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Machine-dependent code generation

For some compiler, the intermediate code is a pseudo code of
a virtual machine.
• Interpreter of the virtual machine is invoked to execute the intermediate

code.
• No machine-dependent code generation is needed.
• usually with great overhead.
• Example:

. Pascal: P-code for the virtual P machine.

. JAVA: Byte code for the virtual JAVA machine.
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Machine-dependent issues (1/2)

Input and output format:
• The format of the intermediate code and the target program.

Memory management:
• Alignment, indirect addressing, paging, segment, . . .
• Those you learned from your assembly language class.

Instruction cost:
• Special machine instructions to speed up execution.
• Example:

. Increment by 1.

. Multiplying or dividing by 2.

. Bit-wise manipulation.

. Operators applied on a block of memory space.

• Pick the fastest instruction combination for a certain target machine.
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Machine-dependent issues (2/2)

Register allocation:
• C language allows the user to management a pool of registers.
• Some language leaves the task to compiler.
• Idea: save mostly used intermediate result in a register. However,

finding an optimal solution for using a limited set of registers is
NP-hard.

• Example:
t := a + b load R0,a load R0,a

load R1,b add R0,b
add R0,R1 store R0,T
store R0,T

• Solutions using heuristics: similar to swapping.

Optimization.
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Optimization

Issues:
• In an expression, assume its dependence graph is given.

• We can evaluate it using any topological ordering.
• There are many legal topological orderings.
• Picking a right one will increase its efficiency.

Example:
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order#1 reg# order#2 reg#
E2 1 E6 1
E3 2 E5 2
E5 3 E4 1
E6 4 E3 2
E4 3 E1 1
E1 2 E2 2
E0 1 E0 1

On a machine with only 2 free registers, some of the
intermediate results in ordering 1 must be stored in temporary
space.
• STORE/LOAD takes time.
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Basic blocks and flow graphs

Assumption: the input is an intermediate code program.
Basic block: a sequence of intermediate code such that
• Jump statements, if any, are at the end of the sequence.
• Codes in other basic block can only jump to the beginning of this

sequence, but not in the middle.
• Example:

. t1 := a ∗ a

. t2 := a ∗ b

. t3 := 2 ∗ t2

. goto outter

Flow graph:

represent the program us-
ing a flow chart-like graph
where nodes are basic
blocks and edges are flow
of control.
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How to find basic blocks

How to find leaders, which are the first statements of basic
blocks.
• The first statement of a program is a leader.
• For all conditional and unconditional goto:

. Its target is a leader.

. Its next statement is also a leader.

Using leaders to partition the program into basic blocks.
Ideas for optimization:
• Two basic blocks are equivalent if they compute the same expressions.
• Use transformation techniques below to perform machine-dependent

optimization.

Compiler notes #8, Tsan-sheng Hsu, IIS 7



Finding basic blocks — examples

Example: Three-address code for computing the dot product of
two vectors a and b.

. prod := 0

. i := 1

. loop: t1 := 4 ∗ i

. t2 := a[t1]

. t3 := 4 ∗ i

. t4 := b[t3]

. t5 := t2 ∗ t4

. t6 := prod+ t5

. prod := t6

. t7 := i+ 1

. i := t7

. if i ≤ 20 goto loop

. · · ·

There are three blocks in the above example.
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DAG representation of a basic block

Inside a basic block:
• Expressions can be expressed using a DAG that is similar to the idea

of a dependence graph.
• Graph might not be connected.

Example:

(1) t1 := 4 ∗ i
(2) t2 := a[t1]
(3) t3 := 4 ∗ i
(4) t4 := b[t3]
(5) t5 := t2 ∗ t4
(6) t6 := prod+ t5
(7) prod := t6
(8) t7 := i+ 1
(9) i := t7
(10) if i ≤ 20 goto (1)
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Structure-preserving transformations

Techniques: using the flow graph and DAG representation of
basic blocks.

• Common sub-expression elimination.

a := b+c
b := a−d
c := b+c
d := a−d

a := b+c
b := a−d
c := b+c
d := b

• Dead-code elimination: remove unreachable codes.
• Renaming temporary variables: better usage of registers and avoiding

using unneeded temporary variables.
• Interchange of two independent adjacent statements, which might be

useful in discovering the above three transformations.
. Same expressions that are too far away to store E1 into a register.

. Example:
t1 := E1
...
tn := E1

. Note: two dependent statements cannot be exchanged.

. Example:
t1 := a + b
...
tn := t1 + c
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Algebraic transformations

Algebraic identities:
• x+ 0 = 0 + x = x
• x− 0 = x
• x ∗ 1 = 1 ∗ x = x
• x/1 = x

Reduction in strength:
• x2 = x ∗ x
• 2.0 ∗ x = x+ x
• x/2 = x ∗ 0.5

Constant folding:
• 2 ∗ 3.14 = 6.28

Standard representation for subexpression by commutativity and
associativity:
• n ∗m = m ∗ n.
• b < a == a > b.
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Peephole optimization (1/2)

Idea:
• Statement by statement translation might generate redundant codes.
• Locally improve the target code performance by examine a short se-

quence of target instructions (called a peephole ) and do optimization

on this sequence.
• Complexity depends on the “window size”.

Techniques:
• Redundant loads and stores:

. MOV R0, a

. MOV a,R0

• Unreachable codes:
. An unlabeled instruction immediately following an unconditional jump

may be removed.
. If statements based on constants: If debug then · · · .
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Peephole optimization (2/2)

More techniques:
• Flow of control optimization:

goto L1

· · ·

L1: goto L2

goto L2

· · ·

L1: goto L2

• Algebraic simplification.
• Use of special machine idioms.
• Better usage of registers.
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Correctness after optimization

When side effects are expected, different evaluation order may
produce different results for expressions.
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LL LR

• Assume E5 is a procedure call with the side effect of changing some
values in E6.

• LL and LR parsing produces different results.

Watch out precisions when doing algebraic simplification.
• if (x = 321.123456789− 321.123456788) > 0 then · · ·

Need to make sure code before and after optimization produce
the same result.
Complications arise when debugging is involved.
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