Syntax Analyzer - Parser

ASU Textbook Chapter 4.2-4.5, 4.7-4.9 (w/o error handling)

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw
http://www.iis.sinica.edu.tw/~tshsu

main tasks

$\left.\begin{array}{l}\text { A program represented } \\ \text { by a sequence of tokens }\end{array}\right] \longrightarrow$ parser \longrightarrow

> if it is a legal program, then some abstract representation of the program

- Abstract representations of the input program:
- abstract-syntax tree + symbol table
- intermediate code
- object code
- Context free grammar (CFG) is used to specify the structure of legal programs.

Context free grammar (CFG)

- Definitions: $G=(T, N, P, S)$, where
- T : a set of terminals (in lower case letters);
- N : a set of nonterminals (in upper case letters);
- P : productions of the form $A \rightarrow X_{1}, X_{2}, \ldots, X_{m}$, where $A \in N$ and $X_{i} \in T \cup N$;
- S : the starting nonterminal, $S \in N$.

Notations:

- terminals : lower case English strings, e.g., $a, b, c \cdots$
- nonterminals: upper case English strings, e.g., $A, B, C \cdots$
- $\alpha, \beta, \gamma \in(T \cup N)^{*}$
$\triangleright \alpha, \beta, \gamma$: alpha, beta and gamma.
$\triangleright \epsilon$: epsilon.
\bullet

$$
\left.\begin{array}{lll}
A & \rightarrow & X_{1} \\
A & \rightarrow & X_{2}
\end{array}\right\} \equiv A \rightarrow X_{1} \mid X_{2}
$$

How does a CFG define a language?

- The language defined by the grammar is the set of strings (sequence of terminals) that can be "derived" from the starting nonterminal.
- How to "derive" something?
- Start with:
"current sequence" = the starting nonterminal.
- Repeat
\triangleright find a nonterminal X in the current sequence
\triangleright find a production in the grammar with X on the left of the form $X \rightarrow \alpha$, where α is ϵ or a sequence of terminals and/or nonterminals.
\triangleright create a new "current sequence" in which α replaces X
- Until "current sequence" contains no nonterminals.
- We derive either ϵ or a string of terminals. This is how we derive a string of the language.

Example

Grammar:

- $E \rightarrow i n t$
- $E \rightarrow E-E$
- $E \rightarrow E / E$
- $E \rightarrow(E)$

E

$$
\Longrightarrow E-E
$$

$$
\Longrightarrow 1-E
$$

$$
\Longrightarrow 1-E / E
$$

$$
\Longrightarrow 1-E / 2
$$

$$
\Longrightarrow 1-4 / 2
$$

Details:

- The first step was done by choosing the 2 nd of the 4 productions.
- The second step was by choosing the first production.
- Conventions:
- \Longrightarrow : means "derives in one step";
- $\xlongequal{+}$: means "derives in one or more steps";
- $\stackrel{\text { * }}{\Longrightarrow}$: means "derives in zero or more steps";
- In the above example, we can write $E \stackrel{+}{\Longrightarrow} 1-4 / 2$.

Language

- The language defined by a grammar G is

$$
L(G)=\{w \mid S \xlongequal{+} \omega\}
$$

where S is the starting nonterminal and ω is a sequence of terminals or ϵ.

- An element in a language is ϵ or a sequence of terminals in the set defined by the language.
- More terminology:
- $E \Longrightarrow \cdots \Longrightarrow 1-4 / 2$ is a derivation of $1-4 / 2$ from E.
- There are several kinds of derivations that are important:
\triangleright The derivation is a leftmost one if the leftmost nonterminal always gets to be chosen (if we have a choice) to be replaced.
\triangleright It is a rightmost one if the rightmost nonterminal is replaced all the times.

A different way to derive

- Construct a derivation or parse tree as follows:
- start with the starting nonterminal as a single-node tree
- REPEAT
\triangleright choose a leaf nonterminal X
\triangleright choose a production $X \rightarrow \alpha$
\triangleright symbols in α become children of X
- UNTIL no more leaf nonterminal left Need to annotate the order of derivation on the nodes.

$$
\begin{aligned}
& E \\
& \Longrightarrow E-E \\
& \Longrightarrow 1-E \\
& \Longrightarrow 1-E / E \\
& \Longrightarrow 1-E / 2 \\
& \Longrightarrow 1-4 / 2
\end{aligned}
$$

Parse tree examples

- Example:

leftmost derivation
- Using $1-4 / 2$ as the input, the left parse tree is derived.
- A string is formed by reading the lead nodes from left to right, given $1-4 / 2$.
- The string $1-4 / 2$ has another parse tree on the
 right.
- Some standard notations:
- Given a parse tree and a fixed order (for example leftmost or rightmost) we can derive the order of derivation.
- For the "semantic" of the parse tree, we normally "interpret" the meaning in a bottom-up fashion. That is, the one that is derived last will be "serviced" first.

Ambiguous Grammar

- If for grammar G and string S, there are
- more than one leftmost derivation for S, or
- more than one rightmost derivation for S, or
- more than one parse tree for S,
then G is called ambiguous .
- Note: the above three conditions are equivalent in that if one is true, then all three are true.
- Problems with an ambiguous grammar:
- Ambiguity can make parsing difficult.
- Underlying structure is ill-defined: in the example, the precedence is not uniquely defined, e.g., the leftmost parse tree groups $4 / 2$ while the rightmost parse tree groups $1-4$, resulting in two different semantics.

Common grammar problems

- Lists: that is, zero or more ID's separated by commas:
- Note it is easy to express one or more ID's: <idlist $>\rightarrow$ <idlist $>$, ID | ID
- For zero or more ID's,

```
\triangleright ~ < i d l i s t > \rightarrow \epsilon \| ~ I D ~ \| < i d l i s t > , ~ < i d l i s t \gg
    won't work due to \epsilon; it can generate: ID, ,ID
< idlist > }->\epsilon|<\mathrm{ idlist>, ID | ID
    won't work either because it can generate: , ID, ID
```

- We should separate out the empty list from the general list of one or more ID's.
$\triangleright<$ opt-idlist $>\rightarrow \epsilon \mid<$ nonEmptyIdlist $>$
$\triangleright<$ nonEmptyIdlist $>\rightarrow<$ nonEmptyIdlist $>$, ID \mid ID
- Expressions: precedence and associativity as discussed next.

Grammar that expresses precedence correctly

- Use one nonterminal for each precedence level
- Start with lower precedence (in our example -)

```
Original grammar:
E ->int
    E->E-E
    E->E/E
    E->(E)
```


rightmost derivation

Revised grammar:

$E \rightarrow E-E \mid T$
$T \rightarrow T / T \mid F$
$F \rightarrow$ int $\mid(E)$

More problems with associativity

- However, the above grammar is still ambiguous, and parse trees may not express the associative of - and /. Example: 2-3-4

$$
\begin{aligned}
& \text { Revised grammar: } \\
& E \rightarrow E-E \mid T \\
& T \rightarrow T / T \mid F \\
& F \rightarrow \text { int } \mid(E)
\end{aligned}
$$

- Problems with associativity:
- The rule $E \rightarrow E-E$ has E on both sides of "-".
- Need to make the second E to some other nonterminal parsed earlier.
- Similarly for the rule $E \rightarrow E / E$.

Grammar considering associative rules

```
Original grammar:
E T int
E->E-E
E->E/E
E->(E)
```

Final grammar:
$E \rightarrow E-T \mid T$
$T \rightarrow T / F \mid F$
$F \rightarrow$ int $\mid(E)$

- Recursive productions:
- $E \rightarrow E-T$ is called a left recursive production.

$$
\triangleright A \xlongequal{+} A \alpha .
$$

- $E \rightarrow T-E$ is called a right recursive production.

$$
\triangleright A \xlongequal{+} \alpha A .
$$

- $E \rightarrow E-E$ is both left and right recursion.
- If one wants left associativity, use left recursion.
- If one wants right associativity, use right recursion.

How to use CFG

- Breaks down the problem into pieces:
- Think about a C program:
\triangleright Declarations: typedef, struct, variables, ...
\triangleright Procedures: type-specifier, function name, parameters, function body.
\triangleright function body: various statements.
- Example:
$<$ procedure $>\rightarrow<$ type-def $>$ ID $<$ opt-params $><$ opt-decl $>\{<$ opt-statements $>\}$

$$
\begin{aligned}
& \triangleright<\text { opt-params }>\rightarrow(<\text { list-params }>) \\
& \triangleright<\text { list-params }>\rightarrow \epsilon \mid<\text { nonEmptyParlist }> \\
& \triangleright<\text { nonEmptyParlist }>\rightarrow<\text { nonEmptyIdlist }>\text {, ID } \mid \text { ID }
\end{aligned}
$$

- One of purposes to write a grammar for a language is for others to understand. It will be nice to break things up into different levels in a top-down easily understandable fashion.

