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main tasks

A program represented
by a sequence of tokens −→ parser −→

if it is a legal program,
then some abstract rep-
resentation of the pro-
gram

Abstract representations of the input program:
• abstract-syntax tree + symbol table
• intermediate code
• object code

Context free grammar (CFG) is used to specify the structure of
legal programs.

Compiler notes #3, Tsan-sheng Hsu, IIS 2



Context free grammar (CFG)

Definitions: G = (T,N, P, S), where

• T : a set of terminals (in lower case letters);

• N : a set of nonterminals (in upper case letters);

• P : productions of the form

A→ X1, X2, . . . , Xm, where A ∈ N and Xi ∈ T ∪N ;
• S: the starting nonterminal, S ∈ N .

Notations:
• terminals : lower case English strings, e.g., a, b, c · · ·
• nonterminals: upper case English strings, e.g., A, B, C · · ·
• α, β, γ ∈ (T ∪N)∗

. α, β, γ: alpha, beta and gamma.

. ε: epsilon.

•
A → X1
A → X2

}
≡ A→ X1 | X2
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How does a CFG define a language?

The language defined by the grammar is the set of strings
(sequence of terminals) that can be “derived” from the starting
nonterminal.
How to “derive” something?
• Start with:

“current sequence” = the starting nonterminal.
• Repeat

. find a nonterminal X in the current sequence

. find a production in the grammar with X on the left of the form X → α,
where α is ε or a sequence of terminals and/or nonterminals.

. create a new “current sequence” in which α replaces X

• Until “current sequence” contains no nonterminals.

We derive either ε or a string of terminals. This is how we
derive a string of the language.
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Example

Grammar:
• E → int

• E → E − E
• E → E / E

• E → ( E )

E

=⇒ E − E
=⇒ 1− E
=⇒ 1− E/E

=⇒ 1− E/2

=⇒ 1− 4/2

Details:
• The first step was done by choosing the 2nd of the 4 productions.
• The second step was by choosing the first production.

Conventions:
• =⇒: means “derives in one step”;

• +=⇒: means “derives in one or more steps”;

• ∗=⇒: means “derives in zero or more steps”;

• In the above example, we can write E
+=⇒ 1− 4/2.
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Language

The language defined by a grammar G is

L(G) = {w | S +=⇒ ω},

where S is the starting nonterminal and ω is a sequence of
terminals or ε.
An element in a language is ε or a sequence of terminals in
the set defined by the language.
More terminology:
• E =⇒ · · · =⇒ 1− 4/2 is a derivation of 1− 4/2 from E.
• There are several kinds of derivations that are important:

. The derivation is a leftmost one if the leftmost nonterminal always

gets to be chosen (if we have a choice) to be replaced.

. It is a rightmost one if the rightmost nonterminal is replaced all the

times.
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A different way to derive

Construct a derivation or parse tree as follows:
• start with the starting nonterminal as a single-node tree
• REPEAT

. choose a leaf nonterminal X

. choose a production X → α

. symbols in α become children of X

• UNTIL no more leaf nonterminal left
Need to annotate the order of derivation on the nodes.

E

=⇒ E − E
=⇒ 1− E
=⇒ 1− E/E

=⇒ 1− E/2

=⇒ 1− 4/2

E

E − E

1 E / E

24

(1)

(2) (3)

(4)(5)
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Parse tree examples

Example:

Grammar:
E → int

E → E − E
E → E/E

E → (E)

E

E − E

1 E / E

4 2

leftmost derivation
�

• Using 1 − 4/2 as the in-
put, the left parse tree is
derived.

• A string is formed by
reading the lead nodes
from left to right, given
1− 4/2.

• The string 1 − 4/2 has
another parse tree on the
right.

1

E

E

−

E

E

/

E

4

2

rightmost derivation

Some standard notations:
• Given a parse tree and a fixed order (for example leftmost or rightmost)

we can derive the order of derivation.
• For the “semantic” of the parse tree, we normally “interpret” the

meaning in a bottom-up fashion. That is, the one that is derived last
will be “serviced” first.
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Ambiguous Grammar

If for grammar G and string S, there are
• more than one leftmost derivation for S, or
• more than one rightmost derivation for S, or
• more than one parse tree for S,

then G is called ambiguous .

• Note: the above three conditions are equivalent in that if one is true,
then all three are true.

Problems with an ambiguous grammar:
• Ambiguity can make parsing difficult.
• Underlying structure is ill-defined: in the example, the precedence is

not uniquely defined, e.g., the leftmost parse tree groups 4/2 while the
rightmost parse tree groups 1− 4, resulting in two different semantics.

Compiler notes #3, Tsan-sheng Hsu, IIS 9



Common grammar problems

Lists: that is, zero or more ID’s separated by commas:
• Note it is easy to express one or more ID’s:
<idlist>→<idlist>, ID | ID

• For zero or more ID’s,
. <idlist>→ ε | ID |<idlist>,<idlist>

won’t work due to ε; it can generate: ID, , ID
. <idlist>→ ε |<idlist>, ID | ID

won’t work either because it can generate: , ID, ID

• We should separate out the empty list from the general list of one or
more ID’s.

. <opt-idlist>→ ε |<nonEmptyIdlist>

. <nonEmptyIdlist>→<nonEmptyIdlist>, ID | ID

Expressions: precedence and associativity as discussed next.
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Grammar that expresses precedence correctly

Use one nonterminal for each precedence level
Start with lower precedence (in our example −)

Original grammar:
E → int

E → E − E

E → E/E

E → (E)

Revised grammar:
E → E − E | T

T → T/T | F

F → int | (E)

E

E − E

T

F

1

T / T

F F

24

E

T

T / T

F

2
ERROR

rightmost derivation
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More problems with associativity

However, the above grammar is still ambiguous, and parse trees
may not express the associative of − and /.
Example: 2− 3− 4

Revised grammar:
E → E − E | T

T → T/T | F

F → int | (E)

E

E − E

E − E T

T

F

2

T

F

3

F

4

E

E − E

F

2

T E − E

T

F

3

T

F

4

rightmost derivation rightmost derivation

value = (2−3)−4 = −5 value = 2 − (3−4) = 3

Problems with associativity:
• The rule E → E − E has E on both sides of “−”.
• Need to make the second E to some other nonterminal parsed earlier.
• Similarly for the rule E → E/E.
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Grammar considering associative rules

Original grammar:
E → int

E → E − E
E → E/E

E → (E)

Revised grammar:
E → E − E | T

T → T/T | F

F → int | (E)

Final grammar:
E → E − T | T

T → T/F | F

F → int | (E)

Recursive productions:

• E → E − T is called a left recursive production.

