Syntax Analyzer — Parser

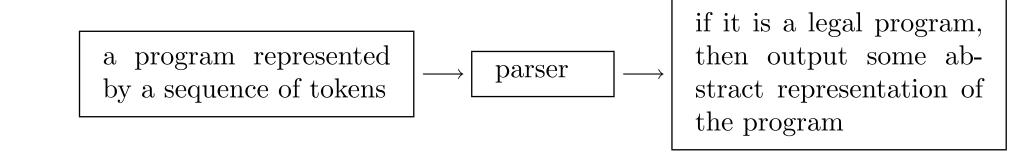
ASU Textbook Chapter 4.2–4.5, 4.7, 4.8

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

Main tasks



Abstract representations of the input program:

- abstract-syntax tree + symbol table
- intermediate code
- object code

Context free grammar (CFG) is used to specify the structure of legal programs.

Context free grammar (CFG)

• Definitions: G = (T, N, P, S), where

- T: a set of terminals (in lower case letters);
- N: a set of nonterminals (in upper case letters);
- *P*: productions of the form

$$A \rightarrow X_1, X_2, \ldots, X_m$$
, where $A \in N$ and $X_i \in T \cup N$;

• S: the starting nonterminal, $S \in N$.

Notations:

- terminals : lower case English strings, e.g., a, b, c, ...
- nonterminals: upper case English strings, e.g., A, B, C,...

•
$$\alpha, \beta, \gamma \in (T \cup N)^*$$

• α, β, γ : alpha, beta and gamma.
• ϵ : epsilon.

$$\begin{array}{ccc} A & \to & X_1 \\ A & \to & X_2 \end{array} \right\} \equiv A \to X_1 \mid X_2$$

How does a CFG define a language?

- The language defined by the grammar is the set of strings (sequence of terminals) that can be "derived" from the starting nonterminal.
- How to "derive" something?
 - Start with: "current sequence" = the starting nonterminal.
 - Repeat
 - \triangleright find a nonterminal X in the current sequence
 - ▷ find a production in the grammar with X on the left of the form $X \to \alpha$, where α is ϵ or a sequence of terminals and/or nonterminals.
 - \triangleright create a new "current sequence" in which α replaces X
 - Until "current sequence" contains no nonterminals.

• We derive either ϵ or a string of terminals. This is how we derive a string of the language.

Example

	E
Grammar: • $E \rightarrow int$	$\implies E - E$
• $E \to E - E$	$\implies 1 - E$
• $E \to E / E$	$\implies 1 - E/E$
• $E \rightarrow (E)$	$\implies 1 - E/2$
	$\implies 1 - 4/2$

Details:

- The first step was done by choosing the second production.
- The second step was done by choosing the first production.

• • • •

Conventions:

- \implies : means "derives in one step";
- $\stackrel{+}{\Longrightarrow}$: means "derives in one or more steps";
- $\stackrel{*}{\Longrightarrow}$: means "derives in zero or more steps";
- In the above example, we can write $E \stackrel{+}{\Longrightarrow} 1 4/2$.

Language

• The language defined by a grammar G is

$$L(G) = \{ w \mid S \stackrel{+}{\Longrightarrow} \omega \},\$$

where S is the starting nonterminal and ω is a sequence of terminals or ϵ .

- An element in a language is ϵ or a sequence of terminals in the set defined by the language.
- More terminology:
 - $E \Longrightarrow \cdots \Longrightarrow 1 4/2$ is a derivation of 1 4/2 from E.
 - There are several kinds of derivations that are important:
 - ▷ The derivation is a leftmost one if the leftmost nonterminal always gets to be chosen (if we have a choice) to be replaced.
 - It is a rightmost one if the rightmost nonterminal is replaced all the times.

A way to describe derivations

• Construct a derivation or parse tree as follows:

- start with the starting nonterminal as a single-node tree
- REPEAT
 - \triangleright choose a leaf nonterminal X
 - $\triangleright \ \textbf{choose a production} \ X \to \alpha$
 - \triangleright symbols in α become children of X
- UNTIL no more leaf nonterminal left

Need to annotate the order of derivation on the nodes.

$$E$$

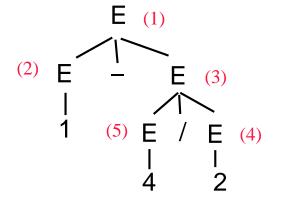
$$\implies E - E$$

$$\implies 1 - E$$

$$\implies 1 - E/E$$

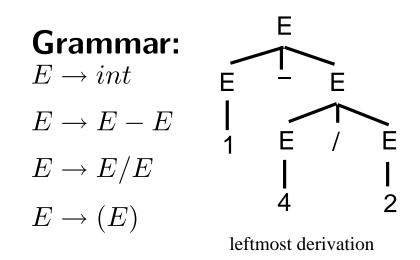
$$\implies 1 - E/2$$

$$\implies 1 - 4/2$$

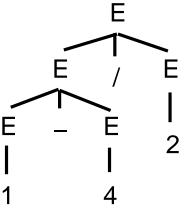


Parse tree examples

Example:



- Using 1 4/2 as the input, the left parse tree is derived.
- A string is formed by reading the leaf nodes from left to right, which gives 1-4/2.
- The string 1 4/2 has another parse tree on the right.



rightmost derivation

Some standard notations:

- Given a parse tree and a fixed order (for example leftmost or rightmost) we can derive the order of derivation.
- For the "semantic" of the parse tree, we normally "interpret" the meaning in a bottom-up fashion. That is, the one that is derived last will be "serviced" first.

Ambiguous grammar

\blacksquare If for grammar G and string S, there are

- more than one leftmost derivation for S, or
- more than one rightmost derivation for S, or
- more than one parse tree for S,

then G is called ambiguous .

- Note: the above three conditions are equivalent in that if one is true, then all three are true.
- Q?: How to prove this?
 - ▶ Hint: Any unannotated tree can be annotated with a leftmost numbering.

Problems with an ambiguous grammar:

- Ambiguity can make parsing difficult.
- Underlying structure is ill-defined: in the example, the precedence is not uniquely defined, e.g., the leftmost parse tree groups 4/2 while the rightmost parse tree groups 1-4, resulting in two different semantics.

Common grammar problems

• Lists: that is, zero or more ID's separated by commas:

- Note it is easy to express one or more ID's: <idlist>→<idlist>, ID | ID
- For zero or more ID's,
 - $\triangleright \quad \langle \text{idlist} \rangle \rightarrow \epsilon \mid \text{ID} \mid \langle \text{idlist} \rangle, \langle \text{idlist} \rangle \\ \text{won't work due to } \epsilon; \text{ it can generate: ID}, \text{ID}$
 - $\triangleright \quad \langle idlist \rangle \rightarrow \epsilon \mid \langle idlist \rangle, ID \mid ID \\ \text{won't work either because it can generate: }, ID, ID$
- We should separate out the empty list from the general list of one or more ID's.
 - $\triangleright \ \ < opt-idlist > \rightarrow \ \ \epsilon \ \ | < nonEmptyIdlist >$
 - $\triangleright \ <\!\! nonEmptyIdlist\!\!>\!\!\rightarrow\!\!<\!\! nonEmptyIdlist\!\!>\!\!, ID \mid ID$

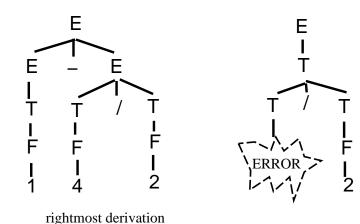
Expressions: precedence and associativity as discussed next.

Grammar that expresses precedence correctly

- Use one nonterminal for each precedence level
- Start with lower precedence (in our example "-")

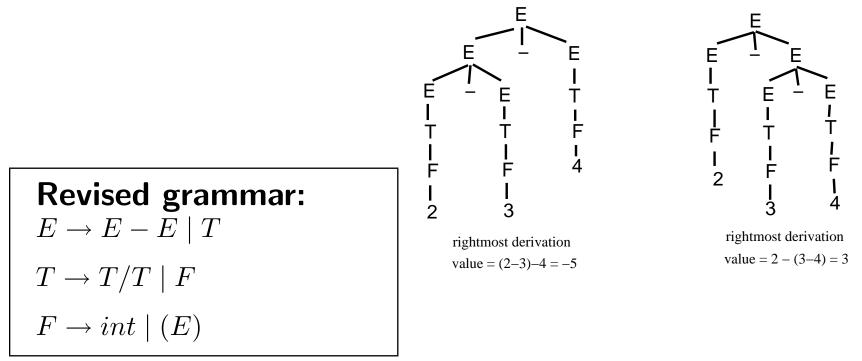
Original grammar: $E \rightarrow int$ $E \rightarrow E - E$ $E \rightarrow E/E$ $E \rightarrow (E)$

Revised grammar: $E \rightarrow E - E \mid T$ $T \rightarrow T/T \mid F$ $F \rightarrow int \mid (E)$



More problems with associativity

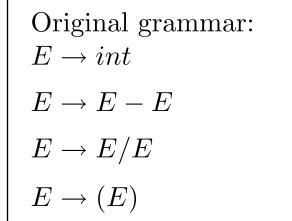
- However, the above grammar is still ambiguous, and parse trees may not express the associative of "-" and "/". Example: 2-3-4



Problems with associativity:

- The rule $E \rightarrow E E$ has E on both sides of "-".
- Need to make the second *E* to some other nonterminal parsed earlier.
- Similarly for the rule $E \rightarrow E/E$.