Useless terms

- A non-terminal X is useless if either
- a sequence includes X cannot be derived from the starting nonterminal, or
- no string can be derived starting from X, where a string means ϵ or a sequence of terminals.
- Example 1:
- $S \rightarrow A B$
- $A \rightarrow+|-| \epsilon$
- $B \rightarrow$ digit $\mid B$ digit
- $C \rightarrow$. B
- In Example 1:
- C is useless and so is the last production.
- Any nonterminal not in the right-hand side of any production
is useless!

More examples for useless terms

- Example 2: Y is useless.
- $S \rightarrow X \mid Y$
- $X \rightarrow()$
- $Y \rightarrow(Y Y)$
- Y derives more and more nonterminals and is useless.
- Any recursively defined nonterminal without a production
of deriving ϵ all terminals is useless!
- Direct useless.
- Indirect useless: one can only derive direct useless terms.
- From now on, we assume a grammar contains no useless nonterminals.

Non-context free grammars

- Some grammar is not CFG, that is, it may be context sensitive.
- Expressive power of grammars (in the order of small to large):
- Regular expressions \equiv FA.
- Context-free grammar
- Context-sensitive
- ...
- $\{\omega c \omega \mid \omega$ is a string of a and b 's $\}$ cannot be expressed by CFG.

Top-down parsing

- There are $O\left(n^{3}\right)$-time algorithms to parse a language defined by CFG, where n is the number of input tokens.
- For practical purpose, we need faster algorithms. Here we make restrictions to CFG so that we can design $O(n)$-time algorithms.
- Recursive-descent parsing : top-down parsing that allows backtracking.
- Attempt to find a leftmost derivation for an input string.
- Try out all possibilities, that is, do an exhaustive search to find a parse tree that parses the input.

Example for recursive-descent parsing

- Problems with the above approach:
- still too slow!
- want to select a derivation without ever causing backtracking!
- trick: use lookahead symbols.
- Solution: use $L L(1)$ grammars that can be parsed in $O(n)$ time.
- first L : scan the input from left-to-right
- second L : find a leftmost derivation
- (1): allow one lookahead token!

Predictive parser for $L L(1)$ grammars

- How a predictive parser works:
- start by pushing the starting nonterminal into the STACK and calling the scanner to get the first token.
LOOP: if top-of-STACK is a nonterminal, then
\triangleright use the current token and the PARSING TABLE to choose a production
\triangleright pop the nonterminal from the STACK and push the above production's right-hand-side
\triangleright GOTO LOOP.
- if top-of-STACK is a terminal and matches the current token, then
\triangleright pop STACK and ask scanner to provide the next token
\triangleright GOTO LOOP.
- if STACK is empty and there is no more input, then ACCEPT!
- If none of the above succeed, then FAIL!
\triangleright STACK is empty and there is input left.
\triangleright top-of-STACK is a terminal, but does not match the current token
\triangleright top-of-STACK is a nonterminal, but the corresponding PARSING TABLE entry is ERROR!

Example for parsing an $L L(1)$ grammar

" grammar: $S \rightarrow \epsilon|(S)|[S] \quad$ input: ([])

ut		action
	(S)	pop, match with input
([S)	pop, push "[S]"
	[S])	pop, match with input
([]	S])	pop, push ϵ
])	pop, match with input
)	pop, match with input

leftmost derivation

- Use the current input token to decide which production to derive from the top-of-STACK nonterminal.

About $L L(1)$

- It is not always possible to build a predictive parser given a CFG; It works only if the CFG is $L L(1)$!
- For example, the following grammar is not $L L(1)$, but is $L L(2)$.
- Grammar: $S \rightarrow(S)|[S]|() \mid[]$ Try to parse the input ().
input stack action
S pop, but use which production?
- In this example, we need 2-token look-ahead.
- If the next token is), push ().
- If the next token is (, push (S).
- Two questions:
- How to tell whether a grammar G is $L L(1)$?
- How to build the PARSING TABLE?

Properties of non- $L L(1)$ grammars

- Theorem 1: A CFG grammar is not $L L(1)$ if it is left-recursive.
- Definitions:
- recursive grammar: a grammar is recursive if the following is true for a nonterminal X in G :
$X \xrightarrow{+} \alpha X \beta$.
- G is left-recursive if $X \xrightarrow{+} X \beta$.
- G is immediately left-recursive if $X \Longrightarrow X \beta$.

Example of removing immediate left-recursion

- Need to remove left-recursion to come out an $L L(1)$ grammar. Example:
- Grammar $G: A \rightarrow A \alpha \mid \beta$, where β does not start with A
- Revised grammar G^{\prime} :

$$
\begin{aligned}
& \triangleright A \rightarrow \beta A^{\prime} \\
& \triangleright A^{\prime} \rightarrow \alpha A^{\prime} \mid \epsilon
\end{aligned}
$$

- The above two grammars are equivalent. That is $L(G) \equiv L\left(G^{\prime}\right)$.

- Example:
input $b a a$
$\beta \equiv b$
$\alpha \equiv a$
leftmost derivation original grammar G
 leftmost derivation
revised grammar G

Rule for removing immediate left-recursion

- Both grammar recognize the same string, but G^{\prime} is not left-recursive.
- However, G is clear and intuitive.
- General rule for removing immediately left-recursion:
- Replace $A \rightarrow A \alpha_{1}|\cdots| A \alpha_{m}\left|\beta_{1}\right| \cdots \beta_{n}$
- with

$$
\begin{aligned}
& \triangleright A \rightarrow \beta_{1} A^{\prime}|\cdots| \beta_{n} A^{\prime} \\
& \triangleright A^{\prime} \rightarrow \alpha_{1} A^{\prime}|\cdots| \alpha_{m} A^{\prime} \mid \epsilon
\end{aligned}
$$

- This rule does not work if $\alpha_{i}=\epsilon$ for some i.
- This is called a direct cycle in a grammar.
- May need to worry about whether the semantics are equivalent between the original grammar and the transformed grammar.

Algorithm 4.1

- Algorithm 4.1 systematically eliminates left recursion.
- Algorithm 4.1 works only if the grammar has no cycles or ϵ-productions.

```
\triangleright ~ C y c l e : ~ A ~ + ~ + ~ A ~
\triangleright \epsilon \text { -production: A } \rightarrow \epsilon
```

- It is possible to remove cycles and ϵ-productions using other algorithms.

Input: grammar G without cycles and ϵ-productions.
Output: An equivalent grammar without left recursion.
Number the nonterminals in some order $A_{1}, A_{2}, \ldots, A_{n}$ for $i=1$ to n do

- for $j=1$ to $i-1$ do
\triangleright replace $A_{i} \rightarrow A_{j} \gamma$
\triangleright with $A_{i} \rightarrow \delta_{1} \gamma|\cdots| \delta_{k} \gamma$
\triangleright where $A_{j} \rightarrow \delta_{1}|\cdots| \delta_{k}$ are all the current A_{j}-productions.
- Eliminate immediate left-recursion for A_{i}
\triangleright New nonterminals generated above are numbered A_{i+n}

Intuition for Algorithm 4.1

- Intuition: if $A_{i_{1}} \xlongequal{+} \alpha_{2} A_{i_{2}} \beta_{2} \xlongequal{+} \alpha_{3} A_{i_{3}} \beta_{3} \xlongequal{+} \cdots$ and $i_{1}<i_{2}<$ $i_{3}<\cdots$, then it is not possible to have recursion.
- Trace Algorithm 4.1
- After each i-loop, only productions of the form $A_{i} \rightarrow A_{k} \gamma, i<k$ are left.
- $i=1$
\triangleright allow $A_{1} \rightarrow A_{k} \alpha, \forall k$ before removing immediate left-recursion
\triangleright remove immediate left-recursion for A_{1}
- $i=2$
$\triangleright j=1:$ replace $A_{2} \rightarrow A_{1} \gamma$ by $A_{2} \rightarrow A_{k} \alpha \gamma$, where $A_{1} \rightarrow A_{k} \alpha \gamma$ and $k>1$
\triangleright remove immediate left-recursion for A_{2}
- $i=3$
$\triangleright j=1:$ replace $A_{3} \rightarrow A_{1} \delta_{1}$
$\triangleright j=2$: replace $A_{3} \rightarrow A_{2} \delta_{2}$
\triangleright remove immediate left-recursion for A_{3}