. A
+

=⇒ Aα.

• E → T − E is called a right recursive production.

. A
+

=⇒ αA.

• E → E − E is both left and right recursion.
• If one wants left associativity, use left recursion.
• If one wants right associativity, use right recursion.

Compiler notes #3, Tsan-sheng Hsu, IIS 13



How to use CFG

Breaks down the problem into pieces:
• Think about a C program:

. Declarations: typedef, struct, variables, . . .

. Procedures: type-specifier, function name, parameters, function body.

. function body: various statements.

• Example:
<procedure>→<type-def> ID <opt-params><opt-decl> {<opt-statements>}

. <opt-params>→ (<list-params>)

. <list-params>→ ε |<nonEmptyParlist>

. <nonEmptyParlist>→<nonEmptyIdlist>, ID | ID

One of purposes to write a grammar for a language is for others
to understand. It will be nice to break things up into different
levels in a top-down easily understandable fashion.
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Useless terms

A non-terminal X is useless if either
• a sequence includes X cannot be derived from the starting nonterminal,

or
• no string can be derived starting from X, where a string means ε or a

sequence of terminals.

Example 1:
• S → A B
• A→ + | − | ε
• B → digit | B digit
• C → . B

In Example 1:
• C is useless and so is the last production.

• Any nonterminal not in the right-hand side of any production

is useless!
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More examples for useless terms

Example 2: Y is useless.
• S → X | Y
• X → ( )
• Y → ( Y Y )

Y derives more and more nonterminals and is useless.

Any recursively defined nonterminal without a production

of deriving ε all terminals is useless!

• Direct useless.
• Indirect useless: one can only derive direct useless terms.

From now on, we assume a grammar contains no useless
nonterminals.
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Non-context free grammars

Some grammar is not CFG, that is, it may be context sensitive.
Expressive power of grammars (in the order of small to large):
• Regular expressions ≡ FA.
• Context-free grammar
• Context-sensitive
• · · ·

{ωcω | ω is a string of a and b’s} cannot be expressed by CFG.
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Top-down parsing

There are O(n3)-time algorithms to parse a language defined by
CFG, where n is the number of input tokens.
For practical purpose, we need faster algorithms. Here we make
restrictions to CFG so that we can design O(n)-time algorithms.

Recursive-descent parsing : top-down parsing that allows

backtracking.
• Attempt to find a leftmost derivation for an input string.
• Try out all possibilities, that is, do an exhaustive search to find a parse

tree that parses the input.
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Example for recursive-descent parsing

S → cAd

A→ bc | a
Input: cad

S

c A d

S

c A d

S

c A d

b c a
error!! backtrack

Problems with the above approach:
• still too slow!
• want to select a derivation without ever causing backtracking!
• trick: use lookahead symbols.

Solution: use LL(1) grammars that can be parsed in O(n) time.

• first L: scan the input from left-to-right
• second L: find a leftmost derivation
• (1): allow one lookahead token!
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Predictive parser for LL(1) grammars

How a predictive parser works:
• start by pushing the starting nonterminal into the STACK and calling

the scanner to get the first token.
LOOP: if top-of-STACK is a nonterminal, then

. use the current token and the PARSING TABLE to choose a production

. pop the nonterminal from the STACK and push the above production’s
right-hand-side

. GOTO LOOP.

• if top-of-STACK is a terminal and matches the current token, then
. pop STACK and ask scanner to provide the next token
. GOTO LOOP.

• if STACK is empty and there is no more input, then ACCEPT!
• If none of the above succeed, then FAIL!

. STACK is empty and there is input left.

. top-of-STACK is a terminal, but does not match the current token

. top-of-STACK is a nonterminal, but the corresponding PARSING TA-
BLE entry is ERROR!
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Example for parsing an LL(1) grammar

grammar: S → ε | (S) | [S] input: ([ ])

input stack action
( S pop, push “(S)”
( (S) pop, match with input
([ S) pop, push “[S]”
([ [S]) pop, match with input
([ ] S]) pop, push ε
([ ] ]) pop, match with input
([ ]) ) pop, match with input
([ ]) accept

S

( S )

[ S ]

ε
leftmost derivation

�

Use the current input token to decide which production to
derive from the top-of-STACK nonterminal.
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About LL(1)

It is not always possible to build a predictive parser given a
CFG; It works only if the CFG is LL(1)!
For example, the following grammar is not LL(1), but is LL(2).
Grammar: S → (S) | [S] | () | [ ]
Try to parse the input ().

input stack action
( S pop, but use which production?

In this example, we need 2-token look-ahead.
• If the next token is ), push ().
• If the next token is (, push (S).

Two questions:
• How to tell whether a grammar G is LL(1)?
• How to build the PARSING TABLE?
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Properties of non-LL(1) grammars

Theorem 1: A CFG grammar is not LL(1) if it is left-recursive.
Definitions:
• recursive grammar: a grammar is recursive if the following is true for

a nonterminal X in G:
X

+=⇒ αXβ.

• G is left-recursive if X
+=⇒ Xβ.

• G is immediately left-recursive if X =⇒ Xβ.
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Example of removing immediate left-recursion

Need to remove left-recursion to come out an LL(1) grammar.
Example:
• Grammar G: A→ Aα | β, where β does not start with A
• Revised grammar G′:

. A→ βA′

. A′ → αA′ | ε
• The above two grammars are equivalent. That is L(G) ≡ L(G′).

Example:
input baa
β ≡ b
α ≡ a

A

A a

b a

b A’

a A’

a A’

ε
leftmost derivation
�

original grammar G

leftmost derivation
�

revised grammar G’

A
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Rule for removing immediate left-recursion

Both grammar recognize the same string, but G′ is not
left-recursive.
However, G is clear and intuitive.
General rule for removing immediately left-recursion:
• Replace A→ Aα1 | · · · | Aαm | β1 | · · ·βn
• with

. A→ β1A
′ | · · · | βnA′

. A′ → α1A
′ | · · · | αmA′ | ε

This rule does not work if αi = ε for some i.
• This is called a direct cycle in a grammar.

May need to worry about whether the semantics are equivalent
between the original grammar and the transformed grammar.
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Algorithm 4.1

Algorithm 4.1 systematically eliminates left recursion.
• Algorithm 4.1 works only if the grammar has no cycles or ε-productions.

. Cycle: A
+

=⇒ A
. ε-production: A→ ε

• It is possible to remove cycles and ε-productions using other algorithms.

