
About Final Project

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1

Language definitions

A static scoping language called P .
• PASCAL-like;
• lexical scoping;
• block structure;
• nested procedure with recursion;
• case sensitive;
• using reserved words;

. All reserved words are upper cased.

• use “;” as the statement terminator;
• use “,” as the list separator.

Requirements:
• using LEX and YACC
• generate C-- intermediate code

. latest version: v 2.3

• using C compiler to translate C-- code into machine object code

Compiler notes #10, 20060703, Tsan-sheng Hsu 2

Template of a program (1/3)

header:
. PROGRAM name

constant definitions: optional
. CONST
. single-name = (constant | a previously declared constant name); | ε
. · · ·
. ENDCONST

type definitions: optional
. TYPE
. single-name = (default type | previously defined type name); | ε
. · · ·
. ENDTYPE

variable declarations: optional
. VAR
. non-empty-list-of-names : type; | ε
. · · ·
. ENDVAR

Compiler notes #10, 20060703, Tsan-sheng Hsu 3

Template of a program (2/3)

procedure/function definition: can have 0, 1, 2, ... such
definitions.

. PROCEDURE name parameters ; |
FUNCTION name parameters : type;

. constant definitions: optional

. type definitions: optional

. variable definitions: optional

. (procedure/function definition)∗

. block of statements

parameters: ε | () | (lists)
. non-empty-list-of-names : type | VAR non-empty-list-of-names : type
. entries are separated by “;”
. do not need “;” for the last entry

Compiler notes #10, 20060703, Tsan-sheng Hsu 4

Template of a program (3/3)

block of statements:
• example:

. BEGIN

. variable declarations: optional

. (statement | block of statements)∗

. END

• variables declared inside a block are different, in term of scope, from
the variables declared before a block, that is in the header area.

Compiler notes #10, 20060703, Tsan-sheng Hsu 5

Example
PRORGAM main
CONST %% can be empty or completely missing

cons360 = 360; %% a legal name on the left, a legal constant on the right
myfloat = 3.6;

ENDCONST
TYPE %% can be empty or completely missing
mytype = ARRAY[1..10] OF INTEGER;
ENDTYPE
VAR %% can be empty or completely missing

x : ARRAY[-3 .. 5] OF INTEGER;
y : mytype;

ENDVAR
FUNCTION foo(x,y : INTEGER): INTEGER;
BEGIN

foo := x * x - 3;
END
BEGIN

x[5] := y[7] + cons360;
BEGIN

VAR
w, x, z: INTEGER;

ENDVAR
x := foo(y[4]);
WRITE(x);
WRITESP();
WRITE(y);
WRITELN();

END
END

Compiler notes #10, 20060703, Tsan-sheng Hsu 6

Constants and names

Format of constants:
. Allow leading zeros.
. In the decimal system, no binary or octal.
. When constants cannot be represented by 32 bits, then they cause overflow

errors.
. REAL constant: integer.integer.
. string constant: C style.

names of variable, program, procedure or function:
• Legal C variable names;
• Length of variable names: from 1 to 1024 characters;
• Using ASCII encoding;
• Names of program, procedure or function cannot be the same with

variables or other names in the same scope;

Compiler notes #10, 20060703, Tsan-sheng Hsu 7

Data types and variables

elementary types:
. INTEGER: 32-bit signed
. REAL: 32-bit
. INTEGER and REAL are not compatible types
. New type defined is not elementary even when it is only renaming

aggregate types:
. 1-D array: ARRAY [lower .. upper] OF elementary type;
. multi-D array: row major

ARRAY [lower1 .. upper1,lower2 .. upper2,...] OF elementary type;
. lower and upper are integer constants and lower <= upper.
. There is no space inside “..”, but there can be white spaces around “..”.
. there can be spaces between ARRAY and [.

type equivalence: name equivalence
. check for incompatible types

Compiler notes #10, 20060703, Tsan-sheng Hsu 8

I/O statements

READ(non-empty-list-of-variables)
• each variable must be of the type INTEGER or REAL;
• data types of variables can be mixing;
• variables are separated by “,”;

WRITE(non-empty-list-of-variables/constants)
• each variable/constant must be of the type INTEGER or REAL;
• data types of variables/constants can be mixing;
• variables are separated by “,”;
• there is one blank in between two variables;

WRITESP() — output a single space
• white spaces are allowed around and in “()”

WRITELN() — write a new line
WRITESTRING(a C-string) — output a string in C format
Note: in general, white spaces are allowed around “(“ and “)”.