Example

- Original Grammar:
- (1) $S \rightarrow A a \mid b$
-(2) $A \rightarrow A c|S d| e$
- Ordering of nonterminals: $S \equiv A_{1}$ and $A \equiv A_{2}$.
- $i=1$
- do nothing as there is no immediate left-recursion for S
- $i=2$
- replace $A \rightarrow S d$ by $A \rightarrow A a d \mid b d$
- hence (2) becomes $A \rightarrow A c|A a d| b d \mid e$
- after removing immediate left-recursion:

$$
\begin{aligned}
& \triangleright A \rightarrow b d A^{\prime} \mid e A^{\prime} \\
& \triangleright A^{\prime} \rightarrow c A^{\prime}\left|a d A^{\prime}\right| \epsilon
\end{aligned}
$$

Second property for non- $L L(1)$ grammars

- Theorem 2: G is not $L L(1)$ if a nonterminal has two productions whose right-hand-sides have a common prefix.
\triangleright Have left-factors
- Example:
- $S \rightarrow(S) \mid()$
- In this example, the common prefix is "(".
- This problem can be solved by using the left-factoring trick.
- $A \rightarrow \alpha \beta_{1} \mid \alpha \beta_{2}$
- Transform to:

$$
\begin{aligned}
& \triangleright A \rightarrow \alpha A^{\prime} \\
& \triangleright A^{\prime} \rightarrow \beta_{1} \mid \beta_{2}
\end{aligned}
$$

- Example:
- $S \rightarrow(S) \mid()$
- Transform to

$$
\begin{aligned}
& \triangleright S \rightarrow\left(S^{\prime}\right. \\
& \left.\left.\triangleright S^{\prime} \rightarrow S\right) \mid\right)
\end{aligned}
$$

Algorithm for left-factoring

- Input: context free grammar G
- Output: equivalent left-factored context-free grammar G^{\prime}
- for each nonterminal A do
- find the longest non- ϵ prefix α that is common to right-hand sides of two or more productions
- replace
- $A \rightarrow \alpha \beta_{1}|\cdots| \alpha \beta_{n}\left|\gamma_{1}\right| \cdots \mid \gamma_{m}$ with

$$
\begin{aligned}
& \triangleright A \rightarrow \alpha A^{\prime}\left|\gamma_{1}\right| \ldots \mid \gamma_{m} \\
& \triangleright A^{\prime} \rightarrow \beta_{1}|\cdots| \beta_{n}
\end{aligned}
$$

- repeat the above process until A has no two productions with a common prefix.

Left-factoring and left-recursion removal

- Original grammar: $S \rightarrow(S)|S S|()$
- To remove immediate left-recursion, we have
- $S \rightarrow(S) S^{\prime} \mid() S^{\prime}$
- $S^{\prime} \rightarrow S S^{\prime} \mid \epsilon$
- To do left-factoring, we have
- $S \rightarrow\left(S^{\prime \prime}\right.$
- $\left.\left.S^{\prime \prime} \rightarrow S\right) S^{\prime} \mid\right) S^{\prime}$
- $S^{\prime} \rightarrow S S^{\prime} \mid \epsilon$
- A grammar is not $L L(1)$ if it
- is left recursive or
- has left-factors.

However, grammars that are not left recursive and are leftfactored may still not be $L L(1)$.

Definition of $L L(1)$ grammars

- To see if a grammar is $L L(1)$, we need to compute its FIRST and FOLLOW sets, which are used to build its parsing table.
- FIRST sets:
- Definition: let α be a sequence of terminals and/or nonterminals or ϵ
$\triangleright \operatorname{FIRST}(\alpha)$ is the set of terminals that begin the strings derivable from α
\triangleright if α can derive ϵ, then $\epsilon \in \operatorname{FIRST}(\alpha)$
- $\boldsymbol{F I R S T}(\alpha)=\{t \mid(t$ is a terminal and $\alpha \xlongequal{*} t \beta)$ or $(t=\epsilon$ and $\alpha \stackrel{*}{\Longrightarrow} \epsilon)\}$

How to compute $\operatorname{FIRST}(X)$?

- X is a terminal:
- $\operatorname{FIRST}(X)=\{X\}$
- X is ϵ :
- $\operatorname{FIRST}(X)=\{\epsilon\}$
- X is a nonterminal: must check all productions with X on the left-hand side. That is,

$$
X \rightarrow Y_{1} Y_{2} \cdots Y_{k}
$$

Perforam the following step in sequence:

- put FIRST $\left(Y_{1}\right)-\{\epsilon\}$ into $\operatorname{FIRST}(X)$
- if $\epsilon \in \operatorname{FIRST}\left(Y_{1}\right)$, then put FIRST $\left(Y_{2}\right)-\{\epsilon\}$ into $\operatorname{FIRST}(X)$
- if $\epsilon \in \operatorname{FIRST}\left(Y_{k-1}\right)$, then put FIRST $\left(Y_{k}\right)-\{\epsilon\}$ into $\operatorname{FIRST}(X)$
- if $\epsilon \in \operatorname{FIRST}\left(Y_{i}\right)$ for each $1 \leq i \leq k$, then put ϵ into $\operatorname{FIRST}(X)$
- Repeat the above process for all nonterminals until nothing can be added to any FIRST set.

Example for computing $\operatorname{FIRST}(X)$

- Start with computing FIRST for the last production and walk your way up.

$$
\begin{aligned}
& \text { Grammar } \\
& E \rightarrow E^{\prime} T \\
& E^{\prime} \rightarrow-T E^{\prime} \mid \epsilon \\
& T \rightarrow F T^{\prime} \\
& T^{\prime} \rightarrow / F T^{\prime} \mid \epsilon \\
& F \rightarrow i n t \mid(E) \\
& H \rightarrow E^{\prime} T
\end{aligned}
$$

How to compute FIRST (α) ?

- Given $\operatorname{FIRST}(X)$ for each terminal and nonterminal X, compute $\operatorname{FIRST}(\alpha)$ for α being a sequence of terminals and/or nonterminals
- To build a parsing table, we need $\operatorname{FIRST}(\alpha)$ for all α such that $X \rightarrow \alpha$ is a production in the grammar.
- Let $\alpha=X_{1} X_{2} \cdots X_{n}$. Perform the following steps in sequence:
- put FIRST $\left(X_{1}\right)-\{\epsilon\}$ into $\operatorname{FIRST}(\alpha)$
- if $\epsilon \in \operatorname{FIRST}\left(X_{1}\right)$, then put FIRST $\left(X_{2}\right)-\{\epsilon\}$ into $\operatorname{FIRST}(\alpha)$
- if $\epsilon \in \operatorname{FIRST}\left(X_{n-1}\right)$, then put $\operatorname{FIRST}\left(X_{n}\right)-\{\epsilon\}$ into $\operatorname{FIRST}(\alpha)$
- if $\epsilon \in \operatorname{FIRST}\left(X_{i}\right)$ for each $1 \leq i \leq n$, then put $\{\epsilon\}$ into $\operatorname{FIRST}(\alpha)$.

Example for computing $\operatorname{FIRST}(\alpha)$

$\operatorname{FIRST}\left(T^{\prime} E^{\prime}\right)=$
$\triangleright\left(\boldsymbol{F I R S T}\left(T^{\prime}\right)-\{\epsilon\}\right) \cup$
$\triangleright\left(\boldsymbol{F I R S T}\left(E^{\prime}\right)-\{\epsilon\}\right) \cup$
$\triangleright\{\epsilon\}$

Why do we need FIRST (α) ?

- During parsing, suppose top-of-stack is a nonterminal A and there are several choices
- $A \rightarrow \alpha_{1}$
- $A \rightarrow \alpha_{2}$
- $A \rightarrow \alpha_{k}$
for derivation, and the current lookahead token is a
- If $a \in \operatorname{FIRST}\left(\alpha_{i}\right)$, then pick $A \rightarrow \alpha_{i}$ for derivation, pop, and then push α_{i}.
- If a is in several FIRST $\left(\alpha_{i}\right)$'s, then the grammar is not $L L(1)$.
- Question: if a is not in any FIRST $\left(\alpha_{i}\right)$, does this mean the input stream cannot be accepted?
- Maybe not!
- What happen if ϵ is in some $\operatorname{FIRST}\left(\alpha_{i}\right)$?

FOLLOW sets

- Assume there is a special EOF symbol "\$" ends every input.
- Add a new terminal "\$".
- Definition: for a nonterminal $X, \operatorname{FOLLOW}(X)$ is the set of terminals that can appear immediately to the right of X in some partial derivation.
That is, $S \xlongequal{+} \alpha_{1} X t \alpha_{2}$, where t is a terminal.
- If X can be the rightmost symbol in a derivation, then $\$$ is in FOLLOW (X).
- $\operatorname{FOLLOW}(X)=$
$\left\{t \mid \mathbf{(} t\right.$ is a terminal and $\left.S \stackrel{+}{\Longrightarrow} \alpha_{1} X t \alpha_{2}\right)$ or $(t$ is $\$$ and $\left.S \xlongequal{+} \alpha X)\right\}$.

