
Run Time Storage Organization
ASU Textbook Chapter 7.1–7.5, and 7.7–7.9

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1

Definitions

During the execution of a program, the same name in the
source can denote different data objects in the computer.
The allocation and deallocation of data objects is managed by

the run-time support package .

Terminologies:
• name → storage space: the mapping of a name to a storage space is

called environment .
• storage space → value: the current value of a storage space is called

its state.

• The association of a name to a storage location is called a binding.

Each execution of a procedure is called an activation .
• If it is a recursive procedure, then several of its activations may exist

at the same time.
• Life time: the time between the first and last steps in a procedure.
• A recursive procedure needs not to call itself directly.

Compiler notes #6, Tsan-sheng Hsu, IIS 2

General run time storage layout

code

static data

stack

heap

dynamic
space

storage space that won’t
change: global data,
constant, ...

lower memory address

higher memory address

For activation records:
local data, parameters,
control info, ...

For dynamic memory
allocated by the program

Compiler notes #6, Tsan-sheng Hsu, IIS 3

Activation record

returned value

actual parameters

optional control link

optional access link

saved machine status

local data

temporaries

Activation record: data about an execution of a procedure.
• Parameters:

. Formal parameters: the declaration of parameters.

. Actual parameters: the values of parameters for this activation.

• Links:

. Access (or static) link: a pointer to places of non-local data,

. Control (or dynamic) link: a pointer to the activation record of the

caller.

Compiler notes #6, Tsan-sheng Hsu, IIS 4

Static storage allocation (1/3)

There are two different approaches for run time storage
allocation.
• Static allocation.
• Dynamic allocation.

Static allocation: uses no stack and heap.
• A.R. in static data area, one per procedure.
• Names bounds to locations at compiler time.
• Every time a procedure is called, its names refer to the same pre-

assigned location.
• Disadvantages:

. No recursion.

. Waste lots of space when inactive.

. No dynamic allocation.

• Advantage:
. No stack manipulation or indirect access to names, i.e., faster in ac-

cessing variables.
. Values are retained from one procedure call to the next.

For example: static variables in C.

Compiler notes #6, Tsan-sheng Hsu, IIS 5

Static storage allocation (2/3)

On procedure calls:
• the calling procedure:

. First evaluate arguments.

. Copies arguments into parameter space in the A.R. of called procedure.

Convention: call that which is passed to a procedure arguments from

the calling side, and parameters from the called side.

. May save some registers in its own A.R.

. Jump and link: jump to the first instruction of called procedure and
put address of next instruction (return address) into register RA (the
return address register).

• the called procedure:
. Copies return address from RA into its A.R.’s return address field.
. May save some registers.
. May initialize local data.

Compiler notes #6, Tsan-sheng Hsu, IIS 6

Static storage allocation (3/3)

On procedure returns,
• the called procedure:

. Restores values of saved registers.

. Jump to address in the return address field.

• the calling procedure:
. May restore some registers.
. If the called procedure was actually a function, put return value in an

appropriate place.

Compiler notes #6, Tsan-sheng Hsu, IIS 7

Dynamic storage allocation for STACK (1/3)

Stack allocation:
• Each time a procedure is called, a new A.R. is pushed onto the stack.
• A.R. is popped when procedure returns.
• A register (SP for stack pointer) points to top of stack.
• A register (FP for frame pointer) points to start of current A.R.

AR 1

AR 2

stack

FP

SP

Compiler notes #6, Tsan-sheng Hsu, IIS 8

Dynamic storage allocation for STACK (2/3)

On procedure calls,
• the calling procedure:

. May save some registers (in its own A.R.).

. May set optional access link (push it onto stack).

. Pushes parameters onto stack.

. Jump and Link: jump to the first instruction of called procedure and
put address of next instruction into register RA.

• the called procedure:
. Pushes return address in RA.
. Pushes old FP (control link).
. Sets new FP to old SP.
. Sets new SP to be old SP + (size of parameters) + (size of RA) + (size

of FP). (These sizes are computed at compile time.)
. May save some registers.
. Push local data (maybe push actual data if initialized or maybe just

their sizes from SP)

Compiler notes #6, Tsan-sheng Hsu, IIS 9

Dynamic storage allocation for STACK (3/3)

On procedure returns,
• the called procedure:

. Restore values of saved registers if needed.

. Loads return address into special register RA.

. Restores SP (SP := FP).

. restore FP (FP := saved FP).

. return.

• the calling procedure:
. May restore some registers.
. If it was in fact a function that was called, put return value into an

appropriate place.