Grammar considering associative rules



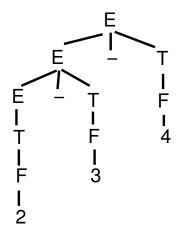
Revised grammar: $E \rightarrow E - E \mid T$ $T \rightarrow T/T \mid F$ $F \rightarrow int \mid (E)$

Final grammar:

$$E \rightarrow E - T \mid T$$

 $T \rightarrow T/F \mid F$
 $F \rightarrow int \mid (E)$

• Example: 2 - 3 - 4



leftmost/rightmost derivation value = (2-3)-4 = -5

Rules for associativity

Recursive productions:

• $E \rightarrow E - T$ is called a left recursive production.

 $\triangleright A \stackrel{+}{\Longrightarrow} A\alpha.$

• $E \rightarrow T - E$ is called a right recursive production.

$\triangleright A \stackrel{+}{\Longrightarrow} \alpha A.$

- $E \rightarrow E E$ is both left and right recursion.
- If one wants left associativity, use left recursion.
- If one wants right associativity, use right recursion.

How to use CFG

Breaks down the problem into pieces.

- Think about a C program:
 - ▷ Declarations: typedef, struct, variables, ...
 - ▷ Procedures: type-specifier, function name, parameters, function body.
 - ▶ function body: various statements.
- Example:

 $<\!\!\! procedure \!\!\! > \!\! \rightarrow <\!\!\! type - def\!\! > ID <\!\! opt - params \!\! > \!\! <\!\! opt - decl\!\! > \{<\!\! opt - statements \!\! > \}$

- $\triangleright \ \textit{<opt-params} \rightarrow (\textit{<list-params})$
- \triangleright <*list-params*> $\rightarrow \epsilon$ |<*nonEmptyParlist*>
- $\triangleright \ <\!\! nonEmptyParlist\!\!>\!\!\rightarrow\!\!<\!\! nonEmptyIdlist\!\!>\!, ID \mid ID$
- One of purposes to write a grammar for a language is for others to understand. It will be nice to break things up into different levels in a top-down easily understandable fashion.

Useless terms

• A non-terminal X is useless if either

- a sequence includes X cannot be derived from the starting nonterminal, or
- no string can be derived starting from X, where a string means ϵ or a sequence of terminals.

• Example 1:

- $\dot{S} \to A B$
- $A \rightarrow + \mid \mid \epsilon$
- $B \rightarrow digit \mid B \ digit$
- $C \rightarrow . B$

In Example 1:

- C is useless and so is the last production.
- Any nonterminal not in the right-hand side of any production

is useless!

More examples for useless terms

- Example 2: Y is useless.
 - $S \to X \mid Y$
 - $X \to ()$ • $Y \to (Y Y)$
- Y derives more and more nonterminals and is useless.
- Any recursively defined nonterminal without a production

of deriving ϵ or a string of all terminals is useless!

- Direct useless.
- Indirect useless: one can only derive direct useless terms.
- From now on, we assume a grammar contains no useless nonterminals.

Non-context free grammars

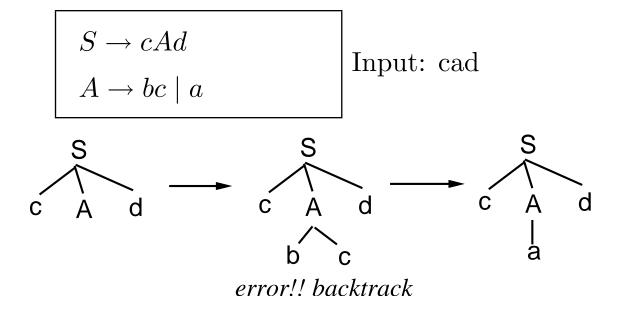
- Some grammar is not CFG, that is, it may be context sensitive.
- Expressive power of grammars (in the order of small to large):
 - Regular expressions \equiv FA.
 - Context-free grammar
 - Context-sensitive
 - • •

• $\{\omega c\omega \mid \omega \text{ is a string of } a \text{ and } b's\}$ cannot be expressed by CFG.

Top-down parsing

- There are $O(n^3)$ -time algorithms to parse a language defined by CFG, where n is the number of input tokens.
- For practical purpose, we need faster algorithms. Here we make restrictions to CFG so that we can design O(n)-time algorithms.
- Recursive-descent parsing : top-down parsing that allows backtracking.
 - Attempt to find a leftmost derivation for an input string.
 - Try out all possibilities, that is, do an exhaustive search to find a parse tree that parses the input.

Example for recursive-descent parsing



Problems with the above approach:

- still too slow!
- want to select a derivation without ever causing backtracking!
- trick: use lookahead symbols.

• Solution: use LL(1) grammars that can be parsed in O(n) time.

- first L: scan the input from left-to-right
- second *L*: find a leftmost derivation
- (1): allow one lookahead token!

Predictive parser for LL(1) grammars

• How a predictive parser works:

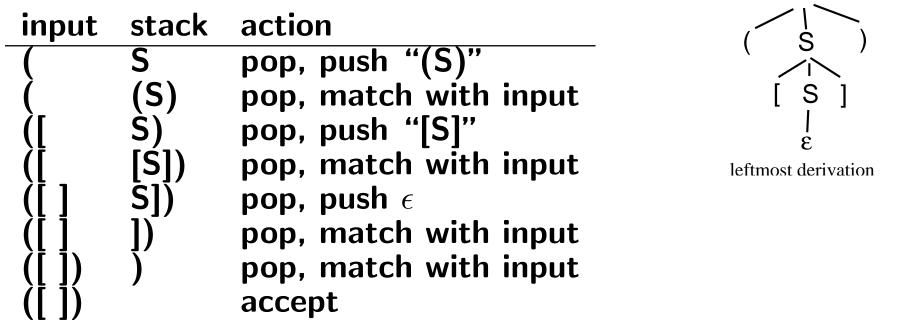
- start by pushing the starting nonterminal into the STACK and calling the scanner to get the first token.
- LOOP: if top-of-STACK is a nonterminal, then
 - ▶ use the current token and the PARSING TABLE to choose a production
 - ▶ pop the nonterminal from the STACK and push the above production's right-hand-side
 - ▷ GOTO LOOP.
- if top-of-STACK is a terminal and matches the current token, then
 - ▶ pop STACK and ask scanner to provide the next token
 - ▷ GOTO LOOP.
- if STACK is empty and there is no more input, then ACCEPT!
- If none of the above succeed, then FAIL!
 - ▷ STACK is empty and there is input left.
 - ▷ top-of-STACK is a terminal, but does not match the current token
 - ▶ top-of-STACK is a nonterminal, but the corresponding PARSING TA-BLE entry is ERROR!

Example for parsing an LL(1) grammar

• grammar: $S \to \epsilon \mid (S) \mid [S]$

input: ([])

S



Use the current input token to decide which production to derive from the top-of-STACK nonterminal.

About LL(1)

- It is not always possible to build a predictive parser given a CFG; It works only if the CFG is LL(1)!
- For example, the following grammar is not LL(1), but is LL(2).
- Grammar: $S \rightarrow (S) \mid [S] \mid () \mid []$ Try to parse the input ().

inputstackaction(Spop, but use which production?

- In this example, we need 2-token look-ahead.
 - If the next token is), push ().
 - If the next token is (, push (S).
- Two questions:
 - How to tell whether a grammar G is LL(1)?
 - How to build the PARSING TABLE?

Properties of non-LL(1) **grammars**

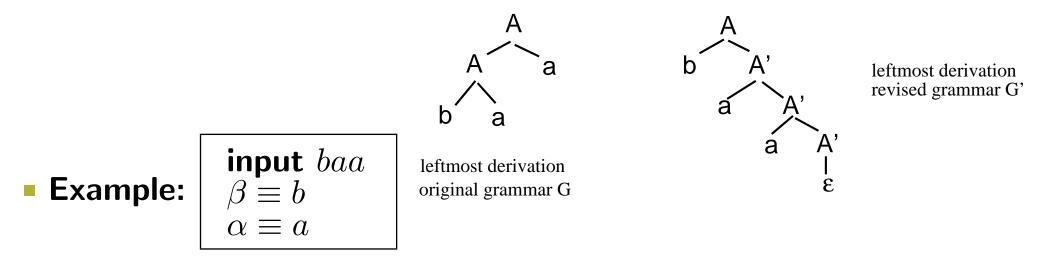
- Theorem 1: A CFG grammar is not LL(1) if it is left-recursive.
 Definitions:
 - recursive grammar: a grammar is recursive if the following is true for a nonterminal X in G: $X \stackrel{+}{\Longrightarrow} \alpha X \beta$.
 - G is left-recursive if $X \stackrel{+}{\Longrightarrow} X\beta$.
 - G is immediately left-recursive if $X \Longrightarrow X\beta$.

Example of removing immediate left-recursion

- Need to remove left-recursion to come out an LL(1) grammar. Example:
 - Grammar $G: A \to A\alpha \mid \beta$, where β does not start with A
 - Revised grammar G':

$$\begin{array}{l} \triangleright \ A \to \beta A' \\ \triangleright \ A' \to \alpha A' \mid \epsilon \end{array}$$

• The above two grammars are equivalent. That is $L(G) \equiv L(G')$.