How to compute FOLLOW (X)

- If X is the starting nonterminal, put \$ into FOLLOW (X).
- Find the productions with X on the right-hand-side.
- for each production of the form $Y \rightarrow \alpha X \beta$, put $\operatorname{FIRST}(\beta)-\{\epsilon\}$ into FOLLOW (X).
- if $\epsilon \in \operatorname{FIRST}(\beta)$, then put $\operatorname{FOLLOW}(Y)$ into $\operatorname{FOLLOW}(X)$.
- for each production of the form $Y \rightarrow \alpha X$, put $\operatorname{FOLLOW}(Y)$ into FOLLOW (X).
- Repeat the above process for all nonterminals until nothing can be added to any FOLLOW set.
- To see if a given grammar is $L L(1)$ and also to build its parsing table:
- compute FIRST (α) for every production $X \rightarrow \alpha$
- compute FOLLOW (X) for all nonterminals X
- Note that FIRST and FOLLOW sets are always sets of terminals, plus, perhaps, ϵ for some FIRST sets.

A complete example

- Grammar

- $S \rightarrow B c \mid D B$
- $B \rightarrow a b \mid c S$
- $D \rightarrow d \mid \epsilon$

α	FIRST (α)	FOLLOW (α)
D	$\{d, \epsilon\}$	$\{a, c\}$
B	$\{a, c\}$	$\{c, \$\}$
S	$\{a, c, d\}$	$\{c, \$\}$
$B c$	$\{a, c\}$	
$D B$	$\{d, a, c\}$	
$a b$	$\{a\}$	
$c S$	$\{c\}$	
d	$\{d\}$	
ϵ	$\{\epsilon\}$	

Why do we need FOLLOW sets?

- Note FOLLOW (S) always includes \$!
- Situation:
- During parsing, the top-of-stack is a nonterminal X and the lookahead symbol is a.
- Assume there are several choices for the nest derivation:

```
\triangleright X }->\mp@subsup{\alpha}{1}{
\triangleright ...
\triangleright X }->\mp@subsup{\alpha}{k}{
```

- If $a \in \operatorname{FIRST}\left(\alpha_{g_{i}}\right)$ for only one g_{i}, then we use that derivation.
- If $a \in \operatorname{FIRST}\left(\alpha_{i}\right)$ for two i, then this grammar is not $L L(1)$.
- If $a \notin \operatorname{FIRST}\left(\alpha_{i}\right)$ for all i, then this grammar can still be $L L(1)$!
- If some $\alpha_{g_{i}} \stackrel{*}{\Longrightarrow} \epsilon$ and $a \in \operatorname{FOLLOW}(X)$, then we can can use the derivation $X \rightarrow \alpha_{g_{i}}$.

Grammars that are not $L L(1)$

- A grammar is not $L L(1)$ if there exists productions

$$
A \rightarrow \alpha \mid \beta
$$

and any one of the followings is true:

- $\operatorname{FIRST}(\alpha) \cap \operatorname{FIRST}(\beta) \neq \emptyset$.
- $\epsilon \in \operatorname{FIRST}(\alpha)$ and $\operatorname{FIRST}(\beta) \cap \operatorname{FOLLOW}(A) \neq \emptyset$.
- $\epsilon \in \operatorname{FIRST}(\alpha)$ and $\epsilon \in \operatorname{FIRST}(\beta)$.
- If a grammar is not $L L(1)$, then
- you cannot write a linear-time predictive parser as described above;
- we do not know to use the production $A \rightarrow \alpha$ or the production $A \rightarrow \beta$ when the lookadead symbol is a and, respectively,

```
\(\triangleright a \in \operatorname{FIRST}(\alpha) \cap \operatorname{FIRST}(\beta)\);
\(\triangleright a \in \operatorname{FIRST}(\beta) \cap \operatorname{FOLLOW}(A)\);
\(\triangleright a \in \operatorname{FOLLOW}(A)\).
```


A complete example (1/2)

- Grammar:
- <prog_head> \rightarrow PROG ID <file_list> SEMICOLON
- <file_list> $\rightarrow \epsilon \mid$ L_PAREN <file_list> SEMICOLON
- FIRST and FOLLOW sets:

α	$\operatorname{FIRST}(\alpha)$	FOLLOW (α)
ϵ	$\{\epsilon\}$	 <prog_head $>$
<file_list>	$\{\epsilon$, L_PAREN $\}$	
PROG ID <file_list> SEMICOLON	\{PROG\}	
L_PAREN <file_list> SEMICOLON	\{LPAREN \}	

A complete example (2/2)

Input: PROG ID SEMICOLON

Input	stack	action
	<prog_head $>\$$	
PROG	<prog_head $>\$$	pop, push
PROG	PROG ID <file_list> SEMICOLON $\$$	match input
ID	ID <file_list> SEMICOLON $\$$	match input
SEMICOLON	<file_list> SEMICOLON $\$$	WHAT TO DO?

- Last actions:
- Two choices:

$$
\triangleright<\text { file_list }>\rightarrow \epsilon \mid \text { L_PAREN <file_list }>\text { SEMICOLON }
$$

- SEMICOLON \notin FIRST (ϵ) and SEMICOLON \notin FIRST(L_PAREN $<$ file_list $>$ SEMICOLON)
- < file_list $>\stackrel{*}{\Longrightarrow} \epsilon$
- SEMICOLON \in FOLLOW (<file_list $>$)
- Hence we use the derivation $<$ file_list $>\rightarrow \epsilon$

$L L(1)$ Parsing table (1/2)

Grammar:

- $S \rightarrow X C$
- $X \rightarrow a \mid \epsilon$
- $C \rightarrow a \mid \epsilon$

α	$\operatorname{FIRST}(\alpha)$	$\operatorname{FOLLOW}(\alpha)$
S	$\{a, \epsilon\}$	$\{\$\}$
X	$\{a, \epsilon\}$	$\{a, \$\}$
C	$\{a, \epsilon\}$	$\{\$\}$
ϵ	$\{\epsilon\}$	
a	$\{a\}$	
$X C$	$\{a, \epsilon\}$	

Check for possible conflicts in $X \rightarrow a \mid \epsilon$.

- $\operatorname{FIRST}(a) \cap \operatorname{FIRST}(\epsilon)=\emptyset$
- $\epsilon \in \operatorname{FIRST}(\epsilon)$ and $\operatorname{FOLLOW}(X) \cap \operatorname{FIRST}(a)=\{a\}$

Conflict!!

- $\epsilon \notin$ FIRST (a)
- Check for possible conflicts in $C \rightarrow a \mid \epsilon$.
- $\operatorname{FIRST}(a) \cap \operatorname{FIRST}(\epsilon)=\emptyset$
- $\epsilon \in \operatorname{FIRST}(\epsilon)$ and $\operatorname{FOLLOW}(C) \cap \operatorname{FIRST}(a)=\emptyset$
- $\epsilon \notin \operatorname{FIRST}(a)$

$L L(1)$ Parsing table (2/2)

		a	$\$$
	Parsing table	$S \rightarrow X C$	$S \rightarrow X C$
X	conflict!	$X \rightarrow \epsilon$	
	C	$C \rightarrow a$	$C \rightarrow \epsilon$

Bottom-up parsing (Shift-reduce parsers)

- Intuition: construct the parse tree from leaves to the root.

Grammar:
$S \rightarrow A B$
$A \rightarrow x \mid Y$

- Example:

$$
B \rightarrow w \mid Z
$$

$$
\begin{aligned}
& Y \rightarrow x b \\
& Z \rightarrow w p
\end{aligned}
$$

- Input $x w$.

$$
S \underset{r m}{\Longrightarrow} A B \underset{r m}{\Longrightarrow} A w \underset{r m}{\Longrightarrow} x w
$$

- This grammar is not $L L(1)$.

Definitions (1/2)

- Rightmost derivation:
- $S \underset{r m}{\Longrightarrow} \alpha$ the rightmost nonterminal is replaced.
- $S \underset{r m}{+} \alpha: \alpha$ is derived from S using one or more rightmost derivations.
$\triangleright \alpha$ is called a right-sentential form
- Define similarly leftmost derivations.
- handle : a handle for a right-sentential form γ is the combining of the following two information:
- a production rule $A \rightarrow \beta$ and
- a position in γ where β can be found.

