
Lexical Analyzer — Scanner
ASU Textbook Chapter 3.1, 3.3, 3.4, 3.6, 3.7, 3.5

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1

Main tasks

Read the input characters and produce as output a sequence of

tokens that the parser uses for syntax analysis.

Lexeme : a sequence of characters matched by a given

pattern for a token .

• Example:
Lexeme pi = 3.1416 ;

token ID ASSIGN FLOAT-LIT SEMI-COL
• patterns:

. identifier (variable) starts with a letter and follows by letters, digits or
“ ”;

. floating point number starts with a string of digits + a dot + another
string of digits;

Compiler notes #2, Tsan-sheng Hsu, IIS 2

Strings

Definitions and operations.

• alphabet : a finite set of characters (symbols);

• string : a finite sequence of characters from the alphabet;

• |S|: length of a string S;
• empty string: ε;
• xy: concatenation of string x and y
εx ≡ xε ≡ x;

• exponention:
. s0 ≡ ε;
. si ≡ si−1s, i > 0.

Compiler notes #2, Tsan-sheng Hsu, IIS 3

Parts of a string

Parts of a string: example string “necessary”

• prefix: deleting zero or more tailing characters; eg: “nece”

• suffix: deleting zero or more leading characters; eg: “ssary”

• substring: deleting prefix and suffix; eg: “ssa”

• subsequence: deleting zero or more not necessarily contiguous symbols;

eg: “ncsay”

• Proper prefix, suffix, substring or subsequence: one that cannot

equal to the original string;

Compiler notes #2, Tsan-sheng Hsu, IIS 4

Language

Language : any set of strings over an alphabet.

Operations on languages:
• union: L ∪M = {s|s ∈ L or s ∈M};
• concatenation: LM = {st|s ∈ L and t ∈M};
• L0 = {ε};
• Kleene closure : L∗ = ∪∞i=0L

i;

• Positive closure : L+ = ∪∞i=1L
i;

• L∗ = L+ ∪ {ε}.

Compiler notes #2, Tsan-sheng Hsu, IIS 5

Regular expressions

A regular expression r denotes a language L(r), also called a

regular set .

Operations on regular expressions:
regular language
expression
∅ empty set {}
ε the set containing the empty string {ε}
a {a} where a is a legal symbol
r|s L(r) ∪ L(s) — union
rs L(r)L(s) — concatenation
r∗ L(r)∗ — Kleene closure

Example:

a|b {a, b}
(a|b)(a|b) {aa, ab, ba, bb}
a∗ {ε, a, aa, aaa, . . .}
a|a∗b {a, b, ab, aab, . . .}
C identifier (A|B| · · ·) ((A|B| · · ·) — (0|1| · · ·) — “ ”)∗

Compiler notes #2, Tsan-sheng Hsu, IIS 6

Regular definitions

For simplicity, give names to regular expressions.
• format: name → regular expression.
• example 1: digit → 0|1|2| · · · |9.
• example 2: letter → a|b|c| · · · |z|A|B| · · ·.

Notational standards:

r∗ r+|ε
r+ rr∗

r? r|ε
[abc] a|b|c
[a− z] a|b|c| · · · |z

Example: C variable name: [A− Za− z][A− Za− z0− 9]∗

Compiler notes #2, Tsan-sheng Hsu, IIS 7

Non-regular sets

Balanced or nested construct
• Example: if · · · then · · · else

• Recognized by context free grammar .

Matching strings:
• {wcw}, where w is a string of a’s and b’s and c is a legal symbol.

Remark: anything that needs to “memorize” something
happened in the past.

Compiler notes #2, Tsan-sheng Hsu, IIS 8

Finite state automata (FA)

FA is a mechanism used to recognize tokens specified by a
regular expression.
Definition:
• A finite set of states.
• A set of transitions, labeled by characters.
• A starting state.
• A set of final (accepting) states.

Example: transition graph for the regular expression (abc+)+

0 1 2 3
start a b c

c

a

Compiler notes #2, Tsan-sheng Hsu, IIS 9

Transition graph and table for FA

Transition graph:

0 1 2 3
start a b c

c

a

Transition table:

a b c
0 1
1 2
2 3
3 1 3

• Rows are input symbols.
• Columns are current states.
• Entries are resulting states.
• Along with the table, a start state and a set of accepting states are

also given.

This is also called a GOTO table.