Input: grammar G without cycles and ε-productions.
Output: An equivalent grammar without left recursion.
Number the nonterminals in some order A1, A2, . . . , An
for i = 1 to n do
• for j = 1 to i− 1 do

. replace Ai → Ajγ

. with Ai → δ1γ | · · · | δkγ

. where Aj → δ1 | · · · | δk are all the current Aj-productions.

• Eliminate immediate left-recursion for Ai
. New nonterminals generated above are numbered Ai+n
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Intuition for Algorithm 4.1

Intuition: if Ai1
+=⇒ α2Ai2β2

+=⇒ α3Ai3β3
+=⇒ · · · and i1 < i2 <

i3 < · · · , then it is not possible to have recursion.
Trace Algorithm 4.1
• After each i-loop, only productions of the form Ai → Akγ, i < k are

left.
• i = 1

. allow A1 → Akα, ∀k before removing immediate left-recursion

. remove immediate left-recursion for A1

• i = 2
. j = 1: replace A2 → A1γ by A2 → Akαγ, where A1 → Akαγ and k > 1
. remove immediate left-recursion for A2

• i = 3
. j = 1: replace A3 → A1δ1

. j = 2: replace A3 → A2δ2

. remove immediate left-recursion for A3

• · · ·
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Example

Original Grammar:
• (1) S → Aa | b
• (2) A→ Ac | Sd | e

Ordering of nonterminals: S ≡ A1 and A ≡ A2.
i = 1
• do nothing as there is no immediate left-recursion for S

i = 2
• replace A→ Sd by A→ Aad | bd
• hence (2) becomes A→ Ac | Aad | bd | e
• after removing immediate left-recursion:

. A→ bdA′ | eA′

. A′ → cA′ | adA′ | ε
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Second property for non-LL(1) grammars

Theorem 2: G is not LL(1) if a nonterminal has two productions
whose right-hand-sides have a common prefix.

. Have left-factors .

Example:
• S → (S) | ()

In this example, the common prefix is “(”.

This problem can be solved by using the left-factoring trick.
• A→ αβ1 | αβ2
• Transform to:

. A→ αA′

. A′ → β1 | β2

Example:
• S → (S) | ()
• Transform to

. S → (S′

. S′ → S) |)
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Algorithm for left-factoring

Input: context free grammar G

Output: equivalent left-factored context-free grammar G′

for each nonterminal A do
• find the longest non-ε prefix α that is common to right-hand sides of

two or more productions
• replace

• A→ αβ1 | · · · | αβn | γ1 | · · · | γm
with

. A→ αA′ | γ1 | · · · | γm

. A′ → β1 | · · · | βn
• repeat the above process until A has no two productions with a common

prefix.
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Left-factoring and left-recursion removal

Original grammar:
S → (S) | SS | ()
To remove immediate left-recursion, we have
• S → (S)S′ | ()S′
• S′ → SS′ | ε

To do left-factoring, we have
• S → (S′′
• S′′ → S)S′ |)S′
• S′ → SS′ | ε

A grammar is not LL(1) if it
• is left recursive or
• has left-factors.

However, grammars that are not left recursive and are left-
factored may still not be LL(1).
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Definition of LL(1) grammars

To see if a grammar is LL(1), we need to compute its FIRST
and FOLLOW sets, which are used to build its parsing table.
FIRST sets:
• Definition: let α be a sequence of terminals and/or nonterminals or ε

. FIRST(α) is the set of terminals that begin the strings derivable from
α

. if α can derive ε, then ε ∈ FIRST(α)

• FIRST(α) = {t | (t is a terminal and α
∗=⇒ tβ) or ( t = ε and α

∗=⇒ ε)}
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How to compute FIRST(X)?

X is a terminal:
• FIRST(X) = {X}

X is ε:
• FIRST(X) = {ε}

X is a nonterminal: must check all productions with X on the
left-hand side. That is,

X → Y1Y2 · · ·Yk
Perforam the following step in sequence:
• put FIRST(Y1)− {ε} into FIRST(X)
• if ε ∈ FIRST(Y1), then put

FIRST(Y2)− {ε} into FIRST(X)
• · · ·
• if ε ∈ FIRST(Yk−1), then put

FIRST(Yk)− {ε} into FIRST(X)
• if ε ∈ FIRST(Yi) for each 1 ≤ i ≤ k, then put ε into FIRST(X)

Repeat the above process for all nonterminals until nothing can
be added to any FIRST set.
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Example for computing FIRST(X)

Start with computing FIRST for the last production and walk
your way up.

Grammar
E → E′T

E′ → −TE′ | ε

T → FT ′

T ′ → / FT ′ | ε

F → int | (E)

H → E′T

FIRST(F ) = {int, (}

FIRST(T ′) = {/, ε}

FIRST(T ) = {int, (},
since ε 6∈ FIRST(F ), that’s all.

FIRST(E′) = {−, ε}

FIRST(H) = {−, int, (}

FIRST(E) = {−, int, (},
since ε ∈ FIRST(E′).

FIRST(ε) = {ε}
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How to compute FIRST(α)?

Given FIRST(X) for each terminal and nonterminal X, com-
pute FIRST(α) for α being a sequence of terminals and/or
nonterminals
To build a parsing table, we need FIRST(α) for all α such that
X → α is a production in the grammar.
Let α = X1X2 · · ·Xn. Perform the following steps in sequence:
• put FIRST(X1)− {ε} into FIRST(α)
• if ε ∈ FIRST(X1), then put FIRST(X2)− {ε} into FIRST(α)
• · · ·
• if ε ∈ FIRST(Xn−1), then put FIRST(Xn)− {ε} into FIRST(α)
• if ε ∈ FIRST(Xi) for each 1 ≤ i ≤ n, then put {ε} into FIRST(α).
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Example for computing FIRST(α)

Grammar
E → E′T

E′ → −TE′ |
ε

T → FT ′

T ′ → /FT ′ | ε

F → int | (E)

FIRST(F ) = {int, (}

FIRST(T ′) = {/, ε}

FIRST(T ) = {int, (},
since ε 6∈ FIRST(F ),
that’s all.

FIRST(E′) = {−, ε}

FIRST(E) = {−, int, (},
since ε ∈ FIRST(E′).

FIRST(ε) = {ε}

FIRST(E′T ) =
{−, int, (}

FIRST(−TE′) = {−}

FIRST(ε) = {ε}

FIRST(FT ′) =
{int, )}

FIRST(/FT ′) = {/}

FIRST(ε) = {ε}

FIRST(int) = {int}

FIRST((E)) = {(}

• FIRST(T ′E′) =
. (FIRST(T ′)− {ε})∪
. (FIRST(E′)− {ε})∪
. {ε}
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Why do we need FIRST(α)?