Definitions (2/2)

- Example: $\begin{aligned} & S \rightarrow a A B e \\ & A \rightarrow A b c \mid b \\ & B \rightarrow d\end{aligned}$

$$
\begin{aligned}
& \text { input: abbcde } \\
& \gamma \equiv a A b c d e \text { is a right-sentential } \\
& \text { form } \\
& A \rightarrow A b c \text { and position } 2 \text { in } \gamma \text { is a } \\
& \text { handle for } \gamma
\end{aligned}
$$

- reduce : replace a handle in a right-sentential form with its left-hand-side. In the above example, replace $A b c$ in γ with A.
- A right-most derivation in reverse can be obtained by handle reducing.

STACK implementation

- Four possible actions:
- shift: shift the input to STACK.
- reduce: perform a reversed rightmost derivation.
- accept
- error

STACK	INPUT	ACTION
$\$$	$\mathbf{x w \$}$	shift
\$x	$\mathbf{w} \$$	reduce by $A \rightarrow x$
\$A	$\mathbf{w} \$$	shift
\$Aw	$\$$	reduce by $B \rightarrow w$
\$AB	$\$$	reduce by $S \rightarrow A B$
\$S	$\$$	accept

- viable prefix : the set of prefixes of right sentential forms that can appear on the stack.

Model of a shift-reduce parser

- Push-down automata!

- Current state S_{m} encodes the symbols that has been shifted and the handles that are currently being matched.
- $\$ S_{0} S_{1} \cdots S_{m} a_{i} a_{i+1} \cdots a_{n} \$$ represents a right sentential form.

GOTO table:

- when a "reduce" action is taken, which handle to replace;

Action table:

- when a "shift" action is taken, which state currently in, that is, how to group symbols into handles.
- The power of context free grammars is equivalent to nondeterministic push down automata.

LR parsers

- By Don Knuth at 1965.
- $L R(k)$: see all of what can be derived from the right side with k input tokens lookahead.
- first L : scan the input from left to right
- second R : reverse rightmost derivation
- (k): with k lookahead tokens.
- Be able to decide the whereabout of a handle after seeing all of what have been derived so far plus k input tokens lookahead. x_{1}, x_{2}, \ldots,

$$
\begin{array}{|l|l}
\hline x_{i}, x_{i+1}, \ldots, x_{i+j}, & x_{i+j+1}, \ldots, x_{i+j+k-1} \\
\text { a handle } & \\
\text { lookahead tokens }
\end{array}
$$

- Top-down parsing for $L L(k)$ grammars: be able to choose a production by seeing only the first k symbols that will be derived from that production.

$L R(0)$ parsing

- Construct a FSA to recognize all possible viable prefixes.
- An $L R(0)$ item (item for short) is a production, with a dot at some position in the RHS (right-hand side). For example:
- $A \rightarrow X Y Z$

$$
\begin{aligned}
& \triangleright A \rightarrow \cdot X Y Z \\
& \triangleright A \rightarrow X \cdot Y Z \\
& \triangleright A \rightarrow X Y \cdot Z \\
& \triangleright A \rightarrow X Y Z .
\end{aligned}
$$

- $A \rightarrow \epsilon$

$$
\triangleright A \rightarrow .
$$

The dot indicates the place of a handle.
Assume G is a grammar with the starting symbol S.
Augmented grammar G^{\prime} is to add a new starting symbol S^{\prime} and a new production $S^{\prime} \rightarrow S$ to G. We assume working on the augmented grammar from now on.

Closure

- The closure operation closure (I), where I is a set of items is defined by the following algorithm:
- If $A \rightarrow \alpha \cdot B \beta$ is in closure (I), then
\triangleright at some point in parsing, we might see a substring derivable from $B \beta$ as input;
\triangleright if $B \rightarrow \gamma$ is a production, we also see a substring derivable from γ at this point.
\triangleright Thus $B \rightarrow \cdot \gamma$ should also be in closure (I).
- What does closure (I) means informally:
- when $A \rightarrow \alpha \cdot B \beta$ is encountered during parsing, then this means we have seen α so far, and expect to see $B \beta$ later before reducing to A.
- at this point if $B \rightarrow \gamma$ is a production, then we may also want to see $B \rightarrow \gamma$ in order to reduce to B, and then advance to $A \rightarrow \alpha B \cdot \beta$.
- Using closure (I) to record all possible things that we have seen in the past and expect to see in the future.

Example for the closure function

- Example:
- $E^{\prime} \rightarrow E$
- $E \rightarrow E+T \mid T$
- $T \rightarrow T * F \mid F$
- $F \rightarrow(E) \mid i d$
$\operatorname{closure}\left(\left\{E^{\prime} \rightarrow \cdot E\right\}\right)=$
- $\left\{E^{\prime} \rightarrow \cdot E\right.$,
- $E \rightarrow \cdot E+T$,
- $E \rightarrow T$,
- $T \rightarrow \cdot T * F$,
- $T \rightarrow \cdot F$,
- $F \rightarrow \cdot(E)$,
- $F \rightarrow \cdot i d\}$

GOTO table

- $G O T O(I, X)$, where I is a set of items and X is a legal symbol is defined as
- If $A \rightarrow \alpha \cdot X \beta$ is in I, then
- closure $(\{A \rightarrow \alpha X \cdot \beta\}) \subseteq G O T O(I, X)$
- Informal meanings:
- currently we have seen $A \rightarrow \alpha \cdot X \beta$
- expect to see X
- if we see X,
- then we should be in the state $\operatorname{closure}(\{A \rightarrow \alpha X \cdot \beta\})$.
- Use the GOTO table to denote the state to go to once we are in I and have seen X.

Sets-of-items construction

- Canonical $L R(0)$ items : the set of all possible DFA states, where each state is a group of $L R(0)$ items.
- Algorithm for constructing $L R(0)$ parsing table.
- $C \leftarrow\left\{\operatorname{closure}\left(\left\{S^{\prime} \rightarrow \cdot S\right\}\right\}\right.$
- repeat

```
\triangleright for each set of items I in C and each grammar symbol }X\mathrm{ such that
        GOTO}(I,X)\not=\emptyset\mathrm{ and not in C do
\triangleright add GOTO (I,X) to C
```

- until no more sets can be added to C
- Kernel of a state: items
- not of the form $X \rightarrow \cdot \beta$ or
- of the form $S^{\prime} \rightarrow \cdot S$
- Given the kernel of a state, all items in the state can be derived.

Example of sets of $L R(0)$ items

$$
\begin{aligned}
& E^{\prime} \rightarrow E \\
& E \rightarrow E+T \mid T
\end{aligned}
$$

$$
\begin{aligned}
& I_{0}=\operatorname{closure}\left(\left\{E^{\prime} \rightarrow \cdot E\right\}\right)= \\
& \left\{E^{\prime} \rightarrow \cdot E\right. \\
& E \rightarrow \cdot E+T, \\
& E \rightarrow \cdot T,
\end{aligned}
$$

Grammar:

$$
\begin{aligned}
& T \rightarrow T * F \mid F \\
& F \rightarrow(E) \mid i d
\end{aligned}
$$

$$
T \rightarrow \cdot T * F
$$

$$
T \rightarrow \cdot F
$$

$$
F \rightarrow \cdot(E)
$$

$$
F \rightarrow \cdot i d\}
$$

Canonical $L R(0)$ items:

- $I_{1}=\operatorname{GOTO}\left(I_{0}, E\right)=$

$$
\begin{aligned}
& \triangleright\left\{E^{\prime} \rightarrow E .\right. \\
& \triangleright E \rightarrow E \cdot+T\}
\end{aligned}
$$

- $I_{2}=G O T O\left(I_{0}, T\right)=$
$\triangleright\{E \rightarrow T$,
$\triangleright T \rightarrow T \cdot * F\}$

Transition diagram (1/2)

Transition diagram (2/2)

Meaning of $L R(0)$ transition diagram

- $E+T *$ is a viable prefix that can happen on the top of the stack while doing parsing.

$$
\{T \rightarrow T * \cdot F
$$

after seeing $E+T *$, we are in state $I_{7} . I_{7}=$

- $F \rightarrow \cdot(E)$,
- $F \rightarrow \cdot i d\}$
- We expect to follow one of the following three possible derivations:
$E^{\prime} \underset{r m}{\Longrightarrow} E$
$\underset{r m}{\Longrightarrow} E+T$
$\underset{r m}{\Longrightarrow} E+T * F$
$\underset{r m}{\Longrightarrow} E+T * i d$
$\underset{r m}{\Longrightarrow} \underline{E+\underline{T}} F * i d$

$$
\begin{array}{ll}
E^{\prime} \underset{r m}{\Longrightarrow} E & E^{\prime} \underset{r m}{\Longrightarrow} E \\
\underset{r m}{\Longrightarrow} E+T & \underset{r m}{\Longrightarrow} E+T \\
\underset{r m}{\Longrightarrow} E+T * F & \stackrel{\rightharpoonup}{\Longrightarrow} E+T * F \\
\underset{r m}{\Longrightarrow} \underline{E+T *}(E) & \underset{r m}{\Longrightarrow} \underline{E+T * i d}
\end{array}
$$

Definition of closure (I) and $G O T O(I, X)$

closure (I) : a state/configuration during parsing recording all possible things that we are expecting.