Compiler notes #2, Tsan-sheng Hsu, IIS 10

Types of FA’s

Deterministic FA (DFA):
• has a unique next state for a transition;

• does not contain ε-transitions , that is a transition take ε as the input
symbol.

Nondeterministic FA (NFA):
• has more than one next state for a transition;
• contains ε-transitions.
• Example: aa∗|bb∗.

0

1
start

3

2

4

a

b

a

bε

ε

Compiler notes #2, Tsan-sheng Hsu, IIS 11

How to execute a DFA

Algorithm:

s← starting state;

while there are inputs do

s← Table[s, input]

end while

if s ∈ accpetingstates then ACCEPT else RE-
JECT

Example: input “abccabc”. The accepting path:

0 a−→ 1 b−→ 2 c−→ 3 c−→ 3 a−→ 1 b−→ 2 c−→ 3

0 1 2 3
start a b c

c

a

Compiler notes #2, Tsan-sheng Hsu, IIS 12

How to execute an NFA (informally)

An NFA accepts an input string x if and only if there is some
path in the transition graph initiating from the starting state to
some accepting state such that the edge labels along the path
spell out x.
Could have more than one path. (Note DFA has at most one.)
Example: regular expression: (a|b)∗abb; input aabb

0 1 2 3
start a b b

a

b

a b
0 {0,1} {0}
1 {2}
2 {3}

0 a−→ 0 a−→ 1 b−→ 2 b−→ 3 Accept!

0 a−→ 0 a−→ 0 b−→ 0 b−→ 0 Reject!

Compiler notes #2, Tsan-sheng Hsu, IIS 13

From regular expressions to NFA’s

Structural decomposition:
• atomic items: ∅, ε and a legal symbol.

ε

ε

start
NFA for r

NFA for s

start state for s

start state for rr|s

ε

ε

start
NFA for r

start state for r ε

ε accepting states for r

r*

ε

ε

start NFA for r

start state for sstart state for r

NFA for s

convert all accepting states in r into non accepting states and
add −transitionsεrs

Compiler notes #2, Tsan-sheng Hsu, IIS 14

Example: (a|b)∗abb

start
a

b

a b bε

ε

ε
ε

ε

ε ε
ο 1

2
�

3
�

4
�

5
�

6
�

7
�

8
�

9
�

10 11 12

ε

ε

This construction produces only ε-transitions, never multiple
transitions for an input symbol.
It is possible to remove all ε-transitions from an NFA and
replace them with multiple transitions for an input symbol, and
vice versa.

Compiler notes #2, Tsan-sheng Hsu, IIS 15

Construction theorems

Theorem #1:
• Any regular expression can be expressed by an NFA.
• Any NFA can be converted into a DFA.

That is, any regular expression can be expressed by a DFA.
How to convert an NFA to a DFA:
• Find out what is the set of possible states that can be reached from

an NFA state using ε-transitions.
• Find out what is the set of possible states that can be reached from

an NFA state on an input symbol.

Theorem #2:
• Every DFA can be expressed as a regular expression.
• Every regular expression can be expressed as a DFA.
• DFA and regular expressions have the same expressive power.

How about the power of DFA and NFA?

Compiler notes #2, Tsan-sheng Hsu, IIS 16

Converting an NFA to a DFA

Definitions: let T be a set of states and a be an input symbol.
• ε-closure(T): the set of NFA states reachable from some state s ∈ T

using ε-transitions.
• move(T, a): the set of NFA states to which there is a transition on the

input symbol a from state s ∈ T .
• Both can be computed using standard graph algorithms.
• ε-closure(move(T, a)): the set of states reachable from a state in T for

the input a.

Example: NFA for (a|b)∗abb

start
a

b

a b bε
ε

ε
ε

ε

ε ε
ο 1

2
�

3
�

4
�

5
�

6
�

7
�

8
�

9
�

10 11 12

• ε-closure({0}) = {0, 1, 2, 4, 6, 7}, that is the set of all possible start
states

• move({2, 7}, a) = {3, 8}

Compiler notes #2, Tsan-sheng Hsu, IIS 17

Subset construction algorithm

In the converted DFA, each state represents a subset of NFA
states.
• T a−→ ε-closure(move(T, a))

Subset construction algorithm :

initially, we have an unmarked state labeled with ε-closure({s0}),
where s0 is the starting state.

while there is an unmarked state with the label T do
. mark the state with the label T
. for each input symbol a do
. U ← ε-closure(move(T, a))
. if U is a subset of states that is never seen before
. then add an unmarked state with the label U
. end for

end while

New accepting states: those contain an original accepting state.