Rule for removing immediate left-recursion

- Both grammars recognize the same string, but G' is not left-recursive.
- However, G is clear and intuitive.
- General rule for removing immediately left-recursion:
 - **Replace** $A \to A\alpha_1 \mid \cdots \mid A\alpha_m \mid \beta_1 \mid \cdots \mid \beta_n$
 - with

 $\triangleright A \to \beta_1 A' \mid \dots \mid \beta_n A'$ $\triangleright A' \to \alpha_1 A' \mid \dots \mid \alpha_m A' \mid \epsilon$

- This rule does not work if $\alpha_i = \epsilon$ for some *i*.
 - This is called a *direct cycle* in a grammar.
- May need to worry about whether the semantics are equivalent between the original grammar and the transformed grammar.

Algorithm 4.1

- Algorithm 4.1 systematically eliminates left recursion and works only if the input grammar has no cycles or ϵ -productions.
 - $\triangleright Cycle: A \stackrel{+}{\Longrightarrow} A$
 - $\triangleright \ \epsilon$ -production: $A \rightarrow \epsilon$
 - ▷ It is possible to remove cycles and all but one ϵ -production using other algorithms.
 - Input: grammar G without cycles and ε-productions.
 Output: An equivalent grammar without left recursion.
 Number the nonterminals in some order A₁, A₂,..., A_n
 for i = 1 to n do

 for j = 1 to i − 1 do
 replace A_i → A_jγ
 with A_i → δ₁γ | ··· | δ_kγ
 where A_j → δ₁ | ··· | δ_k are all the current A_j-productions.

 Eliminate immediate left-recursion for A_i
 New nonterminals generated above are numbered A_{i+n}

Algorithm 4.1 — Discussions

Intuition:

- Consider only the productions where the leftmost item on the right hand side are nonterminals.
- If it is always the case that

 $\triangleright A_i \stackrel{+}{\Longrightarrow} A_j \alpha \text{ implies } i < j, \text{ then }$

it is not possible to have left-recursion.

- Why cycles are not allowed?
 - For the procedure of removing immediate left-recursion.
- Why *e*-productions are not allowed?
 - Inside the loop, when $A_j \to \epsilon$, that is some $\delta_g = \epsilon$, and the prefix of γ is some A_k where k < i, it generates $A_i \to A_k$, k < i.

Trace an instance of Algorithm 4.1

- After each $i\text{-loop, only productions of the form }A_i \to A_k\gamma\text{, } i < k$ remain.
- i = 1• allow $A_1 \rightarrow A_k \alpha$, $\forall k$ before removing immediate left-recursion • remove immediate left-recursion for A_1 • i = 2• j = 1: replace $A_2 \rightarrow A_1 \gamma$ by $A_2 \rightarrow (A_{k_1} \alpha_1 | \cdots | A_{k_p} \alpha_p) \gamma$, where $A_1 \rightarrow (A_{k_1} \alpha_1 | \cdots | A_{k_p} \alpha_p)$ and $k_j > 1 \forall k_j$ • remove immediate left-recursion for A_2 • i = 3• j = 1: replace $A_3 \rightarrow A_1 \gamma_1$ • j = 2: replace $A_3 \rightarrow A_2 \gamma_2$ • remove immediate left-recursion for A_3

Example

• Original Grammar:

- (1) $S \rightarrow Aa \mid b$
- (2) $A \rightarrow Ac \mid Sd \mid e$

• Ordering of nonterminals: $S \equiv A_1$ and $A \equiv A_2$.

• i = 1

- do nothing as there is no immediate left-recursion for ${\cal S}$

• i = 2

- replace $A \to Sd$ by $A \to Aad \mid bd$
- hence (2) becomes $A \rightarrow Ac \mid Aad \mid bd \mid e$
- after removing immediate left-recursion:
 - $\begin{array}{l} \triangleright \ A \to b dA' \mid eA' \\ \triangleright \ A' \to cA' \mid a dA' \mid \epsilon \end{array}$

resulting grammar:

$$\begin{array}{l} \triangleright \hspace{0.2cm} S \to Aa \mid b \\ \triangleright \hspace{0.2cm} A \to bdA' \mid eA' \\ \triangleright \hspace{0.2cm} A' \to cA' \mid adA' \mid \epsilon \end{array}$$

Second property for non-LL(1) grammars

Theorem 2: G is not LL(1) if a nonterminal has two productions whose right-hand-sides have a common prefix.

▶ Have left-factors.

Example:

•
$$\dot{S} \rightarrow (S) \mid ()$$

- In this example, the common prefix is "(".
- This problem can be solved by using the left-factoring trick.

•
$$A \to \alpha \beta_1 \mid \alpha \beta_2$$

- Transform to:
 - $\begin{array}{c|c} \triangleright & A \to \alpha A' \\ \triangleright & A' \to \beta_1 \mid \beta_2 \end{array}$

• Example:

- $\underline{S} \to (S) \mid ()$
- Transform to

$$\triangleright S \to (S' \\ \triangleright S' \to S) \mid)$$

Algorithm for left-factoring

- Input: context free grammar G
- Output: equivalent left-factored context-free grammar G'
- for each nonterminal A do
 - find the longest non- ϵ prefix α that is common to right-hand sides of two or more productions;
 - replace

 $\triangleright A \to \alpha \beta_1 \mid \cdots \mid \alpha \beta_n \mid \gamma_1 \mid \cdots \mid \gamma_m$

with

 $\triangleright A \to \alpha A' \mid \gamma_1 \mid \dots \mid \gamma_m$ $\triangleright A' \to \beta_1 \mid \dots \mid \beta_n$

 repeat the above process until A has no two productions with a common prefix;

Left-factoring and left-recursion removal

• Original grammar:

$S \to (S) \mid SS \mid ()$

To remove immediate left-recursion, we have

- $S \rightarrow (S)S' \mid ()S'$
- $S' \to SS' \mid \epsilon$
- To do left-factoring, we have
 - $S \to (S''$
 - $S'' \to S)S' \mid)S'$
 - $S' \to SS' \mid \epsilon$

• A grammar is not LL(1) if it

- is left recursive or
- has left-factors.

However, grammars that are not left recursive and have no left-factors may still not be LL(1).

Definition of LL(1) grammars

- To see if a grammar is LL(1), we need to compute its FIRST and FOLLOW sets, which are used to build its parsing table.
 FIRST sets:
 - Definition: let α be a sequence of terminals and/or nonterminals or ϵ
 - \triangleright FIRST($\alpha)$ is the set of terminals that begin the strings derivable from α

 $\triangleright \text{ if } \alpha \text{ can derive } \epsilon, \text{ then } \epsilon \in \textbf{FIRST}(\alpha)$

• FIRST(α) = { $t \mid (t \text{ is a terminal and } \alpha \stackrel{*}{\Longrightarrow} t\beta)$ or ($t = \epsilon$ and $\alpha \stackrel{*}{\Longrightarrow} \epsilon$)}

How to compute FIRST(X)? (1/2)

- X is a singleton.
- X is a terminal:
 - **FIRST** $(X) = \{X\}$
- X is ϵ :
 - **FIRST** $(X) = \{\epsilon\}$
- X is a nonterminal: must check all productions with X on the left-hand side. That is,

for all $X \to Y_1 Y_2 \cdots Y_k$ perform the following steps:

- put $FIRST(Y_1) \{\epsilon\}$ into FIRST(X)
- if $\epsilon \in \mathsf{FIRST}(Y_1)$, then put $\mathsf{FIRST}(Y_2) - \{\epsilon\}$ into $\mathsf{FIRST}(X)$
- • •
- if $\epsilon \in \mathsf{FIRST}(Y_{k-1})$, then put $\mathsf{FIRST}(Y_k) \{\epsilon\}$ into $\mathsf{FIRST}(X)$
- if $\epsilon \in \mathsf{FIRST}(Y_i)$ for each $1 \leq i \leq k$, then put ϵ into $\mathsf{FIRST}(X)$

How to compute FIRST(X)? (2/2)

• Algorithm to compute FIRST's for all non-terminals.

- compute FIRST's for ϵ and all terminals;
- initialize FIRST's for all non-terminals to ∅;
- Repeat

for all nonterminals X do

 \triangleright apply the steps to compute FIRST(X)

- Until no items can be added to any FIRST set;
- The time complexity of this algorithm.
 - at least one item, terminal or ϵ , is added to some FIRST set in an iteration;
 - total number of items in all FIRST sets are $(|T|+1) \cdot |N|$, where T is the set of terminals and N is the set of nonterminals.
 - $O(|N|^2 \cdot |T|)$.

Example for computing $\mathsf{FIRST}(X)$

 Start with computing FIRST for the last production and walk your way up.

Grammar $E \rightarrow E'T$ $E' \rightarrow -TE' \mid \epsilon$ $T \rightarrow FT'$ $T' \rightarrow / FT' \mid \epsilon$ $F \rightarrow int \mid (E)$ $H \rightarrow E'T$ $FIRST(F) = \{int, (\} \}$ $FIRST(T') = \{/, \epsilon\}$ $FIRST(T) = \{int, (\}, \\since \ \epsilon \not\in FIRST(F), \text{ that's all.}$ $FIRST(E') = \{-, \epsilon\}$ $FIRST(H) = \{-, int, (\}, \\since \ \epsilon \in FIRST(E').$ $FIRST(\epsilon) = \{\epsilon\}$

How to compute $FIRST(\alpha)$?