Compiler notes #6, Tsan-sheng Hsu, IIS 10

Activation tree

Use a tree structure to record the changing of the activation
records.
Example:

main{
r();
q(1);

}

r{
...}

q(int i)
{
if(i>0) then q(i-1)
}

stack

main

stack

main

r

stack

main

q(1)

stack

main

q(1)

q(0)

main

r q(1)

q(0)

Compiler notes #6, Tsan-sheng Hsu, IIS 11

Dynamic storage allocation for HEAP

Storages requested from programmers during execution:
• Example:

. PASCAL: new and free.

. C: malloc and free.

• Issues:
. Garbage collection.
. Segmentation.
. Dangling reference.

More or less O.S. issues.

Compiler notes #6, Tsan-sheng Hsu, IIS 12

Run time variable accesses

Local variables:
• Stored in the activation record of declaring procedure.

• Access by offset from the frame pointer (FP).

Example:

P()
{
int I,J,K;
...
}

FP
I

J

K

A.R. for P
when called

• Address of J is FP + 1 ∗ sizeof(int).
• Offset is 1 ∗ sizeof(int).
• Actual address is only known at run time.
• Offset for each local variable is known at compile time.

Compiler notes #6, Tsan-sheng Hsu, IIS 13

Accessing global and non-local variables

Global variables stored in static data area:
• Access by using names.
• Addresses known at compile time.

Two scoping rules for accessing non-local data.
• Lexical or static scoping.

. PASCAL, C and FORTRAN.

. The correct address of a non-local name can be determined at compile
time by checking the syntax.

• Dynamic scoping.
. LISP.
. A use of a non-local variable corresponds to the declaration in the “most

recently called, still active” procedure.
. The question of which non-local variable to use cannot be determined

at compile time. It can only be determined at run-time.

Compiler notes #6, Tsan-sheng Hsu, IIS 14

Lexical scoping with blocked structures

Block: a statement containing its own local data declaration.
Scoping is given by the following so called

most closely nested rule.

• The scope of a declaration in a block B includes B itself.
• If x is used in B, but not declared in B, then we refer to x in a block
B′, where

. B′ has a declaration x, and

. B′ is more closely nested around B than any other block with a decla-
ration of x.

Compiler notes #6, Tsan-sheng Hsu, IIS 15

Lexical scoping without nested procedures

Nested procedure: a procedure that can be declared within
another procedure.
If a language does not allow nested procedures, then
• A variable is either

global, or is local to the
procedure containing it.

• At runtime, all the vari-
ables declared (including
those in blocks) in a pro-
cedure are stored in its
A.R., with possible over-
lapping.

• During compiling, proper
offset for each local data
is calculated using infor-
mation known from the
block structure.

test()
{ int a,b;
 { int a;
 { int c;
 ...
 }
 ...
 }
 ...
 { int b,d,e;
 ...
 }
}

B1
B2

B4

B3

a(B1)

b(B1)

a(B2) or b(B4)

c(B3) or d(B4)

e(B4)

Compiler notes #6, Tsan-sheng Hsu, IIS 16

Lexical scoping with nested procedures

Nesting depth:
• depth of main program = 1.
• add 1 to depth each time entering a nested procedure.
• substrate 1 from depth each time existing from a nested procedure.
• Each variable is associated with a nesting depth.
• Assume in a depth-h procedure, we access a variable at depth k, then

. h ≥ k.

. follow the access (static) link h − k times, and then use the offset
information to find the address.

program main
 procedure P
 procedure R
 end
 R
 end
 procedure Q
 P
 end
 Q
 end.

depth=1

depth =2

depth=3

depth =2

main(1)

Q(2)

P(2)

R(3)
dynamic link static link

(access)

Compiler notes #6, Tsan-sheng Hsu, IIS 17

Algorithm for setting the links

The dynamic link is set to point to the A.R. of the calling
procedure.
How to properly set the static link at compile time.
• Procedure p at depth np calls procedure x at depth nx:
• If np < nx, then x is enclosed in p.

. Same with setting the dynamic link.

• If np ≥ nx, then it is either a recursive call or calling a previously
declared procedure.

. Observation: go up the access link once, decrease the depth by 1.

. Hence, the access link of x is the access link of p going up np − nx + 1
times.

Compiler notes #6, Tsan-sheng Hsu, IIS 18

Example
Program sort

var a: array[0..10] of int;
x: int;

procedure r
var i: int;
begin ... r
end

procedure e(i,j)
begin ... e

a[i] <-> a[j]
end

procedure q
var k,v: int;
procedure p
var i,j;
begin ... p

call e
end

begin ... q
end

begin ... sort
call q

end

a,x

k,v
access link

k,v
access link

i,j
access link

access link

sort(1)

q(2)

q(2)

p(3)

e(2)

Compiler notes #6, Tsan-sheng Hsu, IIS 19

Accessing non-local data using DISPLAY

Idea:
• Maintain a global array called DISPLAY

. Using registers if available.

. Otherwise, in static data area.