During parsing, suppose top-of-stack is a nonterminal A and
there are several choices
• A→ α1
• A→ α2
• · · ·
• A→ αk

for derivation, and the current lookahead token is a
If a ∈ FIRST(αi), then pick A → αi for derivation, pop, and
then push αi.
If a is in several FIRST(αi)’s, then the grammar is not LL(1).
Question: if a is not in any FIRST(αi), does this mean the
input stream cannot be accepted?
• Maybe not!
• What happen if ε is in some FIRST(αi)?
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FOLLOW sets

Assume there is a special EOF symbol “$” ends every input.
Add a new terminal “$”.
Definition: for a nonterminal X, FOLLOW(X) is the set of
terminals that can appear immediately to the right of X in
some partial derivation.

That is, S
+=⇒ α1Xtα2, where t is a terminal.

If X can be the rightmost symbol in a derivation, then $ is in
FOLLOW(X).
FOLLOW(X) =
{t | (t is a terminal and S

+=⇒ α1Xtα2) or ( t is $ and S
+=⇒ αX)}.
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How to compute FOLLOW(X)

If X is the starting nonterminal, put $ into FOLLOW(X).
Find the productions with X on the right-hand-side.
• for each production of the form Y → αXβ, put FIRST(β) − {ε} into

FOLLOW(X).
• if ε ∈ FIRST(β), then put FOLLOW(Y ) into FOLLOW(X).
• for each production of the form Y → αX, put FOLLOW(Y ) into

FOLLOW(X).
Repeat the above process for all nonterminals until nothing can
be added to any FOLLOW set.
To see if a given grammar is LL(1) and also to build its parsing
table:
• compute FIRST(α) for every production X → α
• compute FOLLOW(X) for all nonterminals X

Note that FIRST and FOLLOW sets are always sets of terminals,
plus, perhaps, ε for some FIRST sets.
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A complete example

Grammar
• S → Bc | DB
• B → ab | cS
• D → d | ε

α FIRST(α) FOLLOW(α)
D {d, ε} {a, c}
B {a, c} {c, $}
S {a, c, d} {c, $}
Bc {a, c}
DB {d, a, c}
ab {a}
cS {c}
d {d}
ε {ε}
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Why do we need FOLLOW sets?

Note FOLLOW(S) always includes $!
Situation:
• During parsing, the top-of-stack is a nonterminal X and the lookahead

symbol is a.
• Assume there are several choices for the nest derivation:

. X → α1

. · · ·

. X → αk

• If a ∈ FIRST(αgi) for only one gi, then we use that derivation.
• If a ∈ FIRST(αi) for two i, then this grammar is not LL(1).
• If a 6∈ FIRST(αi) for all i, then this grammar can still be LL(1)!

If some αgi
∗=⇒ ε and a ∈ FOLLOW(X), then we can can use

the derivation X → αgi.
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Grammars that are not LL(1)

A grammar is not LL(1) if there exists productions

A→ α | β
and any one of the followings is true:
• FIRST(α) ∩ FIRST(β) 6= ∅.
• ε ∈ FIRST(α) and FIRST(β) ∩ FOLLOW(A) 6= ∅.
• ε ∈ FIRST(α) and ε ∈ FIRST(β).

If a grammar is not LL(1), then
• you cannot write a linear-time predictive parser as described above;
• we do not know to use the production A→ α or the production A→ β

when the lookadead symbol is a and, respectively,
. a ∈ FIRST(α) ∩ FIRST(β);
. a ∈ FIRST(β) ∩ FOLLOW(A);
. a ∈ FOLLOW(A).
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A complete example (1/2)

Grammar:
• <prog head>→ PROG ID <file list> SEMICOLON
• <file list>→ ε | L PAREN <file list> SEMICOLON

FIRST and FOLLOW sets:

α FIRST(α) FOLLOW(α)
ε {ε}
<prog head> {PROG} {$}
<file list> {ε,L PAREN} {SEMICOLON}
PROG ID <file list> SEMICOLON {PROG}
L PAREN <file list> SEMICOLON {LPAREN}
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A complete example (2/2)

Input: PROG ID SEMICOLON

Input stack action
<prog head> $

PROG <prog head> $ pop, push
PROG PROG ID <file list> SEMICOLON $ match input
ID ID <file list> SEMICOLON $ match input
SEMICOLON <file list> SEMICOLON $ WHAT TO DO?

Last actions:
• Two choices:

. <file list>→ ε | L PAREN <file list> SEMICOLON

• SEMICOLON 6∈ FIRST(ε) and
SEMICOLON 6∈ FIRST(L PAREN <file list> SEMICOLON)

• <file list>
∗=⇒ ε

• SEMICOLON ∈ FOLLOW(<file list>)
• Hence we use the derivation
<file list>→ ε
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LL(1) Parsing table (1/2)

Grammar:
• S → XC

• X → a | ε

• C → a | ε

α FIRST(α) FOLLOW(α)
S {a, ε} {$}
X {a, ε} {a, $}
C {a, ε} {$}
ε {ε}
a {a}
XC {a, ε}

Check for possible conflicts in X → a | ε.
• FIRST(a) ∩ FIRST(ε) = ∅
• ε ∈ FIRST(ε) and FOLLOW(X) ∩ FIRST(a) = {a}

Conflict!!
• ε 6∈ FIRST(a)

Check for possible conflicts in C → a | ε.
• FIRST(a) ∩ FIRST(ε) = ∅
• ε ∈ FIRST(ε) and FOLLOW(C) ∩ FIRST(a) = ∅
• ε 6∈ FIRST(a)

Compiler notes #3, Tsan-sheng Hsu, IIS 45



LL(1) Parsing table (2/2)

Parsing table:

a $
S S → XC S → XC
X conflict! X → ε
C C → a C → ε
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Bottom-up parsing (Shift-reduce parsers)

Intuition: construct the parse tree from leaves to the root.

Example:

Grammar:
S → AB

A→ x | Y

B → w | Z
Y → xb

Z → wp

S

A B

x w

A

x

B

w

A

x w x w

Input xw. S =⇒
rm

AB =⇒
rm

Aw =⇒
rm

xw.

This grammar is not LL(1).
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Definitions (1/2)

Rightmost derivation:
• S =⇒

rm
α: the rightmost nonterminal is replaced.

• S +=⇒
rm

α: α is derived from S using one or more rightmost derivations.