Compiler notes #2, Tsan-sheng Hsu, IIS 18

Example

start
a

b

a b bε
ε

ε
ε

ε

ε ε
ο 1

2
�

3
�

4
�

5
�

6
�

7
�

8
�

9
�

10 11 12

First step:
• ε-closure({0}) =
{0,1,2,4,6,7}

• move({0, 1, 2, 4, 6, 7}, a) =
{3,8}

• ε-closure({3,8}) =
{1,2,3,4,6,7,8}

• move({0, 1, 2, 4, 6, 7}, b) =
{5}

• ε-closure({5}) =
{1,2,4,5,6,7}

a

b

0,1,2,4,6,7

0,1,2,3,4,
6,7,8,9

0,1,2,4,5,6,7

Compiler notes #2, Tsan-sheng Hsu, IIS 19

Example — cont.

start
a

b

a b bε
ε

ε
ε

ε

ε ε
ο 1

2
�

3
�

4
�

5
�

6
�

7
�

8
�

9
�

10 11 12

states:
• A = {0, 1, 2, 4, 6, 7}

• B = {0, 1, 2, 3, 4, 6, 7, 8, 9}

• C = {0, 1, 2, 4, 5, 6, 7, 10, 11}

• D = {0, 1, 2, 4, 5, 6, 7}

• E = {0, 1, 2, 4, 5, , 6, 7, 12}

transition table:

a b
A B D
B B C
C B E
D B D
E B D

A

B C

D E

a

a b
a

ba

b
b b

a

Compiler notes #2, Tsan-sheng Hsu, IIS 20

Algorithm for executing an NFA

Algorithm: s0 is the starting state, F is the set of accepting
states.

S ← ε-closure({s0})
while next input a is not EOF do

. S ← ε-closure(move(S, a))

end while

if S ∩ F 6= ∅ then ACCEPT else REJECT

Execution time is O(r2 · s), where
• r is the number of NFA states, and
• s is the length of the input.
• Need O(r2) time in running ε-closure(T) assuming linked list data

structures are used for the ε transitions and we can use a linear-time
hashing routine to remove duplicated states.

Compiler notes #2, Tsan-sheng Hsu, IIS 21

Trade-off in executing NFA’s

Can also convert an NFA to a DFA and then execute the
equivalent DFA.
• Running time: linear in the input size.
• Space requirement: linear in the size of the DFA.

Catch:
• May get O(2r) DFA states by converting an r-state NFA.
• The converting algorithm may also takes O(2r) time.

Time-space tradeoff:
space time

NFA O(r2) O(r2 · s)
DFA O(2r) O(s)

• If memory is cheap or it is going to run again, then use the DFA
approach;

• otherwise, use the NFA approach.

Compiler notes #2, Tsan-sheng Hsu, IIS 22

LEX

An UNIX utility.
An easy way to use regular expressions to do lexical analysis.
Convery your LEX program into an equivalent C program.
Depending on implementation, may use NFA or DFA algorithms.

file.l −→ lex file.l −→ lex.yy.c

lex.yy.c −→ cc -ll lex.yy.c −→ a.out

input −→ a.out −→ output sequence of tokens

Compiler notes #2, Tsan-sheng Hsu, IIS 23

LEX formats

Source format:
• Declarations —- a set of regular definitions, i.e., names and their

regular expressions.
• %%
• Translation rules — actions to be taken when patterns are encountered.
• %%
• Auxiliary procedures

Global variables:
• yyleng: length of current string
• yytext: current string
• yylex(): the scanner routine

Compiler notes #2, Tsan-sheng Hsu, IIS 24

LEX formats – cont.

Declarations:
• variables: using C format
• manifest constants: using C format; identifiers declared to represent

constants
• regular expressions.