• When procedure P at nesting depth k is called,
. DISPLAY[1], . . . , DISPLAY[k-1] hold pointers to the A.R.’s of the

most recent activation of the k− 1 procedures that lexically enclose P .
. DISPLAY[k] holds pointer to P ’s A.R.
. To access a variable with declaration at depth x, use DISPLAY[x] to

get to the A.R. that holds x, then use the usual offset to get x itself.
. Size of DISPLAY equals maximum nesting depth of procedures.

• Bad for languages allow recursions.

To maintain the DISPLAY
• When a procedure at nesting depth k is called

. Save the current value of DISPLAY[k] in the save-display field of the
new A.R.

. Set DISPLAY[k] to point to the new A.R. (e.g., to its save-display
field).

• When the procedure returns, restore DISPLAY[k] using the value saved
in save-display field.

Compiler notes #6, Tsan-sheng Hsu, IIS 20

Access links v.s. DISPLAY

Time and space trade-off.
• Access links require more time (at run time) to access non-local data.

Especially when non-local data are many nesting levels away.
• DISPLAY probably require more space (at run time)
• Code generated using DISPLAY is simpler.

Compiler notes #6, Tsan-sheng Hsu, IIS 21

Dynamic scoping

Dynamic scoping: a use of a non-local variable corresponds
to the declaration in the “most recently called, still active”
procedure.
The question of which non-local variable to use cannot be
determine at compile time.
It can only be determined at run time.
Must save symbol tables at run time.
Two ways to implement access non-locals under dynamic
scoping.
• Deep access
• Shallow access

Compiler notes #6, Tsan-sheng Hsu, IIS 22

Deep access

Def: given a use of a non-local variable, use control links to
search back in the stack for the most recent A.R. that contains
space for that variable.
• Note: this requires that it be possible to tell which variables are stored

in each A.R.
• Need to use the symbol tables at run time.

Example:

program main
procedure test
var x : int;
begin

x := 30
call DeclaresX
call UsesX

end
procedure DeclaresX

var x: int;
begin

x := 100
call UsesX

end
procedure UsesX
begin
write(x)

end
begin

call test
end

• Which x is it in the procedure
UsesX?

• If we were to use static scoping,
this is not a legal statement; No
enclosing scope declares x.

Compiler notes #6, Tsan-sheng Hsu, IIS 23

Shallow access

Idea:
• Maintain a current list of variables.
• Space is allocated (in registers or in the static data area) for every

possible variable name that is in the program (i.e., one space for variable
x even if there are several declarations of x in different procedures).

• For every reference to x, the generated code refers to the same
location.

When a procedure is called,
• it saves, in its own A.R., the current values of all of the variables that

it declares itself (i.e., if it declares x and y, then it saves the values of
x and y that are currently in the space for x and y).

• it restores those values when it finishes.

Comparison of deep and shallow access:
• Shallow access allows fast access to non-locals, but there is overhead on

procedure entry and exit proportional to the number of local variables.

Compiler notes #6, Tsan-sheng Hsu, IIS 24

Parameter passing

Terminology:
• procedure declaration:

. parameters, formal parameters, or formals.

• procedure call:
. arguments, actual parameters, or actuals.

The value of a variable:
• R-value: the current value of the variable.

. right value

. on the right side of assignment

• L-value: the location/address of the variable.
. left value
. on the left side of assignment

• Example: x := y

Four different modes for parameter passing
• call by value
• call by reference
• call by value result (copy-restore)
• call by name

Compiler notes #6, Tsan-sheng Hsu, IIS 25

Call by value

Usage:
• Used by PASCAL if you use non-var parameters.
• Used by C++ if you use non-& parameters.
• The only thing used in C.

Idea:
• calling procedure copies the r-values of the arguments into the called

procedure’s A.R.
Effect:
• Changing a formal parameter (in the called procedure) has no effect

on the corresponding actual. However, if the formal is a pointer, then
changing the thing pointed to does have an effect that can be seen in
the calling procedure.

Example:

void f(int *p)
{ *p = 5;

p = NULL;
}

main()
{int *q = malloc(sizeof(int));
*q=0;
f(q);
}

• In main, q will not be affected by the call of f .
• That is, it will not be NULL after the call.
• However, the value pointed to by q will be changed from 0 to 5.

Compiler notes #6, Tsan-sheng Hsu, IIS 26

Call by reference (1/2)

Usage:
• Used by PASCAL for var parameters.
• Used by C++ if you use & parameters.
• FORTRAN.

Idea:
• Calling procedure copies the l-values of the arguments into the called

procedure’s A.R. as follows:
. If an arg has an address then that is what is passed.
. If an arg is an expression that does not have an l-value (e.g., a + 6),

then evaluate the arg and store the value in a temporary address and
pass that address.

Effect:
• Changing a formal parameter (in the called procedure) does affect the

corresponding actual.
• Side effects.