. α is called a right-sentential form .

Define similarly leftmost derivations.

handle : a handle for a right-sentential form γ is the combining
of the following two information:
• a production rule A→ β and
• a position in γ where β can be found.
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Definitions (2/2)

Example:

S → aABe

A→ Abc | b
B → d

input: abbcde

γ ≡ aAbcde is a right-sentential
form

A → Abc and position 2 in γ is a
handle for γ

reduce : replace a handle in a right-sentential form with its
left-hand-side. In the above example, replace Abc in γ with A.
A right-most derivation in reverse can be obtained by handle
reducing.
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STACK implementation

Four possible actions:
• shift: shift the input to STACK.
• reduce: perform a reversed rightmost derivation.
• accept
• error

STACK INPUT ACTION
$ xw$ shift
$x w$ reduce by A→ x
$A w$ shift
$Aw $ reduce by B → w
$AB $ reduce by S → AB
$S $ accept

viable prefix : the set of prefixes of right sentential forms that

can appear on the stack.
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Model of a shift-reduce parser

Push-down automata!

s s...s0
�

1 m

driver

... $a0
� a1

stack input

action
table

goto
table

output

$ ... ai a n

Current state Sm encodes the symbols that has been shifted
and the handles that are currently being matched.
$S0S1 · · ·Smaiai+1 · · · an$ represents a right sentential form.
GOTO table:
• when a “reduce” action is taken, which handle to replace;

Action table:
• when a “shift” action is taken, which state currently in, that is, how

to group symbols into handles.

The power of context free grammars is equivalent to nondeter-
ministic push down automata.
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LR parsers

By Don Knuth at 1965.
LR(k): see all of what can be derived from the right side with
k input tokens lookahead.
• first L: scan the input from left to right
• second R: reverse rightmost derivation
• (k): with k lookahead tokens.

Be able to decide the whereabout of a handle after seeing all of
what have been derived so far plus k input tokens lookahead.
x1, x2, . . . , xi, xi+1, . . . , xi+j, xi+j+1, . . . , xi+j+k−1, . . .

a handle lookahead tokens
Top-down parsing for LL(k) grammars: be able to choose
a production by seeing only the first k symbols that will be
derived from that production.
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LR(0) parsing

Construct a FSA to recognize all possible viable prefixes.

An LR(0) item ( item for short) is a production, with a dot

at some position in the RHS (right-hand side). For example:
• A→ XY Z

. A→ ·XY Z

. A→ X · Y Z

. A→ XY · Z

. A→ XY Z·
• A→ ε

. A→ ·

The dot indicates the place of a handle.
Assume G is a grammar with the starting symbol S.

Augmented grammar G′ is to add a new starting symbol

S′ and a new production S′ → S to G. We assume working on
the augmented grammar from now on.
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Closure

The closure operation closure(I), where I is a set of items is
defined by the following algorithm:
• If A→ α ·Bβ is in closure(I), then

. at some point in parsing, we might see a substring derivable from Bβ
as input;

. if B → γ is a production, we also see a substring derivable from γ at
this point.

. Thus B → ·γ should also be in closure(I).

What does closure(I) means informally:
• when A → α · Bβ is encountered during parsing, then this means we

have seen α so far, and expect to see Bβ later before reducing to A.
• at this point if B → γ is a production, then we may also want to see
B → ·γ in order to reduce to B, and then advance to A→ αB · β.

Using closure(I) to record all possible things that we have seen
in the past and expect to see in the future.
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Example for the closure function

Example:
• E′ → E
• E → E + T | T
• T → T ∗ F | F
• F → (E) | id

closure({E′→ ·E}) =
• {E′ → ·E,
• E → ·E + T ,
• E → ·T ,
• T → ·T ∗ F ,
• T → ·F ,
• F → ·(E),
• F → ·id}
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GOTO table

GOTO(I,X), where I is a set of items and X is a legal symbol
is defined as
• If A→ α ·Xβ is in I, then
• closure({A→ αX · β}) ⊆ GOTO(I,X)

Informal meanings:
• currently we have seen A→ α ·Xβ
• expect to see X
• if we see X,
• then we should be in the state closure({A→ αX · β}).

Use the GOTO table to denote the state to go to once we are
in I and have seen X.
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Sets-of-items construction

Canonical LR(0) items : the set of all possible DFA states,

where each state is a group of LR(0) items.
Algorithm for constructing LR(0) parsing table.
• C ← {closure({S′ → ·S}}
• repeat

. for each set of items I in C and each grammar symbol X such that
GOTO(I,X) 6= ∅ and not in C do

. add GOTO(I,X) to C

• until no more sets can be added to C

Kernel of a state: items
• not of the form X → ·β or
• of the form S′ → ·S

Given the kernel of a state, all items in the state can be derived.
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Example of sets of LR(0) items

Grammar:

E′ → E

E → E + T | T

T → T ∗ F | F

F → (E) | id

I0 = closure({E′→ ·E}) =
{E′ → ·E,

E → ·E + T ,

E → ·T ,

T → ·T ∗ F ,

T → ·F ,

F → ·(E),

F → ·id}

Canonical LR(0) items:
• I1 = GOTO(I0, E) =

. {E′ → E·,

. E → E ·+T}
• I2 = GOTO(I0, T ) =

. {E → T ·,

. T → T · ∗F}
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Transition diagram (1/2)
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Transition diagram (2/2)

I0
�
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Meaning of LR(0) transition diagram

E + T∗ is a viable prefix that can happen on the top of the
stack while doing parsing.

after seeing E+T∗, we are in state I7. I7 =

• {T → T ∗ ·F,

• F → ·(E),

• F → ·id}
We expect to follow one of the following three possible
derivations:
E′ =⇒

rm
E

=⇒
rm

E + T

=⇒
rm

E + T ∗ F

=⇒
rm

E + T ∗ id

=⇒
rm

E + T∗F ∗ id

· · ·

E′ =⇒
rm

E

=⇒
rm

E + T

=⇒
rm

E + T ∗ F

=⇒
rm

E + T∗(E)

· · ·

E′ =⇒
rm

E

=⇒
rm

E + T

=⇒
rm

E + T ∗ F

=⇒
rm

E + T∗id

· · ·
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Definition of closure(I) and GOTO(I,X)

closure(I): a state/configuration during parsing recording all
possible things that we are expecting.
If A→ α ·Bβ ∈ I, then it means
• in the middle of parsing, α is on the top of the stack;
• at this point, we are expecting to see Bβ;
• after we saw Bβ, we will reduce αBβ to A and make A top of stack.