- If $A \rightarrow \alpha \cdot B \beta \in I$, then it means
- in the middle of parsing, α is on the top of the stack;
- at this point, we are expecting to see $B \beta$;
- after we saw $B \beta$, we will reduce $\alpha B \beta$ to A and make A top of stack.
- To achieve the goal of seeing $B \beta$, we expect to perform some operations below:
- We expect to see B on the top of the stack first.
- If $B \rightarrow \gamma$ is a production, then it might be the case that we shall see γ on the top of the stack.
- If it does, we reduce γ to B.
- Hence we need to include $B \rightarrow \gamma$ into closure (I).
- $G O T O(I, X)$: when we are in the state described by I, and then a new symbol X is pushed into the stack, If $A \rightarrow \alpha \cdot X \beta$ is in I, then $\operatorname{closure}(\{A \rightarrow \alpha X \cdot \beta\}) \subseteq G O T O(I, X)$.

Parsing example

- Input: id * id + id

STACK	input	action
\$ I_{0}	id*id+id\$	
\$ I_{0} id I_{5}	* id + id \$	shift 5
\$ $I_{0} \mathrm{~F}$	* id + id \$	reduce by $F \rightarrow i d$
$\$ I_{0} \mathrm{~F} I_{3}$	* id + id \$	in I_{0}, saw F , goto I_{3}
\$ $I_{0} \mathrm{~T} I_{2}$	* id + id \$	reduce by $T \rightarrow F$
$\$ I_{0} \mathrm{~T} I_{2}{ }^{*} I_{7}$	$\mathrm{id}+\mathrm{id}$ \$	shift 7
$\$ I_{0} \mathrm{~T} I_{2} * I_{7} \mathrm{id} I_{5}$	+ id \$	shift 5
$\$ I_{0} \mathrm{~T} I_{2} * I_{7} \mathrm{~F} I_{10}$	$+\mathrm{id} \$$	reduce by $F \rightarrow i d$
\$ $I_{0} \mathrm{~T} I_{2}$	$+\mathrm{id} \$$	reduce by $T \rightarrow F$
$\$ I_{0} \mathrm{E} I_{1}$	+ id \$	reduce by $T \rightarrow T * F$
\$ $I_{0} \mathrm{E} I_{1}+I_{6}$	id $\$$	shift 6
$\$ I_{0} \mathrm{E} I_{1}+I_{6} \mathrm{id} I_{5}$	id \$	shift 5
$\$ I_{0} \mathrm{E} I_{1}+I_{6} \mathrm{~F} I_{3}$	id\$	reduce by $F \rightarrow i d$

$L R(0)$ parsing

- $L R$ parsing without lookahead symbols.
- Constructed from DFA for recognizing viable prefixes.
- In state I_{i}
- if $A \rightarrow \alpha \cdot a \beta$ is in I_{i} then perform "shift" while seeing the terminal a in the input, and then go to the state $\operatorname{closure}(\{A \rightarrow \alpha a \cdot \beta\})$
- if $A \rightarrow \beta$. is in I_{i}, then perform "reduce by $A \rightarrow \beta$ " and then goto the state $\operatorname{GOTO}(I, A)$ where I is the state on the top of the stack after removing β
- Conflicts:
- shift/reduce conflict
- reduce/reduce conflict
- Very few grammars are $L R(0)$. For example:
- in I_{2}, you can either perform a reduce or a shift when seeing "*" in the input
- However, it is not possible to have E followed by "*". Thus we should not perform "reduce".
- Use FOLLOW (E) as look ahead information to resolve some conflicts.

$S L R(1)$ parsing algorithm

- Using FOLLOW sets to resolve conflicts in constructing $S L R(1)$ parsing table, where the first " S " stands for "simple".
- Input: an augmented grammar G^{\prime}
- Output: The $S L R(1)$ parsing table.
- Construct $C=\left\{I_{0}, I_{1}, \ldots, I_{n}\right\}$ the collection of sets of $L R(0)$ items for G^{\prime}.
- The parsing table for state I_{i} is determined as follows:
- if $A \rightarrow \alpha \cdot a \beta$ is in I_{i} and $\operatorname{GOTO}\left(I_{i}, a\right)=I_{j}$, then $\operatorname{action}\left(I_{i}, a\right)$ is "shift j " for a being a terminal.
- If $A \rightarrow \alpha$. is in I_{i}, then $\operatorname{action}\left(I_{i}, a\right)$ is "reduce by $A \rightarrow \alpha$ " for all terminal $a \in \operatorname{FOLLOW}(A)$; here $A \neq S^{\prime}$
- if $S^{\prime} \rightarrow S$. is in I_{i}, then $\operatorname{action}\left(I_{i}, \$\right)$ is "accept".
- If any conflicts are generated by the above algorithm, we say the grammar is not $S L R(1)$.

$S L R(1)$ parsing table

state	action				GOTO				
	id	+	$*$	$($	$)$	$\$$	E	T	F
0	s 5			s 4			1	2	3
1		s 6				accept			
2		r 2	s 7		r 2	r 2			
3		r 4	r 4		r 4	r 4			
4	s 5			s 4			8	2	3
5		r 6	r 6		r 6	r 6			
6	s 5			s 4				9	3
7	s 5			s 4					10
8		s 6			s 11				
9		r 1	s 7		r 1	r 1			
10		r 3	r 3		r 3	r 3			
11		r 5	r 5		r 5	r 5			

- $\mathbf{r} i$ means reduce by production numbered i.
- si means shift and then go to state I_{i}.
- Use FOLLOW (A) to resolve some conflicts.

Discussion (1/3)

- Every $S L R(1)$ grammar is unambiguous, but there are many unambiguous grammars that are not $S L R(1)$.
- Example:
- $S \rightarrow L=R \mid R$
- $L \rightarrow * R \mid i d$
- $R \rightarrow L$
- States:
- I_{0} :

$$
\begin{aligned}
& \triangleright S^{\prime} \rightarrow \cdot S \\
& \triangleright S \rightarrow \cdot L=R \\
& \triangleright S \rightarrow \cdot R \\
& \triangleright L \rightarrow \cdot * R \\
& \triangleright L \rightarrow \cdot i d \\
& \triangleright R \rightarrow \cdot L
\end{aligned}
$$

- $I_{1}: S^{\prime} \rightarrow S$.
- I_{2} :

$$
\begin{aligned}
& \triangleright S \rightarrow L \cdot=R \\
& \triangleright R \rightarrow L .
\end{aligned}
$$

Discussion (2/3)

$I_{3}: S \rightarrow R$.
I_{4} :

$$
\begin{aligned}
& \triangleright L \rightarrow * R \\
& \triangleright R \rightarrow L \\
& \triangleright L \rightarrow \cdot R \\
& \triangleright L \rightarrow \cdot R \\
& \triangleright L \rightarrow \cdot i d
\end{aligned}
$$

$I_{5}: L \rightarrow i d$.
I_{6} :

$$
\begin{aligned}
& \triangleright S \rightarrow L=\cdot R \\
& \triangleright R \rightarrow \cdot L \\
& \triangleright L \rightarrow \cdot * R \\
& \triangleright L \rightarrow \cdot i d
\end{aligned}
$$

$I_{7}: L \rightarrow * R$.
$I_{8}: R \rightarrow L$.

$I_{9}: S \rightarrow L=R$.

Discussion (3/3)

- Suppose the stack has $\$ I_{0} L I_{2}$ and the input is " $=$ ". We can either
- shift 6, or
- reduce by $R \rightarrow L$, since $=\in \operatorname{FOLLOW}(R)$.
- This grammar is ambiguous for $S L R(1)$ parsing.
- However, we should not perform a $R \rightarrow L$ reduction.
- after performing the reduction, the viable prefix is $\$ R$;
- = \neq FOLLOW $(\$ R)$
- = \in FOLLOW $(* R)$
- That is to say, we cannot find a right sentential form with the prefix $R=\cdots$.
- We can find a right sentential form with $\cdots * R=\cdots$

Canonical LR — LR(1)

- In $S L R(1)$ parsing, if $A \rightarrow \alpha \cdot$ is in state I_{i}, and $a \in \operatorname{FOLLOW}(A)$, then we perform the reduction $A \rightarrow \alpha$.
- However, it is possible that when state I_{i} is on the top of the stack, the viable prefix $\beta \alpha$ on the stack is such that βA cannot be followed by a.
- We can solve the problem by knowing more left context using the technique of lookahead propagation .