Compiler notes #6, Tsan-sheng Hsu, IIS 27

Call by reference (2/2)

Example:

FORTAN quirk (using C++ syntax)
void mistake(int & x)
{x = x+1;}
main()
{mistake(1);
cout<<1;
}

• In C++, you would get a warning from the compiler because x is
a reference parameter that is modified, and the corresponding actual
parameter is a literal.

• The output of the program is 1.
• However, in FORTRAN, you would get no warning, and the output may

be 2. This happens when FORTRAN compiler stores 1 as a constant
at some address and uses that address for all the literal “1” in the
program.

• In particular, that address is passed when “mistake” is called, and is
also used to fetch the value to be written by “count”. Since “mistake”
increments its parameter, that address hold the value 2 when cout is
executed.

Compiler notes #6, Tsan-sheng Hsu, IIS 28

Call by value-result

Usage: FORTRAN IV and ADA.
Idea:
• Value, not address, is passed into called procedure’s A.R. when called

procedure ends the final value is copied back into the argument’s
address.

• Equivalent to call by reference except when there is aliasing.
. “Equivalent” in the sense the program produces the same results, NOT

the same code will be generated.

. Aliasing : two expressions that have the same l-value are called

aliases. That is, they access the same location from different places.
. Aliasing happens

through pointer manipulation;
call-by-reference with an arg that can also accesses by the called pro-
cedure directly, e.g., global var;
call-by-reference with the same expression as an argument twice; e.g.,
test(x, y, x)

Compiler notes #6, Tsan-sheng Hsu, IIS 29

Call by name (1/2)

Usage: Algol.
Idea: (not the way it is actually implemented.)
• Procedure body is substituted for the call in the calling procedure.
• Each occurrence of a parameter in the called procedure is replaced

with the corresponding argument, i.e., the TEXT of the parameter,
not its value.

• Similar to macro substitution.

Compiler notes #6, Tsan-sheng Hsu, IIS 30

Call by name (2/2)

Example:

void init(int x, int y)
{ for(int k = 0; k <10; k++)

{ x++; y = 0;}
}

main()
{ int j;

int A[10];
j = -1;
init(j,A[j]);

}
Conceptual result of substitution:

main()
{ int j;
int A[10];
j = -1;
for(int k = 0; k<10; k++)
{ j++; /* actual j for formal x */

A[j] = 0; /* actual A[j] for formal y */
}

}
Call-by-name is not really implemented like macro expansion.
Recursion would be impossible, for example using this approach.

Compiler notes #6, Tsan-sheng Hsu, IIS 31

How to implement call-by-name?

Instead of passing values or addresses as arguments, a function
(or the address of a function) is passed for each argument.

These functions are called thunks. , i.e., a small piece of code.
Each thunk knows how to determine the address of the
corresponding argument.
• Thunk for j: find address of j.
• Thunk for A[j]: evaluate j and index into the array A; find the address

of the appropriate cell.
Each time a parameter is used, the thunk is called, then the
address return by the thunk is used.
• y = 0: use return value of thunk of y as l-value.
• x = x + 1: use return value of thunk x both as l-value and to get
r-value.

• For the example above, call-by-reference would execute A[1] = 0 ten
times, while call by name initializes the whole array.

Note: call-by-name is generally considered a bad idea, because
it is hard to know what a function is doing – it may require
looking at all calls to figure this out.

Compiler notes #6, Tsan-sheng Hsu, IIS 32

Advantage of call-by-value

Consider not passing pointers.
No aliasing.
Arguments unchanged by procedure call.
Easier for static optimization analysis for both programmers and
the complier.
Example:

x = 0;
Y(x); /* call-by-value */
z = x+1; /* can be replaced by z=1 for optimization */
Compared with call-by-reference, code in called function is
faster because no need for redirecting pointers.

Compiler notes #6, Tsan-sheng Hsu, IIS 33

Advantage of call-by-reference

Efficiency in passing large objects.
Only need to copy addresses.

Compiler notes #6, Tsan-sheng Hsu, IIS 34

Advantage of call-by-value-result

More efficient than call-by-value for small objects.
If there is no aliasing, can implement call-by-value-result using
call-by-reference for large objects.

Compiler notes #6, Tsan-sheng Hsu, IIS 35

Advantage of call-by-name

More efficient when passing parameters that are never used.
Example:

P(Ackerman(5),0,3)
/* Ackerman’s function takes enormous time to compute */

function P(int a, int b, int c)
{ if(odd(c)){

return(a)
}else{ return(b) }

}
Note: if the condition is false, then using call-by-name, it is
never necessary to evaluate the first actual at all.
This saves lots of time because evaluating a takes a long time.

Compiler notes #6, Tsan-sheng Hsu, IIS 36