- Given FIRST(X) for each terminal and nonterminal X, compute $FIRST(\alpha)$ for α being a sequence of terminals and/or nonterminals
- To build a parsing table, we need $FIRST(\alpha)$ for all α such that $X \to \alpha$ is a production in the grammar.
- Let $\alpha = X_1 X_2 \cdots X_n$. Perform the following steps in sequence:
 - put $FIRST(X_1) \{\epsilon\}$ into $FIRST(\alpha)$
 - if $\epsilon \in \mathsf{FIRST}(X_1)$, then put $\mathsf{FIRST}(X_2) \{\epsilon\}$ into $\mathsf{FIRST}(\alpha)$
 - • •
 - if $\epsilon \in \mathsf{FIRST}(X_{n-1})$, then put $\mathsf{FIRST}(X_n) \{\epsilon\}$ into $\mathsf{FIRST}(\alpha)$
 - if $\epsilon \in \mathsf{FIRST}(X_i)$ for each $1 \le i \le n$, then put $\{\epsilon\}$ into $\mathsf{FIRST}(\alpha)$.

Example for computing $\mathsf{FIRST}(\alpha)$

 $\begin{array}{l} \text{Grammar}\\ E \to E'T\\ \hline\\ E' \to -TE' \mid\\ \epsilon\\ T \to FT'\\ T' \to /FT' \mid \epsilon\\ F \to int \mid (E) \end{array}$

 $FIRST(F) = \{int, (\}$

 $FIRST(T') = \{/, \epsilon\}$

FIRST(T) = {int, (}, since $\epsilon \notin FIRST(F)$, that's all.

 $FIRST(E') = \{-, \epsilon\}$

 $FIRST(E) = \{-, int, (\}, since \ \epsilon \in FIRST(E').$

 $FIRST(\epsilon) = \{\epsilon\}$

FIRST(E'T)= $\{-, int, (\}$ $FIRST(-TE') = \{-\}$ $FIRST(\epsilon) = \{\epsilon\}$ FIRST(FT')= $\{int, (\}$ $FIRST(/FT') = \{/\}$ $\textit{FIRST}(\epsilon) = \{\epsilon\}$ $FIRST(int) = \{int\}$ $FIRST((E)) = \{(\}$

• **FIRST**
$$(T'E') =$$

$$\triangleright (FIRST(T') - \{\epsilon\}) \cup \\ \triangleright (FIRST(E') - \{\epsilon\}) \cup \\ \triangleright \{\epsilon\}$$

Why do we need $\mathsf{FIRST}(\alpha)$?

$\hfill\blacksquare$ During parsing, suppose top-of-stack is a nonterminal A and there are several choices

- $A \rightarrow \alpha_1$
- $A \to \alpha_2$
- • •
- $A \to \alpha_k$

for derivation, and the current lookahead token is \boldsymbol{a}

- If $a \in FIRST(\alpha_i)$, then pick $A \to \alpha_i$ for derivation, pop, and then push α_i .
- If a is in several FIRST (α_i) 's, then the grammar is not LL(1).
- Question: if a is not in any FIRST (α_i) , does this mean the input stream cannot be accepted?
 - Maybe not!
 - What happen if ϵ is in some FIRST (α_i) ?

FOLLOW sets

- Assume there is a special EOF symbol "\$" ends every input.
- Add a new terminal "\$".
- Definition: for a nonterminal X, FOLLOW(X) is the set of terminals that can appear immediately to the right of X in some partial derivation.

That is, $S \stackrel{+}{\Longrightarrow} \alpha_1 X t \alpha_2$, where t is a terminal.

- If X can be the rightmost symbol in a derivation, then $\$ is in ${\rm FOLLOW}(X).$
- FOLLOW(X) =

 $\{t \mid (t \text{ is a terminal and } S \xrightarrow{+} \alpha_1 X t \alpha_2) \text{ or } (t \text{ is } \text{ and } S \xrightarrow{+} \alpha X)\}.$

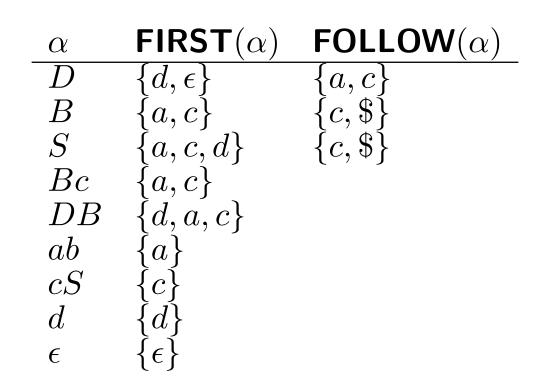
How to compute FOLLOW(X)?

- If X is the starting nonterminal, put \$ into FOLLOW(X).
- Find the productions with X on the right-hand-side.
 - for each production of the form $Y \to \alpha X \beta$, put $\mathsf{FIRST}(\beta) \{\epsilon\}$ into $\mathsf{FOLLOW}(X)$.
 - if $\epsilon \in \mathsf{FIRST}(\beta)$, then put $\mathsf{FOLLOW}(Y)$ into $\mathsf{FOLLOW}(X)$.
 - for each production of the form $Y \to \alpha X$, put FOLLOW(Y) into FOLLOW(X).
- Repeat the above process for all nonterminals until nothing can be added to any FOLLOW set.
- To see if a given grammar is LL(1) and also to build its parsing table:
 - compute $\mathsf{FIRST}(\alpha)$ for every production $X \to \alpha$
 - compute FOLLOW(X) for all nonterminals X
- Note that FIRST and FOLLOW sets are always sets of terminals, plus, perhaps, ϵ for some FIRST sets.

A complete example

Grammar

- $S \rightarrow Bc \mid DB$
- $B \rightarrow ab \mid cS$
- $D \rightarrow d \mid \epsilon$



Why do we need FOLLOW sets?

- Note FOLLOW(S) always includes \$.
- Situation:
 - During parsing, the top-of-stack is a nonterminal X and the lookahead symbol is a.
 - Assume there are several choices for the nest derivation:
 - $\begin{array}{ccc} \triangleright & X \to \alpha_1 \\ \triangleright & \cdots \\ \triangleright & X \to \alpha_k \end{array}$
 - If $a \in \mathsf{FIRST}(\alpha_{g_i})$ for only one g_i , then we use that derivation.
 - If $a \in \mathsf{FIRST}(\alpha_i)$ for two *i*, then this grammar is not LL(1).
 - If $a \notin \mathsf{FIRST}(\alpha_i)$ for all *i*, then this grammar can still be LL(1)!
- If there exists some g_i such that $\alpha_{g_i} \stackrel{*}{\Longrightarrow} \epsilon$ and $a \in \text{FOLLOW}(X)$, then we can can use the derivation $X \to \alpha_{g_i}$.

Grammars that are not LL(1)

• A grammar is not LL(1) if there exists productions

 $A \to \alpha \mid \beta$

and any one of the followings is true:

- **FIRST**(α) \cap **FIRST**(β) $\neq \emptyset$.
- $\epsilon \in \mathsf{FIRST}(\alpha)$ and $\mathsf{FIRST}(\beta) \cap \mathsf{FOLLOW}(A) \neq \emptyset$.
- $\epsilon \in \mathsf{FIRST}(\alpha)$ and $\epsilon \in \mathsf{FIRST}(\beta)$.
- If a grammar is not LL(1), then
 - you cannot write a linear-time predictive parser as described above;

• If a grammar is not LL(1), then we do not know to use the production $A \to \alpha$ or the production $A \to \beta$ when the lookahead symbol is a in the following cases, respectively,

- $a \in \mathbf{FIRST}(\alpha) \cap \mathbf{FIRST}(\beta);$
- $a \in \mathbf{FIRST}(\beta) \cap \mathbf{FOLLOW}(A)$;
- $a \in \mathbf{FOLLOW}(A)$.

A complete example (1/2)

Grammar:

- <prog_head>→ PROG ID <file_list> SEMICOLON
- $\langle file_list \rangle \rightarrow \epsilon \mid L_PAREN \langle file_list \rangle SEMICOLON$

FIRST and FOLLOW sets:

lpha	$\mathrm{FIRST}(\alpha)$	$\mathrm{FOLLOW}(\alpha)$
ϵ	$\{\epsilon\}$	
<prog_head></prog_head>	$\{PROG\}$	$\{\$\}$
<file_list></file_list>	$\{\epsilon, L_PAREN\}$	{SEMICOLON}
PROG ID <file_list> SEMICOLON</file_list>	{PROG}	
$L_PAREN < file_list > SEMICOLON$	LPAREN}	

A complete example (2/2)

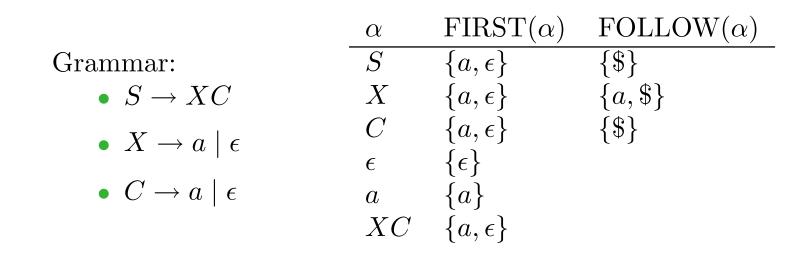
Input: PROG ID SEMICOLON

Input	stack	action
	$< prog_head > $	
PROG	$<$ prog_head> \$	$\operatorname{pop},\operatorname{push}$
PROG	PROG ID $<$ file_list> SEMICOLON \$	match input
ID	ID $<$ file_list> SEMICOLON \$	match input
SEMICOLON	$<$ file_list> SEMICOLON \$	WHAT TO DO?