$L R(1)$ items

- An $L R(1)$ item is in the form of $[A \rightarrow \alpha \cdot \beta, a]$, where the first field is an $L R(0)$ item and the second field a is a terminal belonging to a subset of FOLLOW (A).
- Intuition: perform a reduction based on an $L R(1)$ item $[A \rightarrow \alpha \cdot, a]$ only when the next symbol is a.
- Formally: $[A \rightarrow \alpha \cdot \beta, a]$ is valid (or reachable) for a viable prefix γ if there exists a derivation

$$
S \underset{r m}{*} \delta A \omega \underset{r m}{\Longrightarrow} \delta \alpha \beta \omega,
$$

where

- $\gamma=\delta \alpha$
- either $a \in \operatorname{FIRST}(\omega)$ or
- $\omega=\epsilon$ and $a=\$$.

$L R(1)$ parsing example

- Grammar:
- $S \rightarrow B B$
- $B \rightarrow a B \mid b$

$$
S \underset{r m}{*} a a B a b \underset{r m}{\Longrightarrow} a a a B a b
$$

viable prefix $a a a$ can reach $[B \rightarrow a \cdot B, a]$

$$
S \underset{r m}{*} B a B \underset{r m}{\Longrightarrow} B a a B
$$

viable prefix $B a a$ can reach $[B \rightarrow a \cdot B, \$]$

Finding all $L R(1)$ items

- Ideas: redefine the closure function.
- suppose $[A \rightarrow \alpha \cdot B \beta, a]$ is valid for a viable prefix $\gamma \equiv \delta \alpha$
- in other words

$$
S \underset{r m}{*} \delta A a \omega \underset{r m}{\longrightarrow} \delta \alpha B \beta a \omega
$$

- Then for each production $B \rightarrow \eta$ assume $\beta a \omega$ derives the sequence of terminals $b c$.

$$
S \underset{r m}{*} \delta \alpha B \xrightarrow[\beta]{*} \underset{r m}{*} \delta \alpha B \boxed{b c} \underset{r m}{*} \delta \alpha \boxed{\eta} b c
$$

Thus $[B \rightarrow \cdot \eta, b]$ is also valid for γ for each $b \in \operatorname{FIRST}(\beta a)$. Note a is a terminal. So $\operatorname{FIRST}(\beta a)=\operatorname{FIRST}(\beta a \omega)$.

- Lookahead propagation .

Algorithm for $L R(1)$ parsing functions

- closure(I)
- repeat

```
\(\triangleright\) for each item \([A \rightarrow \alpha \cdot B \beta, a]\) in \(I\) do
\(\triangleright \quad\) if \(B \rightarrow \cdot \eta\) is in \(G^{\prime}\)
\(\triangleright \quad\) then add \([B \rightarrow \cdot \eta, b]\) to \(I\) for each \(b \in \operatorname{FIRST}(\beta a)\)
```

- until no more items can be added to I
- return i
- $\operatorname{GOTO}(I, X)$
- let $J=\{[A \rightarrow \alpha X \cdot \beta, a] \mid[A \rightarrow \alpha \cdot X \beta, a] \in I\}$.
- return closure (J)
- items $\left(G^{\prime}\right)$
- $C \leftarrow\left\{\operatorname{closure}\left(\left\{\left[S^{\prime} \rightarrow \cdot S, \$\right]\right\}\right)\right\}$
- repeat
\triangleright for each set of items $I \in C$ and each grammar symbol X such that $\operatorname{GOTO}(I, X) \neq \emptyset$ and $\operatorname{GOTO}(I, X) \notin C$ do
$\triangleright \quad$ add $G O T O(I, X)$ to C
- until no more sets of items can be added to C

Example for constructing $L R(1)$ closures

- Grammar:
- $S^{\prime} \rightarrow S$
- $S \rightarrow C C$
- $C \rightarrow c C \mid d$
- closure $\left(\left\{\left[S^{\prime} \rightarrow \cdot S, \$\right]\right\}\right)=$
- $\left\{\left[S^{\prime} \rightarrow \cdot S, \$\right]\right.$,
- $[S \rightarrow \cdot C C, \$]$,
- $[C \rightarrow \cdot c C, c / d]$,
- $[C \rightarrow \cdot d, c / d]\}$
- Note:
- $\operatorname{FIRST}(\epsilon \$)=\{\$\}$
- $\operatorname{FIRST}(C \$)=\{c, d\}$
- $[C \rightarrow \cdot c C, c / d]$ means

$$
\begin{aligned}
& \triangleright[C \rightarrow \cdot c C, c] \text { and } \\
& \triangleright[C \rightarrow c C, d] .
\end{aligned}
$$

$L R(1)$ Transition diagram

$L R(1)$ parsing example

- Input $c d c c d$

STACK	INPUT	ACTION
\$ I_{0}	cdccd\$	
$\$ I_{0} \mathrm{c} I_{3}$	dccd\$	shift 3
$\$ I_{0} \mathrm{c} I_{3} \mathrm{~d} I_{4}$	$\operatorname{ccd} \$$	shift 4
$\$ I_{0}$ с $I_{3} \mathrm{C} I_{8}$	$\operatorname{ccd} \$$	reduce by $C \rightarrow d$
\$ $I_{0} \mathrm{C} I_{2}$	ccd \$	reduce by $C \rightarrow c C$
$\$ I_{0} \mathrm{C} I_{2}$ c I_{6}	cd\$	shift 6
\$ I_{0} С I_{2} с I_{6} с I_{6}	d\$	shift 6
\$ I_{0} C I_{2} c I_{6} c I_{6}	d\$	shift 6
$\$ I_{0} \mathrm{C} I_{2}$ c I_{6} c $I_{6} \mathrm{~d} I_{7}$	\$	shift 7
$\$ I_{0} \mathrm{C} I_{2}$ с I_{6} с $I_{6} \mathrm{C} I_{9}$	\$	reduce by $C \rightarrow c C$
$\$ I_{0} \mathrm{C} I_{2}$ с $I_{6} \mathrm{C} I_{9}$	\$	reduce by $C \rightarrow c C$
$\$ I_{0} \mathrm{C} I_{2} \mathrm{C} I_{5}$	\$	reduce by $S \rightarrow C C$
$\$ I_{0} \mathrm{~S} I_{1}$	\$	reduce by $S^{\prime} \rightarrow S$
\$ $I_{0} S^{\prime}$	\$	accept

Algorithm for $L R(1)$ parsing table

Construction of canonical $L R(1)$ parsing tables.

- Input: an augmented grammar G^{\prime}
- Output: The canonical $L R(1)$ parsing table, i.e., the ACTION table.
- Construct $C=\left\{I_{0}, I_{1}, \ldots, I_{n}\right\}$ the collection of sets of $L R(1)$ items form G^{\prime}.
- Action table is constructed as follows:
- if $[A \rightarrow \alpha \cdot a \beta, b] \in I_{i}$ and $G O T O\left(I_{i}, a\right)=I_{j}$, then action $\left[I_{i}, a\right]=$ "shift j " for a is a terminal.
- if $[A \rightarrow \alpha \cdot, a] \in I_{i}$ and $A \neq S^{\prime}$, then
action $\left[I_{i}, a\right]=$ "reduce by $A \rightarrow \alpha$ "
- if $\left[S^{\prime} \rightarrow S ., \$\right] \in I_{i}$, then
action $\left[I_{i}, \$\right]=$ "accept."
- If conflicts result from the above rules, then the grammar is not $L R(1)$.
- The initial state of the parser is the one constructed from the set containing the item $\left[S^{\prime} \rightarrow \cdot S, \$\right]$.

An example of an $L R(1)$ parsing table

state	action		GOTO		
	c	d	$\$$	S	C
0	s 3	s 4		1	2
1			accept		
2	s 6	s 7			5
3	s 3	s 4			8
4	r 3	r3			
5			r1		
6	s 6	s 7			9
7			r3		
8	r 2	r2			
9			r2		

- Canonical $L R(1)$ parser
- too many states and thus occupy too much space
- most powerful

$L A L R(1)$ parser - Lookahead LR

- The method that is often used in practice.
- Most common syntactic constructs of programming languages can be expressed conveniently by an $L A L R(1)$ grammar.
- $S L R(1)$ and $L A L R(1)$ always have the same number of states.
- Number of states is about $\mathbf{1 / 1 0}$ of that of $L R(1)$.
- Simple observation: an $L R(1)$ item is in the form of $[A \rightarrow \alpha \cdot \beta, c]$
- We call $A \rightarrow \alpha \cdot \beta$ the first component .
- Definition: in an $L R(1)$ state, set of first components is called its core.