To achieve the goal of seeing Bβ, we expect to perform some
operations below:
• We expect to see B on the top of the stack first.
• If B → γ is a production, then it might be the case that we shall see γ

on the top of the stack.
• If it does, we reduce γ to B.
• Hence we need to include B → ·γ into closure(I).

GOTO(I,X): when we are in the state described by I, and
then a new symbol X is pushed into the stack, If A→ α ·Xβ is
in I, then closure({A→ αX · β}) ⊆ GOTO(I,X).
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Parsing example

Input: id * id + id

STACK input action
$ I0 id*id+id$
$ I0 id I5 * id + id$ shift 5
$ I0 F * id + id$ reduce by F → id
$ I0 F I3 * id + id$ in I0, saw F, goto I3
$ I0 T I2 * id + id$ reduce by T → F
$ I0 T I2 * I7 id + id$ shift 7
$ I0 T I2 * I7 id I5 + id$ shift 5
$ I0 T I2 * I7 F I10 + id$ reduce by F → id
$ I0 T I2 + id$ reduce by T → F
$ I0 E I1 + id$ reduce by T → T ∗ F
$ I0 E I1 + I6 id$ shift 6
$ I0 E I1 + I6 id I5 id$ shift 5
$ I0 E I1 + I6 F I3 id$ reduce by F → id
· · · · · · · · ·
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LR(0) parsing

LR parsing without lookahead symbols.
Constructed from DFA for recognizing viable prefixes.
In state Ii
• if A → α · aβ is in Ii then perform “shift” while seeing the terminal a

in the input, and then go to the state closure({A→ αa · β})
• if A→ β· is in Ii, then perform “reduce by A→ β” and then goto the

state GOTO(I, A) where I is the state on the top of the stack after
removing β

Conflicts:
• shift/reduce conflict
• reduce/reduce conflict

Very few grammars are LR(0). For example:
• in I2, you can either perform a reduce or a shift when seeing “*” in

the input
• However, it is not possible to have E followed by “*”. Thus we should

not perform “reduce”.

Use FOLLOW(E) as look ahead information to resolve some
conflicts.
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SLR(1) parsing algorithm

Using FOLLOW sets to resolve conflicts in constructing SLR(1)
parsing table, where the first “S” stands for “simple”.
• Input: an augmented grammar G′

• Output: The SLR(1) parsing table.

Construct C = {I0, I1, . . . , In} the collection of sets of LR(0)
items for G′.
The parsing table for state Ii is determined as follows:
• if A → α · aβ is in Ii and GOTO(Ii, a) = Ij, then action(Ii, a) is “shift
j” for a being a terminal.

• If A → α· is in Ii, then action(Ii, a) is “reduce by A → α” for all
terminal a ∈ FOLLOW(A); here A 6= S′

• if S′ → S· is in Ii, then action(Ii, $) is “accept”.

If any conflicts are generated by the above algorithm, we say
the grammar is not SLR(1).
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SLR(1) parsing table
action GOTO

state id + * ( ) $ E T F
0 s5 s4 1 2 3
1 s6 accept
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 8 2 3
5 r6 r6 r6 r6
6 s5 s4 9 3
7 s5 s4 10
8 s6 s11
9 r1 s7 r1 r1
10 r3 r3 r3 r3
11 r5 r5 r5 r5

ri means reduce by production numbered i.
si means shift and then go to state Ii.
Use FOLLOW(A) to resolve some conflicts.
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Discussion (1/3)

Every SLR(1) grammar is unambiguous, but there are many
unambiguous grammars that are not SLR(1).
Example:
• S → L = R | R
• L→ ∗R | id
• R→ L

States:
• I0:

. S′ → ·S

. S → ·L = R

. S → ·R

. L→ · ∗ R

. L→ ·id

. R→ ·L
• I1: S′ → S·
• I2:

. S → L· = R

. R→ L·
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Discussion (2/3)

I3: S → R·
I4:

. L→ ∗ · R

. R→ ·L

. L→ · ∗ R

. L→ ·id

I5: L→ id·
I6:

. S → L = ·R

. R→ ·L

. L→ · ∗ R

. L→ ·id

I7: L→ ∗R·
I8: R→ L·
I9: S → L = R·

I0
�

S’ −> .S
�

S −> .L = R
S −> .R
L −> . * R
L −> . id
R −> . L

I5
�

L −> id .
�

I1
S’ −> S.

�

I3
�

S −> R.
�

I2
�

S −> L . = R
�

R −> L.

I4
�

L −> * . R
�

R −> . L
L −> . * R
L −> . id

I8
�

R −> L.
�

I9
	

S −> L = R .
�

I7



L −> * R .
�

I6
�

S −> L = . R
�

R −> . L
L −> . * R
L −> . id

S
�

L
�

R
� =

R
�*

*

*

L
�

id
�

R
�
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Discussion (3/3)

Suppose the stack has $I0LI2 and the input is “=”. We can
either
• shift 6, or
• reduce by R→ L, since =∈ FOLLOW(R).

This grammar is ambiguous for SLR(1) parsing.
However, we should not perform a R→ L reduction.
• after performing the reduction, the viable prefix is $R;
• =6∈ FOLLOW($R)
• =∈ FOLLOW(∗R)
• That is to say, we cannot find a right sentential form with the prefix
R = · · · .

• We can find a right sentential form with · · · ∗R = · · ·
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Canonical LR — LR(1)

In SLR(1) parsing, if A→ α· is in state Ii, and a ∈ FOLLOW(A),
then we perform the reduction A→ α.
However, it is possible that when state Ii is on the top of the
stack, the viable prefix βα on the stack is such that βA cannot
be followed by a.
We can solve the problem by knowing more left context using

the technique of lookahead propagation .
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LR(1) items

An LR(1) item is in the form of
[A → α · β, a], where the first field is an LR(0) item and
the second field a is a terminal belonging to a subset of
FOLLOW(A).
Intuition: perform a reduction based on an LR(1) item
[A→ α·, a] only when the next symbol is a.
Formally: [A→ α · β, a] is valid (or reachable) for a viable prefix
γ if there exists a derivation

S
∗=⇒
rm

δAω =⇒
rm

δαβω,

where
• γ = δα
• either a ∈ FIRST(ω) or
• ω = ε and a = $.
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LR(1) parsing example

Grammar:
• S → BB
• B → aB | b

S
∗=⇒
rm

aaBab =⇒
rm

aaaBab

viable prefix aaa can reach [B → a ·B, a]

S
∗=⇒
rm

BaB =⇒
rm

BaaB

viable prefix Baa can reach [B → a ·B, $]
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Finding all LR(1) items

Ideas: redefine the closure function.
• suppose [A→ α ·Bβ, a] is valid for a viable prefix γ ≡ δα
• in other words

S
∗=⇒
rm

δAaω =⇒
rm

δαBβaω

• Then for each production B → η assume βaω derives the sequence of
terminals bc.