Last actions:

- Two choices:
 - $\triangleright \ \ < \texttt{file_list} \rightarrow \epsilon \ \ | \ \ L_PAREN < \texttt{file_list} > \textbf{SEMICOLON}$
- SEMICOLON ∉ FIRST(ϵ) and SEMICOLON ∉ FIRST(L_PAREN <file_list> SEMICOLON)
- <file_list $> \stackrel{*}{\Longrightarrow} \epsilon$
- SEMICOLON ∈ FOLLOW(<file_list>)
- Hence we use the derivation <file_list $> \rightarrow \epsilon$

LL(1) parsing table (1/2)



• Check for possible conflicts in $X \rightarrow a \mid \epsilon$.

- **FIRST** $(a) \cap$ **FIRST** $(\epsilon) = \emptyset$
- $\epsilon \in FIRST(\epsilon)$ and $FOLLOW(X) \cap FIRST(a) = \{a\}$ Conflict!!
- $\epsilon \not\in \mathsf{FIRST}(a)$

• Check for possible conflicts in $C \rightarrow a \mid \epsilon$.

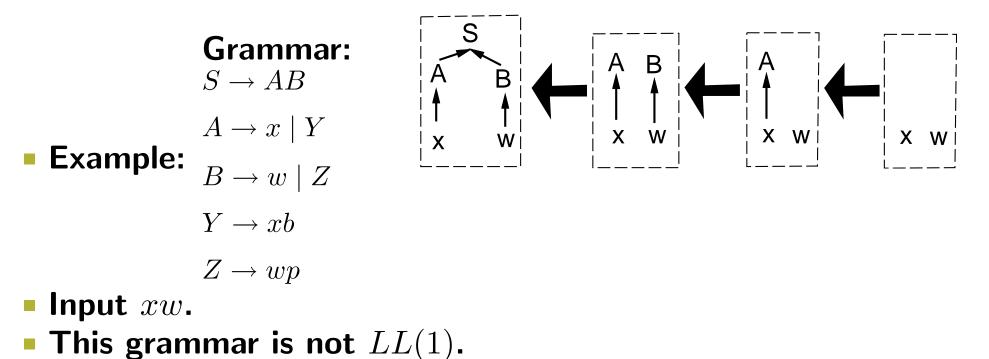
- **FIRST** $(a) \cap$ **FIRST** $(\epsilon) = \emptyset$
- $\epsilon \in \mathsf{FIRST}(\epsilon)$ and $\mathsf{FOLLOW}(C) \cap \mathsf{FIRST}(a) = \emptyset$
- $\epsilon \notin \mathsf{FIRST}(a)$

LL(1) parsing table (2/2)

• Parsing table:
$$\begin{array}{c|c} a & \$ \\ \hline S & S \to XC & S \to XC \\ X & \text{conflict} & X \to \epsilon \\ C & C \to a & C \to \epsilon \end{array}$$

Bottom-up parsing (Shift-reduce parsers)

Intuition: construct the parse tree from the leaves to the root.



Compiler notes #3, Tsan-sheng Hsu, IIS

Definitions (1/2)

Rightmost derivation:

• $S \Longrightarrow_{rm} \alpha$: the rightmost nonterminal is replaced.

• $S \stackrel{+}{\Longrightarrow} \alpha$: α is derived from S using one or more rightmost derivations.

 $\triangleright \alpha$ is called a right-sentential form .

• In the previous example:

$$S \Longrightarrow_{rm} AB \Longrightarrow_{rm} Aw \Longrightarrow_{rm} xw.$$

- Define similarly leftmost derivations.
- handle : a handle for a right-sentential form γ is the combining of the following two information:
 - a production rule $A \rightarrow \beta$ and
 - a position in γ where β can be found.

Definitions (2/2)

• Example: $S \rightarrow aABe$ $A \rightarrow Abc \mid b$ $B \rightarrow d$ input: abbcde

 $\gamma \equiv aAbcde$ is a right-sentential form

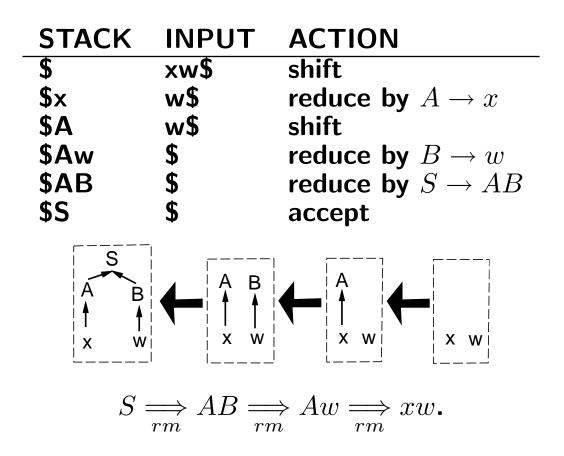
 $A \to Abc$ and position 2 in γ is a handle for γ

- reduce : replace a handle in a right-sentential form with its left-hand-side. In the above example, replace Abc in γ with A.
- A right-most derivation in reverse can be obtained by handle reducing.

STACK implementation

• Four possible actions:

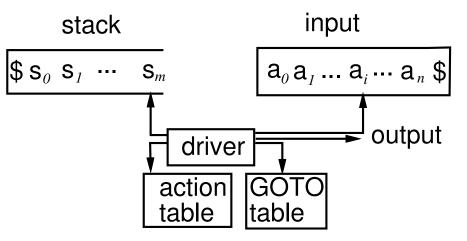
- ▷ shift: shift the input to STACK.
- ▶ reduce: perform a reversed rightmost derivation.
- \triangleright accept
- \triangleright error



Viable prefix

- Definition: the set of prefixes of right sentential forms that can appear on the top of the stack.
- Some prefix cannot appear on the top of the stack during parsing.
 - $x\overline{w}$ is a right sentential form.
 - The prefix xw is not a viable prefix.
 - You cannot have the situation that the suffix of xw is a handle.
- Note: when doing bottom-up, that is reversed rightmost derivation,
 - the first reduction must be from a handle that is a prefix of the input string;
 - it cannot be the case a handle on the right is reduced before a handle on the left in a right sentential form;
 - the handle can be found on the top of the stack;

Model of a shift-reduce parser



- Push-down automata!
- Current state S_m encodes the symbols that has been shifted and the handles that are currently being matched.
- $S_0S_1 \cdots S_ma_ia_{i+1} \cdots a_n$ represents a right sentential form.
- GOTO table:
 - when a "reduce" action is taken, which handle to replace;
- Action table:
 - when a "shift" action is taken, which state currently in, that is, how to group symbols into handles.
- The power of context free grammars is equivalent to nondeterministic push down automata.

LR parsers

By Don Knuth at 1965.

 LR(k): see all of what can be derived from the right side with k input tokens lookahead.

- first L: scan the input from left to right
- second *R*: reverse rightmost derivation
- (k): with k lookahead tokens.

Be able to decide the whereabout of a handle after seeing all of what have been derived so far plus k input tokens lookahead.

$$x_1, x_2, \ldots, \begin{bmatrix} x_i, x_{i+1}, \ldots, x_{i+j}, \\ a \text{ handle } \end{bmatrix} \begin{bmatrix} x_{i+j+1}, \ldots, x_{i+j+k-1}, \\ bookahead tokens \end{bmatrix} \ldots$$

Top-down parsing for LL(k) grammars: be able to choose a production by seeing only the first k symbols that will be derived from that production.

LR(0) parsing

Construct an FSA to recognize all possible viable prefixes.

- An *LR*(0) item (item for short) is a production, with a dot at some position in the RHS (right-hand side). For example:
 - $A \rightarrow XYZ$ $\triangleright A \rightarrow \cdot XYZ$ $\triangleright A \rightarrow X \cdot YZ$ $\triangleright A \rightarrow XY \cdot Z$ $\triangleright A \rightarrow XYZ \cdot$ • $A \rightarrow \epsilon$ $\triangleright A \rightarrow \cdot$

The dot indicates the place of a handle.

- Assume G is a grammar with the starting symbol S.
- Augmented grammar G' is to add a new starting symbol S'and a new production $S' \to S$ to G.
- We assume working on the augmented grammar from now on.

Closure

- The closure operation closure(I), where I is a set of items, is defined by the following algorithm:
 - If $A \to \alpha \cdot B\beta$ is in closure(I), then
 - \triangleright at some point in parsing, we might see a substring derivable from $B\beta$ as input;
 - ▷ if $B \to \gamma$ is a production, we also see a substring derivable from γ at this point.
 - ▶ Thus $B \to \gamma$ should also be in closure(I).

• What does closure(I) mean informally?