Translation rules:

P1 {action1}

if regular expres-
sion P1 is encoun-
tered, then action1
is performed.
LEX internals: regular expressions −→ NFA −→ DFA

Compiler notes #2, Tsan-sheng Hsu, IIS 25

test.l — Declarations

%{
/* some initial C programs */

#define BEGINSYM 1
#define INTEGER 2
#define IDNAME 3
#define REAL 4
#define STRING 5
#define SEMICOLONSYM 6
#define ASSIGNSYM 7
%}
Digit [0-9]
Letter [a-zA-Z]
IntLit {Digit}+
Id {Letter}({Letter}|{Digit}|_)*

Compiler notes #2, Tsan-sheng Hsu, IIS 26

test.l — Rules

%%
[\t\n] {/* skip white spaces */}
[Bb][Ee][Gg][Ii][Nn] {return(BEGINSYM);}
{IntLit} {return(INTEGER);}
{Id} {

printf("var has %d characters, ",yyleng);
return(IDNAME);
}

({IntLit}[.]{IntLit})([Ee][+-]?{IntLit})? {return(REAL);}
\"[^\"\n]*\" {stripquotes(); return(STRING);}
";" {return(SEMICOLONSYM);}
":=" {return(ASSIGNSYM);}
. {printf("error --- %s\n",yytext);}

Compiler notes #2, Tsan-sheng Hsu, IIS 27

test.l — Procedures

%%
/* some final C programs */
stripquotes()
{
/* handling string within a quoted string */
int frompos, topos=0, numquotes = 2;
for(frompos=1; frompos<yyleng; frompos++){

yytext[topos++] = yytext[frompos];
}
yyleng -= numquotes;
yytext[yyleng] = ’\0’;

}
void main(){
int i;
i = yylex();
while(i>0 && i < 8){

printf("<%s> is %d\n",yytext,i);
i = yylex(); } }

Compiler notes #2, Tsan-sheng Hsu, IIS 28

Sample run
austin% lex test.l
austin% cc lex.yy.c -ll
austin% cat data
Begin
123.3 321.4E21
x := 365;
"this is a string"
austin% a.out < data
<Begin> is 1
<123.3> is 4
<321.4E21> is 4
var has 1 characters, <x> is 3
<:=> is 7
<365> is 2
<;> is 6
<this is a string> is 5
%austin

Compiler notes #2, Tsan-sheng Hsu, IIS 29

More LEX formats

Special format requirement:

P1

{ action1
· · ·
}

Note: { and } must indent.

LEX sepcial characters (operators):

‘‘ \ [] ^ - ? . * + | () $ { } % < >

When there is any ambiguity in matching, prefer
• longest possible match;
• earlier expression if all matches are of equal length.

Compiler notes #2, Tsan-sheng Hsu, IIS 30

LEX internals

How to find a longest possible match if there are many legal
matches?
• If an accepting state is encountered, do not immediately accept.
• Push this accepting state and the current input position into a stack

and keep on going until no more matches is possible.
• Pop from the stack and execute the actions for the popped accepting

state.
• Resume the scanning from the popped current input position.

How to find the earliest match if all matches are of equal
length?
• Number the accepting states according to the order in the expressions.
• If you are in multiple accepting states, execute the action associated

with the least indexed accepting state.

Compiler notes #2, Tsan-sheng Hsu, IIS 31

Practical considerations

key words v.s. Reserved word

• key word:
. def: word has a well-defined meaning in a certain context.
. example: FORTRAN, PL/1, . . .

if if then else = then ;
id id id

. Makes compiler to work harder!

• reserved word:
. def: regardless of context, word cannot be used for other purposes.
. example: COBOL, ALGOL, PASCAL, C, ADA, . . .
. task of compiler is simpler
. reserved words cannot be used as identifiers
. listing of reserved words is tedious for the scanner, also makes scanner

large
. solutions: treat them as identifiers, and use a table to check whether it

is a reserved word.

Compiler notes #2, Tsan-sheng Hsu, IIS 32

Practical considerations – cont.

Multi-character lookahead: how many more characters ahead
do you have to look in order to decide which pattern to match?
FORTRAN: lookahead until difference is saw without counting
blanks.
• DO 10 I = 1, 15 ≡ a loop statement.
• DO 10 I = 1.15 ≡ an assignment statement for the variable DO10I.

PASCAL: lookahead 2 characters with 2 or more blanks treating
as one blank.
• 10..100: needs to look 2 characters ahead to decide this is not part of

a real number.

LEX lookahead operator “/”: r1/r2: match r1 only if it is
followed by r2; note that r2 is not part of the match.
• This operator can be used to cope with multi-character lookahead.
• How is this implemented in LEX?

Compiler notes #2, Tsan-sheng Hsu, IIS 33