S
∗=⇒
rm

δαB βaω
∗=⇒
rm

δαB bc
∗=⇒
rm

δα η bc

Thus [B → ·η, b] is also valid for γ for each b ∈ FIRST(βa).
Note a is a terminal. So FIRST(βa) = FIRST(βaω).

Lookahead propagation .
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Algorithm for LR(1) parsing functions

closure(I)
• repeat

. for each item [A→ α · Bβ, a] in I do

. if B → ·η is in G′

. then add [B → ·η, b] to I for each b ∈ FIRST(βa)

• until no more items can be added to I
• return i

GOTO(I,X)
• let J = {[A→ αX · β, a] | [A→ α ·Xβ, a] ∈ I}.
• return closure(J)

items(G′)
• C ← {closure({[S′ → ·S, $]})}
• repeat

. for each set of items I ∈ C and each grammar symbol X such that
GOTO(I,X) 6= ∅ and GOTO(I,X) 6∈ C do

. add GOTO(I,X) to C

• until no more sets of items can be added to C
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Example for constructing LR(1) closures

Grammar:
• S′ → S
• S → CC
• C → cC | d

closure({[S′→ ·S, $]}) =
• {[S′ → ·S, $],
• [S → ·CC, $],
• [C → ·cC, c/d],
• [C → ·d, c/d]}

Note:
• FIRST(ε$) = {$}
• FIRST(C$) = {c, d}
• [C → ·cC, c/d] means

. [C → ·cC, c] and

. [C → ·cC, d].
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LR(1) Transition diagram

I0
�

S’ −> . S, $
�

S −> . CC, $
C −> . cC, c/d
C −>.d, c/d

S’ −> S., $
�

I1

S −> C.C, $
�

C −> .cC, $
C −> .d, $

I2
�

S −> CC., $
�

I5
�

C −> c.C, $
C −> .cC, $
C −> .d, $

I6
�

C −> cC., $

I9
�

C −> d., $
I7

�

I3
�

C −> cC., c/d
I8

�

C −> d., c/d
I4

	

S

C

c

d

d
C

C

c

d

d

c

C
C −> c.C, c/d
C −> .cC, c/d
C −> .d, c/d

c
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LR(1) parsing example

Input cdccd

STACK INPUT ACTION
$ I0 cdccd$
$ I0 c I3 dccd$ shift 3
$ I0 c I3 d I4 ccd$ shift 4
$ I0 c I3 C I8 ccd$ reduce by C → d
$ I0 C I2 ccd$ reduce by C → cC
$ I0 C I2 c I6 cd$ shift 6
$ I0 C I2 c I6 c I6 d$ shift 6
$ I0 C I2 c I6 c I6 d$ shift 6
$ I0 C I2 c I6 c I6 d I7 $ shift 7
$ I0 C I2 c I6 c I6 C I9 $ reduce by C → cC
$ I0 C I2 c I6 C I9 $ reduce by C → cC
$ I0 C I2 C I5 $ reduce by S → CC
$ I0 S I1 $ reduce by S′ → S
$I0 S′ $ accept
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Algorithm for LR(1) parsing table

Construction of canonical LR(1) parsing tables.
• Input: an augmented grammar G′

• Output: The canonical LR(1) parsing table, i.e., the ACTION table.

Construct C = {I0, I1, . . . , In} the collection of sets of LR(1)
items form G′.
Action table is constructed as follows:
• if [A→ α · aβ, b] ∈ Ii and GOTO(Ii, a) = Ij, then
action[Ii, a] = “shift j” for a is a terminal.

• if [A→ α·, a] ∈ Ii and A 6= S′, then
action[Ii, a] = “reduce by A→ α”

• if [S′ → S., $] ∈ Ii, then
action[Ii, $] = “accept.”

If conflicts result from the above rules, then the grammar is
not LR(1).
The initial state of the parser is the one constructed from the
set containing the item [S′→ ·S, $].
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An example of an LR(1) parsing table

action GOTO
state c d $ S C
0 s3 s4 1 2
1 accept
2 s6 s7 5
3 s3 s4 8
4 r3 r3
5 r1
6 s6 s7 9
7 r3
8 r2 r2
9 r2

Canonical LR(1) parser
• too many states and thus occupy too much space
• most powerful
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LALR(1) parser — Lookahead LR

The method that is often used in practice.
Most common syntactic constructs of programming languages
can be expressed conveniently by an LALR(1) grammar.
SLR(1) and LALR(1) always have the same number of states.
Number of states is about 1/10 of that of LR(1).
Simple observation:
an LR(1) item is in the form of [A→ α · β, c]

We call A→ α · β the first component .

Definition: in an LR(1) state, set of first components is called
its core .
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Intuition for LALR(1) grammars

In LR(1) parser, it is a common thing that several states only
differ in lookahead symbol, but have the same core.
To reduce the number of states, we might want to merge states
with the same core.
• If I4 and I7 are merged, then the new state is called I4,7

After merging the states, revise the GOTO table accordingly.
merging of states can never produce a shift-reduce conflict that
was not present in one of the original states.
• I1 = {[A→ α·, a], . . .}
• I2 = {[B → β · aγ, b], . . .}
• For I1, we perform a reduce on a.
• For I2, we perform a shift on a.
• Merging I1 and I2, the new state I1,2 has shift-reduce conflicts.
• This is impossible, in the original table since I1 and I2 have the same

core.
• So [A→ α·, c] ∈ I2 and [B → β · aγ, d] ∈ I1.
• The shift-reduce conflict already occurs in I1 and I2.
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LALR(1) Transition diagram

I0
�

S’ −> . S, $
�

S −> . CC, $
C −> . cC, c/d
C −>.d, c/d

S’ −> S., $
�

I1

S −> C.C, $
�

C −> .cC, $
C −> .d, $

I2
�

S −> CC., $
�

I5
�

C −> c.C, $
C −> .cC, $
C −> .d, $

I6
�

C −> cC., $

I9
�

C −> d., $
I7

�

I3
�

C −> cC., c/d
I8

�

C −> d., c/d
I4

	