- When $A \rightarrow \alpha \cdot B\beta$ is encountered during parsing, then this means we have seen α so far, and expect to see $B\beta$ later before reducing to A.
- At this point if $B \to \gamma$ is a production, then we may also want to see $B \to \cdot \gamma$ in order to reduce to B, and then advance to $A \to \alpha B \cdot \beta$.
- Using closure(I) to record all possible things that we have seen in the past and expect to see in the future.

Example for the closure function

- Example: E' is the new starting symbol, and E is the original starting symbol.
- $E' \rightarrow E$ • $E \rightarrow E + T \mid T$ • $T \rightarrow T * F \mid F$ • $F \rightarrow (E) \mid id$ • $closure(\{E' \rightarrow \cdot E\}) =$ • $\{E' \rightarrow \cdot E,$ • $E \rightarrow \cdot E + T,$ • $E \rightarrow \cdot T,$ • $T \rightarrow \cdot T * F,$ • $T \rightarrow \cdot F,$ • $F \rightarrow \cdot (E),$ • $F \rightarrow \cdot id\}$

GOTO table

- GOTO(I, X), where I is a set of items and X is a legal symbol, means
 - If $A \to \alpha \cdot X\beta$ is in I, then
 - $closure(\{A \to \alpha X \cdot \beta\}) \subseteq GOTO(I, X)$
- Informal meanings:
 - currently we have seen $A \to \alpha \cdot X\beta$
 - expect to see X
 - if we see X,
 - then we should be in the state $closure(\{A \rightarrow \alpha X \cdot \beta\})$.
- Use the GOTO table to denote the state to go to once we are in I and have seen X.

Sets-of-items construction

- Canonical LR(0) items : the set of all possible DFA states, where each state is a set of LR(0) items.
- Algorithm for constructing LR(0) parsing table.
 - $C \leftarrow \{closure(\{S' \rightarrow \cdot S\})\}$

repeat

▶ for each set of items I in C and each grammar symbol X such that GOTO(I, X) ≠ Ø and not in C do
 ▶ add GOTO(I, X) to C

- until no more sets can be added to C
- Kernel of a state: items
 - not of the form $X \to \cdot \beta$ or
 - of the form $S' \to \cdot S$

Given the kernel of a state, all items in the state can be derived.

Example of sets of LR(0) **items**

$$egin{aligned} &I_0 = closure(\{E'
ightarrow \cdot E\}\ \{E'
ightarrow \cdot E,\ &E
ightarrow \cdot E + T,\ &E
ightarrow \cdot T,\ &T
ightarrow \cdot T,\ &T
ightarrow \cdot T st F,\ &T
ightarrow \cdot F,\ &F
ightarrow \cdot (E),\ &F
ightarrow \cdot id \} \end{aligned}$$

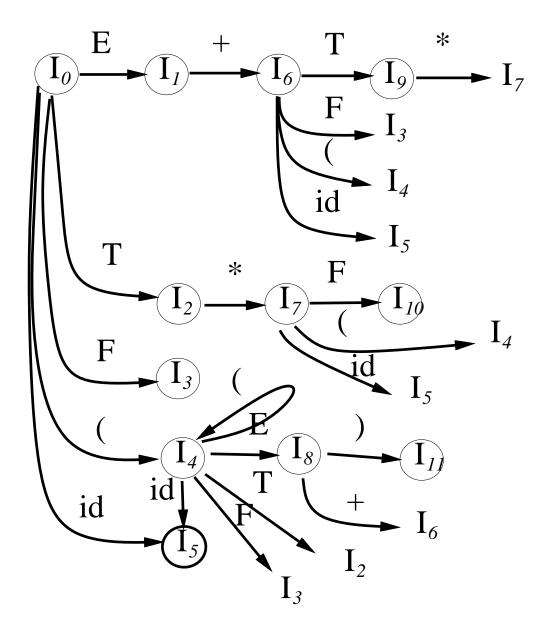
• Canonical LR(0) items:

•
$$I_1 = GOTO(I_0, E) =$$

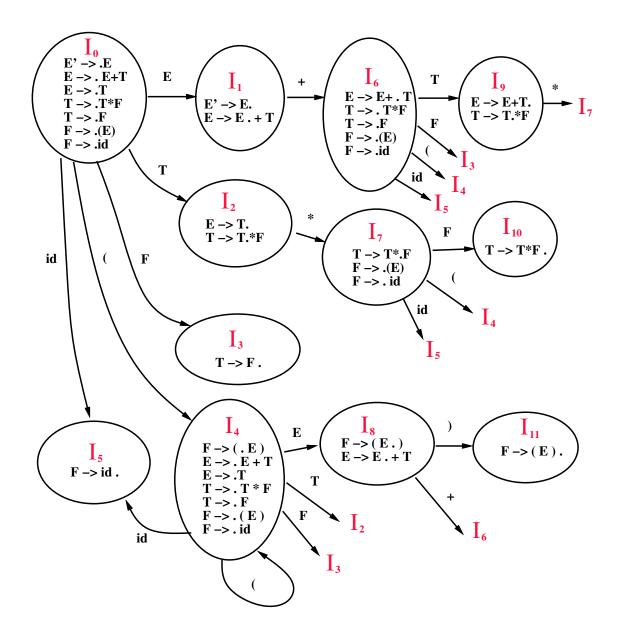
• $\{E' \to E \cdot,$
• $E \to E \cdot +T\}$
• $I_2 = GOTO(I_0, T) =$
• $\{E \to T \cdot,$
• $T \to T \cdot *F\}$

) =

Transition diagram (1/2)



Transition diagram (2/2)



Meaning of LR(0) transition diagram

- E + T* is a viable prefix that can happen on the top of the stack while doing parsing.
 - $\{T \rightarrow T * \cdot F,$

• $F \rightarrow \cdot id$

- after seeing E + T *, we are in state I_7 . $I_7 = \bullet F \rightarrow \cdot(E)$,
- We expect to follow one of the following three possible derivations:
 - $E' \Longrightarrow E$ $E' \Longrightarrow_{rm} E$ $E' \Longrightarrow_{rm} E$ rm $\Longrightarrow_{rm} E + T$ $\Longrightarrow_{rm} E + T$ $\Longrightarrow_{rm} E + T$ $\Longrightarrow_{rm} E + T * F$ $\Longrightarrow_{rm} E + T * F$ $\Longrightarrow_{rm} E + T * F$ $\implies E + T * id$ $\Longrightarrow_{rm} \underline{E + T*}(E)$ $\Longrightarrow E + T * id$ rm $\Longrightarrow E + \underline{T*}F * id$

. . .

Definitions of closure(I) and GOTO(I, X)

 closure(I): a state/configuration during parsing recording all possible things that we are expecting.

• If $A \rightarrow \alpha \cdot B\beta \in I$, then it means

- in the middle of parsing, α is on the top of the stack;
- at this point, we are expecting to see $B\beta$;
- after we saw $B\beta$, we will reduce $\alpha B\beta$ to A and make A top of stack.
- To achieve the goal of seeing $B\beta$, we expect to perform some operations below:
 - We expect to see *B* on the top of the stack first.
 - If $B \to \gamma$ is a production, then it might be the case that we shall see γ on the top of the stack.
 - If it does, we reduce γ to B.
 - Hence we need to include $B \rightarrow \gamma$ into closure(I).
- GOTO(I, X): when we are in the state described by I, and then a new symbol X is pushed into the stack, If $A \to \alpha \cdot X\beta$ is in I, then $closure(\{A \to \alpha X \cdot \beta\}) \subseteq GOTO(I, X)$.

Parsing example

Input: id * id + id

STACK	input	action
\$ I ₀	id*id+id\$	
I_0 id I_5	* id + id\$	shift 5
$I_0 F$	* id + id\$	reduce by $F \to id$
$I_0 \to I_3$	* id + id\$	in I_0 , saw F, goto I_3
$I_0 T I_2$	* id + id\$	reduce by $T \to F$
$I_0 T I_2 * I_7$	$\mathrm{id} + \mathrm{id}\$$	shift 7
$I_0 T I_2 * I_7 $ id I_5	+ id\$	shift 5
$I_0 T I_2 * I_7 F I_{10}$	+ id\$	reduce by $F \to id$
$I_0 T I_2$	+ id\$	reduce by $T \to F$
$I_0 \to I_1$	+ id\$	reduce by $T \to T * F$
$I_0 \to I_1 + I_6$	$\mathrm{id}\$$	shift 6
$I_0 \to I_1 + I_6 \text{ id } I_5$	\$	shift 5
$I_0 \to I_1 + I_6 \to I_3$	\$	reduce by $F \to id$
• • •	• • •	

LR(0) parsing

- LR parsing without lookahead symbols.
- Constructed from DFA for recognizing viable prefixes.
- In state I_i
 - if $A \to \alpha \cdot a\beta$ is in I_i then perform "shift" while seeing the terminal a in the input, and then go to the state $closure(\{A \to \alpha a \cdot \beta\})$
 - if $A \to \beta$ is in I_i , then perform "reduce by $A \to \beta$ " and then go to the state GOTO(I, A) where I is the state on the top of the stack after removing β
- Conflicts:
 - shift/reduce conflict
 - reduce/reduce conflict
- Very few grammars are LR(0). For example:
 - In I_2 , you can either perform a reduce or a shift when seeing "*" in the input
 - However, it is not possible to have E followed by "*". Thus we should not perform "reduce".
 - Use FOLLOW(E) as look ahead information to resolve some conflicts.