Intuition for $L A L R(1)$ grammars

- In $L R(1)$ parser, it is a common thing that several states only differ in lookahead symbol, but have the same core.
- To reduce the number of states, we might want to merge states with the same core.
- If I_{4} and I_{7} are merged, then the new state is called $I_{4,7}$

After merging the states, revise the GOTO table accordingly.
merging of states can never produce a shift-reduce conflict that was not present in one of the original states.

- $I_{1}=\{[A \rightarrow \alpha \cdot, a], \ldots\}$
- $I_{2}=\{[B \rightarrow \beta \cdot a \gamma, b], \ldots\}$
- For I_{1}, we perform a reduce on a.
- For I_{2}, we perform a shift on a.
- Merging I_{1} and I_{2}, the new state $I_{1,2}$ has shift-reduce conflicts.
- This is impossible, in the original table since I_{1} and I_{2} have the same core.
- So $[A \rightarrow \alpha \cdot, c] \in I_{2}$ and $[B \rightarrow \beta \cdot a \gamma, d] \in I_{1}$.
- The shift-reduce conflict already occurs in I_{1} and I_{2}.

$L A L R(1)$ Transition diagram

Possible new conflicts from $L A L R(1)$

- May produce a new reduce-reduce conflict.
- For example (textbook page 238), grammar:
- $S^{\prime} \rightarrow S$
- $S \rightarrow a A d|b B f| a B e \mid b A e$
- $A \rightarrow c$
- $B \rightarrow c$
- The language recognized by this grammar is $\{a c d, a c e, b c d, b c e\}$.
- You may check that this grammar is $L R(1)$ by constructing the sets of items.
- You will find the set of items $\{[A \rightarrow c \cdot, d],[B \rightarrow c \cdot, e]\}$ is valid for the viable prefix $a c$, and $\{[A \rightarrow c \cdot, e],[B \rightarrow c \cdot, d]\}$ is valid for the viable prefix $b c$.
- Neither of these sets generates a conflict, and their cores are the same. However, their union, which is
- $\{[A \rightarrow c \cdot, d / e]$,
$-[B \rightarrow c \cdot, d / e]\}$
generates a reduce-reduce conflict, since reductions by both $A \rightarrow c$ and $B \rightarrow c$ are called for on inputs d and e.

How to construct $L A L R(1)$ parsing table

Naive approach:

- Construct $L R(1)$ parsing table, which takes lots of intermediate spaces.
- Merging states.
- Space efficient methods to construct an $L A L R(1)$ parsing table are known.
- Construction and merging on the fly.
- Summary:

- $L R(1)$ and $L A L R(1)$ can almost handle all programming languages, but $L A L R(1)$ is easier to write.
- $L L(1)$ is easier to understand.

Using ambiguous grammars

- Ambiguous grammars provides a shorter, more natural specification than any equivalent unambiguous grammars.
- Sometimes need ambiguous grammars to specify important language constructs.
- For example: declare a variable before its usage.

```
var xyz : integer
begin
```

```
xyz := 3;
```

```
xyz := 3;
```


Ambiguity from precedence and associativity

- Use precedence and associativity to resolve conflicts.
- Example:
- G_{1} :

```
\triangleright E->E+E|E*E|(E)|id
\triangleright ~ a m b i g u o u s , ~ b u t ~ e a s y ~ t o ~ u n d e r s t a n d !
```

- G_{2} :

```
\triangleright E->E+T |T
\triangleright E \rightarrow T * F \| F
\triangleright F->(E)| id
|nambiguous, but it is difficult to change the precedence;
\triangleright ~ p a r s e ~ t r e e ~ i s ~ m u c h ~ l a r g e r ~ f o r ~ G 2 , ~ a n d ~ t h u s ~ t a k e s ~ m o r e ~ t i m e ~ t o ~ p a r s e .
```

- When parsing the following input for $G_{1}: i d+i d * i d$.
- Assume the input parsed so far is $i d+i d$.
- We now see "*".
- We can either shift or perform "reduce by $E \rightarrow E+E$ ".
- When there is a conflict, say in $S L R(1)$ parsing, we use precedence and associativity information to resolve conflicts.

Dangling-else ambiguity

- Grammar:
- $S \rightarrow a \mid$ if <condition>then <statement>
if <condition> then $<$ statement $>$ else $<$ statement $>$
- When seeing
if c then S else S
- shift or reduce conflict;
- always favor a shift.
- Intuition: favor a longer match.

Special cases

- Ambiguity from special-case productions:
- Sometime a very rare happened special case causes ambiguity.
- It's too costly to revise the grammar. We can resolve the conflicts by using special rules.
- Example:

$$
\begin{aligned}
& \triangleright E \rightarrow E \text { sub } E \text { sup } E \\
& \triangleright E \rightarrow E \text { sub } E \\
& \triangleright E \rightarrow E \text { sup } E \\
& \triangleright E \rightarrow\{E\} \mid \text { character }
\end{aligned}
$$

- Meanings:

```
\triangleright ~ W ~ s u b ~ U : ~ W ~ W ~ . ~
\triangleright W \operatorname { s u p } U : W ^ { U } .
\triangleright W ~ s u b ~ U ~ s u p ~ V ~ i s ~ W ~ W ~ , ~ n o t ~ W ~ W ~ V ~ V ' , ~
```

- Resolve by semantic and special rules.
- Pick the right one when there is a reduce/reduce conflict.
\triangleright Reduce the production listed earlier.

YACC (1/2)

- Yet Another Compiler Compiler:
- A UNIX utility for generating $L A L R(1)$ parsing tables.
- Convert your YACC code into C programs.
- file.y \longrightarrow yacc file.y \longrightarrow y.tab.c
- y.tab.c \longrightarrow cc -ly -II y.tab.c \longrightarrow a.out

- Format:

- declarations
- \%\%
- translation rules
$\triangleright<$ left side>: <production>
$\triangleright \quad\{$ semantic rules \}
- \%\%
- supporting C-routines.

YACC (2/2)

- Assume the Lexical analyzer routine is yylex().
- When there are ambiguities:
- reduce/reduce conflict: favor the one listed first.
- shift/reduce conflict: favor shift. (longer match!)
- Error handling:
- Use special error handling productions.
- Example:

```
lines: error '\n' {...}
```

- when there is an error, skip until newline.
- error: special token.
- yyerror(string): pre-defined routine for printing error messages.
- yyerrok(): reset error flags.

YACC code example (1/2)

```
%{
#include <stdio.h>
#include <ctype.h>
#include <math.h>
#define YYSTYPE int /* integer type for YACC stack */
%}
%token NUMBER
%left '+', , '
%left '*' '/'
%left UMINUS
%%
```


YACC code example (2/2)

\%\%
\#include "lex.yy.c"

Included Lex program

```
%{
%}
Digit [0-9]
IntLit {Digit}+
%%
[ \t] {/* skip white spaces */}
[\n] {return('\n');}
{IntLit}
"+"
"-"
"*"
"/"
{printf("error token <%s>\n",yytext); return(ERROR);}
%%
```


YACC rules

- Can assign associativity and precedence.
- in increasing precedence
- left/right or non-associativity
\triangleright Dot products of vectors has no associativity.
- Semantic rules: every item in the production is associated with a value.
- YYSTYPE: the type for return values.
- \$\$: the return value if the production is reduced.
- \$i: the return value of the i th item in the production.
- Actions can be inserted in the moddle of a production, each such action is treated as a nonterminal.
- Example:

```
expr : expr { $$ = 32;} '+' expr { $$ = $1 + $2 + $4; };
is equivalent to
expr : expr $ACT '+' expr {$$ = $1 + $2 + $4;};
$ACT : {$$ = 32;};
```


YACC programming styles

- Avoid in-production actions.
- Replace them by markers.
- Keep the right hand side of a production short.
- Better to be less than 4 symbols.
- Avoid using C-language reserved words.
- Watch out C-language rules.
- Try to find some unique symbols for each production.
- array \rightarrow ID [elist]

```
\triangleright ~ a r r a r y ~ \rightarrow ~ a e l i s t ~ ] ~
\triangleright ~ a e l i s t ~ \rightarrow ~ a e l i s t , ~ I D ~ \| ~ a h e a d ~
\triangleright ~ a h e a d ~ \rightarrow ~ I D ~ [ ~ I D ~
```