S

C

c

d

d

C

C

c

d

d

c

C
C −> c.C, c/d
C −> .cC, c/d
C −> .d, c/d

c
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Possible new conflicts from LALR(1)

May produce a new reduce-reduce conflict.
For example (textbook page 238), grammar:
• S′ → S
• S → aAd | bBf | aBe | bAe
• A→ c
• B → c

The language recognized by this grammar is {acd, ace, bcd, bce}.
You may check that this grammar is LR(1) by constructing the
sets of items.
You will find the set of items {[A→ c·, d], [B → c·, e]} is valid for
the viable prefix ac, and {[A→ c·, e], [B → c·, d]} is valid for the
viable prefix bc.
Neither of these sets generates a conflict, and their cores are
the same. However, their union, which is
• {[A→ c·, d/e],
• [B → c·, d/e]}

generates a reduce-reduce conflict, since reductions by both
A→ c and B → c are called for on inputs d and e.
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How to construct LALR(1) parsing table

Naive approach:
• Construct LR(1) parsing table, which takes lots of intermediate spaces.
• Merging states.

Space efficient methods to construct an LALR(1) parsing table
are known.
• Construction and merging on the fly.

Summary:

LR(1)

LL(1)

LALR(1)

SLR(1)
LR(1)

LALR(1)

SLR(1)

LR(0)

LR(1) and LALR(1) can almost handle all programming
languages, but LALR(1) is easier to write.
LL(1) is easier to understand.
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Using ambiguous grammars

ambiguous grammars

unambiguous grammars

LR(1)

Ambiguous grammars provides a shorter, more natural specifi-
cation than any equivalent unambiguous grammars.
Sometimes need ambiguous grammars to specify important
language constructs.
For example: declare a variable before its usage.

var xyz : integer
begin

...
xyz := 3;
...
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Ambiguity from precedence and associativity

Use precedence and associativity to resolve conflicts.
Example:
• G1:

. E → E + E | E ∗ E | (E) | id

. ambiguous, but easy to understand!

• G2:
. E → E + T | T
. E → T ∗ F | F
. F → (E) | id
. unambiguous, but it is difficult to change the precedence;
. parse tree is much larger for G2, and thus takes more time to parse.

When parsing the following input for G1: id+ id ∗ id.
• Assume the input parsed so far is id+ id.
• We now see “*”.
• We can either shift or perform “reduce by E → E + E”.
• When there is a conflict, say in SLR(1) parsing, we use precedence

and associativity information to resolve conflicts.
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Dangling-else ambiguity

Grammar:
• S → a | if <condition> then <statement>

| if <condition> then <statement> else <statement>

When seeing
if c then S else S

• shift or reduce conflict;
• always favor a shift.
• Intuition: favor a longer match.
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Special cases

Ambiguity from special-case productions:
• Sometime a very rare happened special case causes ambiguity.
• It’s too costly to revise the grammar. We can resolve the conflicts by

using special rules.
• Example:

. E → E sub E sup E

. E → E sub E

. E → E sup E

. E → {E} | character
• Meanings:

. W sub U : WU .

. W sup U : WU .

. W sub U sup V is W V
U , not WU

V

• Resolve by semantic and special rules.
• Pick the right one when there is a reduce/reduce conflict.

. Reduce the production listed earlier.

Compiler notes #3, Tsan-sheng Hsu, IIS 88



YACC (1/2)

Yet Another Compiler Compiler:
• A UNIX utility for generating LALR(1) parsing tables.
• Convert your YACC code into C programs.

• file.y −→ yacc file.y −→ y.tab.c

• y.tab.c −→ cc -ly -ll y.tab.c −→ a.out

Format:
• declarations
• %%
• translation rules

. <left side>: <production>

. { semantic rules }
• %%
• supporting C-routines.
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YACC (2/2)

Assume the Lexical analyzer routine is yylex().
When there are ambiguities:
• reduce/reduce conflict: favor the one listed first.
• shift/reduce conflict: favor shift. (longer match!)

Error handling:
• Use special error handling productions.
• Example:
lines: error ’\n’ {...}

• when there is an error, skip until newline.
• error: special token.
• yyerror(string): pre-defined routine for printing error messages.
• yyerrok(): reset error flags.
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YACC code example (1/2)

%{
#include <stdio.h>
#include <ctype.h>
#include <math.h>
#define YYSTYPE int /* integer type for YACC stack */

%}

%token NUMBER
%left ’+’ ’-’
%left ’*’ ’/’
%left UMINUS

%%
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YACC code example (2/2)

lines : lines expr ’\n’ {printf("%d\n", $2);}
| lines ’\n’
| /* empty, i.e., epsilon */
| lines error ’\n’ { yyerror("Please reenter:"); yyerrok; }
;

expr : expr ’+’ expr { $$ = $1 + $3; }
| expr ’-’ expr { $$ = $1 - $3; }
| expr ’*’ expr { $$ = $1 * $3; }
| expr ’/’ expr { $$ = $1 / $3; }
| ’(’ expr ’)’ { $$ = $2; }
| ’-’ expr %prec UMINUS { $$ = - $2; }
| NUMBER { $$ = atoi(yytext);}
;

%%
#include "lex.yy.c"
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Included Lex program

%{
%}
Digit [0-9]
IntLit {Digit}+
%%
[ \t] {/* skip white spaces */}
[\n] {return(’\n’);}
{IntLit} {return(NUMBER);}
"+" {return(’+’);}
"-" {return(’-’);}
"*" {return(’*’);}
"/" {return(’/’);}
. {printf("error token <%s>\n",yytext); return(ERROR);}
%%
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YACC rules

Can assign associativity and precedence.
• in increasing precedence
• left/right or non-associativity

. Dot products of vectors has no associativity.

Semantic rules: every item in the production is associated with
a value.
• YYSTYPE: the type for return values.
• $$: the return value if the production is reduced.
• $i: the return value of the ith item in the production.

Actions can be inserted in the moddle of a production, each
such action is treated as a nonterminal.
• Example:
expr : expr { $$ = 32;} ’+’ expr { $$ = $1 + $2 + $4; };

is equivalent to

expr : expr $ACT ’+’ expr {$$ = $1 + $2 + $4;};
$ACT : {$$ = 32;};
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YACC programming styles

Avoid in-production actions.
• Replace them by markers.

Keep the right hand side of a production short.
• Better to be less than 4 symbols.

Avoid using C-language reserved words.
• Watch out C-language rules.

Try to find some unique symbols for each production.
• array → ID [ elist ]
•

. arrary → aelist ]

. aelist → aelist, ID | ahead

. ahead → ID [ ID
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