$SLR(1)\ {\rm parsing}\ {\rm algorithm}$

- Using FOLLOW sets to resolve conflicts in constructing SLR(1) parsing table, where the first "S" stands for "simple".
 - Input: an augmented grammar G'
 - Output: the SLR(1) parsing table
- Construct $C = \{I_0, I_1, \dots, I_n\}$ the collection of sets of LR(0) items for G'.
- The parsing table for state I_i is determined as follows:
 - If $A \to \alpha \cdot a\beta$ is in I_i and $GOTO(I_i, a) = I_j$, then $action(I_i, a)$ is "shift j" for a being a terminal.
 - If $A \to \alpha$ is in I_i , then $action(I_i, a)$ is "reduce by $A \to \alpha$ " for all terminal $a \in \mathsf{FOLLOW}(A)$; here $A \neq S'$
 - If $S' \to S$ is in I_i , then $action(I_i, \$)$ is "accept".
- If any conflicts are generated by the above algorithm, we say the grammar is not SLR(1).

SLR(1) parsing table

	action					GOTO			
state	id	+	*	()	\$	E	Т	F
0	s5			s4			1	2	3
1		$\mathbf{s6}$				accept			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		$\mathbf{s6}$			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

ri means reduce by production numbered i.
si means shift and then go to state I_i.
Use FOLLOW sets to resolve some conflicts.

Discussion (1/3)

- Every SLR(1) grammar is unambiguous, but there are many unambiguous grammars that are not SLR(1).
- Example:

•
$$S \to L = R \mid R$$

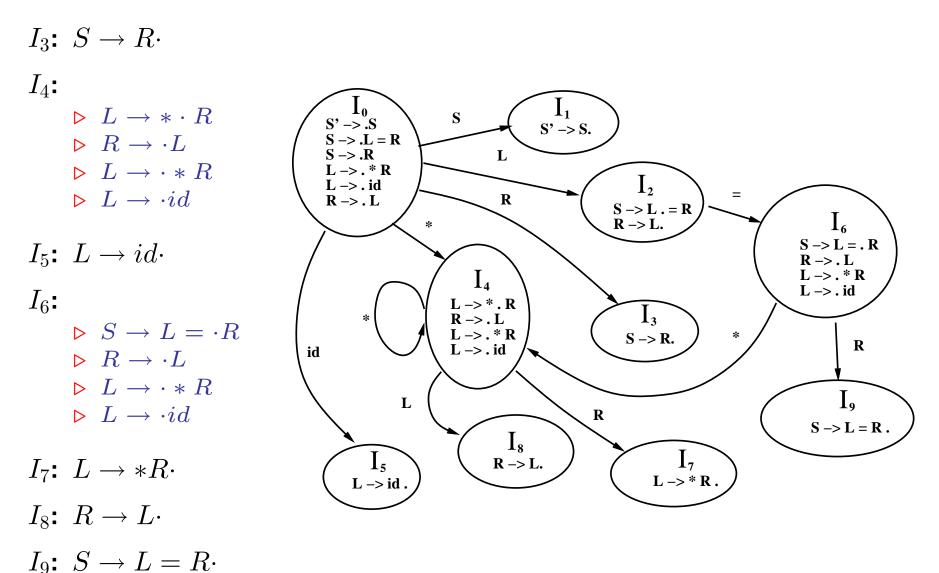
•
$$L \to *R \mid id$$

• $R \to L$

States:

• I_0 : • $S' \rightarrow \cdot S$ • $S \rightarrow \cdot L = R$ • $S \rightarrow \cdot R$ • $L \rightarrow \cdot R$ • $L \rightarrow \cdot id$ • $R \rightarrow \cdot L$ • I_1 : $S' \rightarrow S$. • I_2 : • $R \rightarrow L$.

Discussion (2/3)



Discussion (3/3)

- Suppose the stack has I_0LI_2 and the input is "=". We can either
 - shift 6, or
 - reduce by $R \to L$, since $= \in \mathsf{FOLLOW}(R)$.
- This grammar is ambiguous for SLR(1) parsing.
- However, we should not perform a $R \rightarrow L$ reduction.
 - After performing the reduction, the viable prefix is R;
 - $= \notin \mathsf{FOLLOW}(\$\ddot{R});$
 - $=\in$ **FOLLOW**(**R*);
 - That is to say, we cannot find a right sentential form with the prefix $R = \cdots$.
 - We can find a right sentential form with $\cdots * R = \cdots$

Canonical LR — LR(1)

- In SLR(1) parsing, if $A \to \alpha \cdot$ is in state I_i , and $a \in FOLLOW(A)$, then we perform the reduction $A \to \alpha$.
- However, it is possible that when state I_i is on the top of the stack, we have viable prefix $\beta \alpha$ on the top of the stack, and βA cannot be followed by a.

• In this case, we cannot perform the reduction $A \rightarrow \alpha$.

- It looks difficult to find the FOLLOW sets for every viable prefix.
- We can solve the problem by knowing more left context using the technique of lookahead propagation.

LR(1) items

• An LR(1) item is in the form of

 $[A \rightarrow \alpha \cdot \beta, a]$, where the first field is an LR(0) item and the second field a is a terminal belonging to a subset of FOLLOW(A).

- Intuition: perform a reduction based on an LR(1) item $[A\to\alpha\cdot,a]$ only when the next symbol is a.
- Formally: $[A \rightarrow \alpha \cdot \beta, a]$ is valid (or reachable) for a viable prefix γ if there exists a derivation

$$S \xrightarrow{*}_{rm} \delta A \omega \xrightarrow{}_{rm} \delta \alpha \beta \omega,$$

where

- $\gamma = \delta \alpha$
- either $a \in \mathsf{FIRST}(\omega)$ or
- $\omega = \epsilon$ and a =\$.

LR(1) parsing example

Grammar:

• $S \rightarrow BB$ • $B \rightarrow aB \mid b$

 $S \stackrel{*}{\Longrightarrow} aaBab \stackrel{\longrightarrow}{\Longrightarrow} aaaBab$ viable prefix aaa can reach $[B \rightarrow a \cdot B, a]$

$$S \stackrel{*}{\Longrightarrow} BaB \stackrel{}{\Longrightarrow} BaaB$$

viable prefix Baa can reach $[B \rightarrow a \cdot B, \$]$

Finding all LR(1) items

- Ideas: redefine the closure function.
 - Suppose $[A \rightarrow \alpha \cdot B\beta, a]$ is valid for a viable prefix $\gamma \equiv \delta \alpha$.
 - In other words,

$$S \stackrel{*}{\Longrightarrow} \delta Aa\omega \stackrel{*}{\Longrightarrow} \delta \alpha B\beta a\omega.$$

• Then for each production $B\to\eta,$ assume $\beta a\omega$ derives the sequence of terminals bc.

$$S \stackrel{*}{\Longrightarrow} \delta \alpha B \boxed{\beta a \omega} \stackrel{*}{\Longrightarrow} \delta \alpha B \boxed{bc} \stackrel{*}{\Longrightarrow} \delta \alpha \boxed{\eta} bc$$

Thus $[B \rightarrow \eta, b]$ is also valid for γ for each $b \in \mathsf{FIRST}(\beta a)$. Note a is a terminal. So $\mathsf{FIRST}(\beta a) = \mathsf{FIRST}(\beta a\omega)$.

Lookahead propagation .

Algorithm for LR(1) parsers

• $closure_1(I)$ repeat ▷ for each item $[A \rightarrow \alpha \cdot B\beta, a]$ in I do if $B \to \eta$ is in G' \triangleright then add $[B \rightarrow \eta, b]$ to I for each $b \in FIRST(\beta a)$ \triangleright until no more items can be added to I return I • $GOTO_1(I, X)$ • let $J = \{ [A \to \alpha X \cdot \beta, a] \mid [A \to \alpha \cdot X\beta, a] \in I \};$ • return $closure_1(J)$ • items(G')• $C \leftarrow \{closure_1(\{[S' \rightarrow \cdot S, \$]\})\}$ repeat \triangleright for each set of items $I \in C$ and each grammar symbol X such that $GOTO_1(I, X) \neq \emptyset$ and $GOTO_1(I, X) \notin \overline{C}$ do add $GOTO_1(I, X)$ to C \triangleright • until no more sets of items can be added to C

Example for constructing LR(1) closures

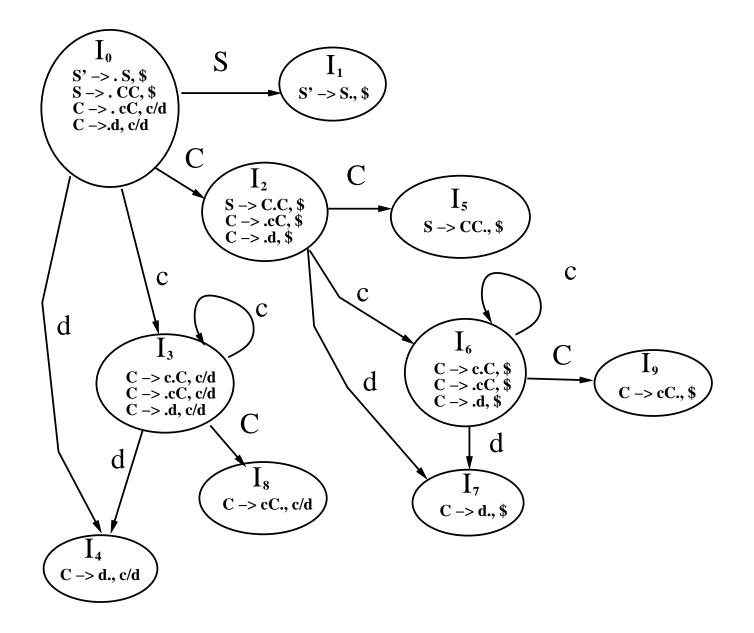
Grammar:

