of the features
PUF open-close, and it is clear that the pepper and salt noigg§acted by a PUF procedure is that no additional features will
have all been removed. be introduced when the scales varying from larger to smaller.

That is, all the smaller scale features are contained in the larger
IV." CONCLUSIONS AND DISCUSSION scales features. Hence, it obeys tmiltiscale property in

In this paper, we introduced a well-organized approach ftitre scale space. In fact, although many filtering approaches
adaptive signal and image filtering using vertically invariaritave focused on the multiscale property, the discussion of
morphological filters. Adaptive smoothing is a nonlinear filthis scheme was usually restricted to the features caused by
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(b)

Fig. 10. Noise removal of an intensity image corrupted by pepper and salt noise using the PUF procedure.

(©)

discontinuities (e.g., the step edges) of a signal. Howevereserving important features. In addition, it can also be used
by using the PUF procedure, the multiscale property can far multiscale feature extraction. The PUF procedure proposed
achieved for the roof edges. Basically, this property does riotthis paper is a general multiscale signal representation tool,
create artificial features during the filtering process. Hence, taad hence, it has great potential for not only adaptive signal
PUF procedure is a good tool to extract roof-edge features is@oothing but many other signal processing applications as
multiscale way and is also suitable for removing roof-edge-lik&ell.

noises such as the bumping noises occurring in different scales.
The PUF procedure is a fast adaptive smoothing approach.
Since, in general, only a few iterations are needed to achie

the filtering purpose in the PUF procedure, and because t @
sizes of the domains of the signals decayed very fast throuddl
the iterative process, the PUF procedure can be implemented
in low-order time. [3]

To sum up, we have introduced a hierarchical umbra-

reconstruction scheme that can be successfully implementeqd
through mathematical morphology and can be appropriately
applied to adaptive signal smoothing. The proposed approatﬁlg]
is fast, easy to implement, and can remove noises while
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