- $S' \to S$
- $S \to CC$
- $C \to cC \mid d$
- $closure_1(\{[S' \rightarrow \cdot S, \$]\}) =$
 - $\{[S' \rightarrow \cdot S, \$],$
 - $[S \rightarrow \cdot CC, \$],$
 - $[C \rightarrow cC, c/d],$
 - $[C \rightarrow \cdot d, c/d]$

• Note:

- **FIRST**(ϵ \$) = {\$}
- **FIRST** $(C\$) = \{c, d\}$
- $[C \rightarrow \cdot cC, c/d]$ means
 - $\triangleright [C \to \cdot cC, c] \text{ and}$ $\triangleright [C \to \cdot cC, d].$

LR(1) Transition diagram



LR(1) parsing example

Input cdccd

STACK	INPUT	ACTION
$\$ I_0$	cdccd\$	
$I_0 \subset I_3$	dccd	shift 3
$I_0 \subset I_3 \subset I_4$	ccd	shift 4
$I_0 \subset I_3 \subset I_8$	ccd	reduce by $C \to d$
$I_0 \subset I_2$	ccd	reduce by $C \to cC$
$I_0 \subset I_2 \subset I_6$	$\mathrm{cd}\$$	shift 6
$I_0 \subset I_2 \subset I_6 \subset I_6$	d\$	shift 6
$I_0 \subset I_2 \subset I_6 \subset I_6$	d\$	shift 6
$I_0 \subset I_2 \subset I_6 \subset I_6 \subset I_7$	\$	shift 7
$I_0 \subset I_2 \subset I_6 \subset I_6 \subset I_9$	\$	reduce by $C \to cC$
$I_0 \subset I_2 \subset I_6 \subset I_9$	\$	reduce by $C \to cC$
$I_0 \subset I_2 \subset I_5$	\$	reduce by $S \to CC$
$I_0 \to I_1$	\$	reduce by $S' \to S$
$I_0 S'$	\$	accept

Generating LR(1) parsing table

• Construction of canonical LR(1) parsing tables.

- Input: an augmented grammar G^\prime
- Output: the canonical LR(1) parsing table, i.e., the $ACTION_1$ table
- Construct $C = \{I_0, I_1, \ldots, I_n\}$ the collection of sets of LR(1) items form G'.

Action table is constructed as follows:

- if $[A \to \alpha \cdot a\beta, b] \in I_i$ and $GOTO_1(I_i, a) = I_j$, then $action_1[I_i, a] =$ "shift j" for a is a terminal.
- if $[A \to \alpha \cdot, a] \in I_i$ and $A \neq S'$, then $action_1[I_i, a] =$ "reduce by $A \to \alpha$ "
- if $[S' \rightarrow S., \$] \in I_i$, then $action_1[I_i, \$] =$ "accept."

If conflicts result from the above rules, then the grammar is not LR(1).

- The initial state of the parser is the one constructed from the set containing the item $[S'\to\cdot S,\$].$

Example of an LR(1) parsing table

	action_1		GOTO ₁		
state	С	d	\$	S	С
0	s3	s4		1	2
1			accept		
$\frac{2}{3}$	$\mathbf{s6}$	s7			5
	s3	s4			8
4	r3	r3			
5			r1		
6	$\mathbf{s6}$	s7			9
7			r3		
8	r2	r2			
9			r2		

• Canonical LR(1) parser:

- Most powerful!
- Has too many states and thus occupy too much space.

LALR(1) parser — Lookahead LR

- The method that is often used in practice.
- Most common syntactic constructs of programming languages can be expressed conveniently by an LALR(1) grammar.
- SLR(1) and LALR(1) always have the same number of states.
- Number of states is about 1/10 of that of LR(1).
- Simple observation:
 - an LR(1) item is of the form $[A \rightarrow \alpha \cdot \beta, c]$
- We call $A \to \alpha \cdot \beta$ the first component .
- \bullet Definition: in an LR(1) state, set of first components is called its $\ {\rm core}$.

Intuition for LALR(1) grammars

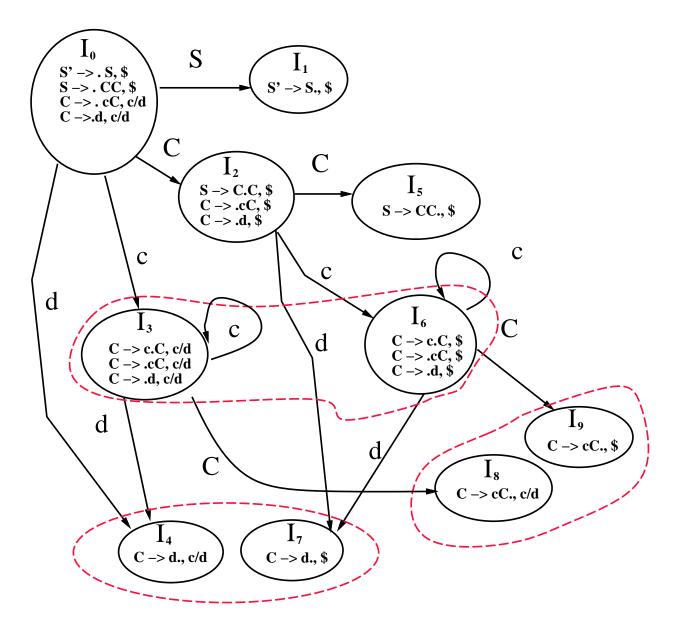
- In an LR(1) parser, it is a common thing that several states only differ in lookahead symbols, but have the same core.
- To reduce the number of states, we might want to merge states with the same core.
 - If I_4 and I_7 are merged, then the new state is called $I_{4,7}$
- After merging the states, revise the *GOTO*₁ table accordingly.
- Merging of states can never produce a shift-reduce conflict that was not present in one of the original states.

•
$$I_1 = \{ [A \to \alpha \cdot, a], \ldots \}$$

•
$$I_2 = \{ [B \rightarrow \beta \cdot a\gamma, b], \ldots \}$$

- For I_1 , we perform a reduce on a.
- For I_2 , we perform a shift on a.
- Merging I_1 and I_2 , the new state $I_{1,2}$ has shift-reduce conflicts.
- This is impossible!
- In the original table, I_1 and I_2 have the same core.
- $[A \to \alpha \cdot, c] \in I_2$ and $[B \to \beta \cdot a\gamma, d] \in I_1$.
- The shift-reduce conflict already occurs in I_1 and I_2 .

LALR(1) Transition diagram



Possible new conflicts from LALR(1)

- May produce a new reduce-reduce conflict.
- For example (textbook page 238), grammar:

•
$$S' \to S$$

•
$$S \rightarrow aAd \mid bBf \mid aBe \mid bAe$$

- $A \to c$
- $B \rightarrow c$
- The language recognized by this grammar is {*acd*, *ace*, *bcd*, *bce*}.
- You may check that this grammar is LR(1) by constructing the sets of items.
- You will find the set of items $\{[A \to c \cdot, d], [B \to c \cdot, e]\}$ is valid for the viable prefix ac, and $\{[A \to c \cdot, e], [B \to c \cdot, d]\}$ is valid for the viable prefix bc.
- Neither of these sets generates a conflict, and their cores are the same. However, their union, which is

$$\{ [A \to c \cdot, d/e], \\ [B \to c \cdot, d/e] \}$$

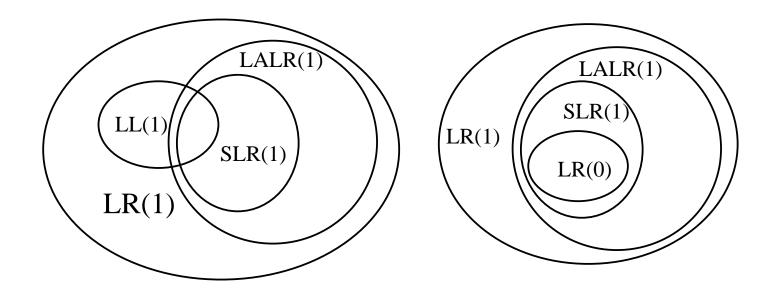
generates a reduce-reduce conflict, since reductions by both $A \to c$ and $B \to c$ are called for on inputs d and e.

How to construct LALR(1) parsing table

Naive approach:

- Construct LR(1) parsing table, which takes lots of intermediate spaces.
- Merging states.
- Space efficient methods to construct an LALR(1) parsing table are known.
 - Construction and merging on the fly.

Summary



- LR(1) and LALR(1) can almost handle all programming languages, but LALR(1) is easier to write and uses much less space.
- LL(1) is easier to understand, but cannot handle several important common-language features.