Compiler notes #10, 20060703, Tsan-sheng Hsu 9

Procedure and function (1/3)

Procedure: one that does not return anything
• Can only be called as

. procedure();

Function: one returns a value of the elementary type
• The function name is a variable holding the returned value.
• This variable has no r-value.

. If this name appears on the right hand side of “:=” then it is a function
call.

Procedure and function names:
• Their scope equals to the scope declaring them.
• Procedure/function names are also used at the same time in the scope

of their body.
. One cannot declare a variable named “www” inside a proce-

dure/function named “www”.

Compiler notes #10, 20060703, Tsan-sheng Hsu 10

Procedure and function (2/3)

PROCEDURE p(x,y: INTEGER; VAR z: REAL);
VAR

p : REAL; %% this is illegal
ENDVAR
FUNCTION foo(x:INTEGER): INTEGER; %% return value is INTEGER
VAR

foo : REAL; %% this is illegal
ENDVAR
BEGIN

foo := x * x;
END

BEGIN
y := foo(x);

END

Compiler notes #10, 20060703, Tsan-sheng Hsu 11

Procedure and function (3/3)

Parameters:
• call-by-value

. name : type

• call-by-reference
. VAR name : type

Example:

PROCEDURE p(x,y: INTEGER; VAR z: REAL);
FUNCTION foo(x:INTEGER): INTEGER; %% return value is INTEGER
BEGIN

foo := x * x;
END

BEGIN
y := foo(x);

END

Compiler notes #10, 20060703, Tsan-sheng Hsu 12

Statements

One line contains at most one statement.
• comments : from %% to the rest of the line
• “;” is statement terminator
• a blank line is legal, but a line with only “;” is not legal;

Any statement or declaration must be written in one line.
• For example: header of a procedure

Assignments and I/O statements.
Procedure/function call statements.

• p(100,200,w)
• p()
• The main program can recursively call itself.
• Must check matched number and types of arguments.

Return statement,
• RETURN;

. For a function, it automatically retrieve the current return value stored
in the variable with the name equaling the function name.

Compiler notes #10, 20060703, Tsan-sheng Hsu 13

Assignment and swapping

assignment: :=
. variable := expression;
. must be of the same type;
. check for incompatible types;

swap: <->

a <-> b; %% swaps the content of two variables

. swap two variables of identical types using name equivalence;

. can be of any type;

Compiler notes #10, 20060703, Tsan-sheng Hsu 14

Operators

precedence and associativity: same with the ANSI C language.
arithmetic: +,−, ∗, /, MOD, where MOD is remainder;

. MOD is only for INTEGERS;

logical: OR,AND, NOT, XOR
comparison: >,<,=, <=, >=, <>

. Must between data of identical elementary type;

Compiler notes #10, 20060703, Tsan-sheng Hsu 15

Expressions

arithmetic expression:
• operations on integers/reals
• no auto-type conversion
• detect incompatible types
• can have “(” and “)”
• Example:

. (x + y − 3) ∗ 4 + 5

boolean expression: no short-circuited evaluation.
• Contents:

. Basics: comparisons between equivalent-typed arithmetic expressions.

. Apply logical operator on the above basics.

• can have “(” and “)”
• Example:

. (x > y) OR (z >= 3.0)

• The result of a boolean expression cannot be saved into any variable.

Compiler notes #10, 20060703, Tsan-sheng Hsu 16

Conditional statements

IF ... THEN ... ENDIF;
IF ... THEN ... ELSE ... ENDIF;

IF boolean-expression
THEN

statement / block of statments
ENDIF;

IF boolean-expression
THEN

statement / block of statments
ELSE

statement / block of statments
ENDIF;

Compiler notes #10, 20060703, Tsan-sheng Hsu 17

Case statements

CASE expression OF
constant_1 : statement/block of statment
constant_2 : statement/block of statment
....

[optional]
OTHERWISE : statement/block of statment

ENDCASE;
. the types of constanti and expression must be equivalent;

. only allow integers;

. after one constant is matched, the statement terminates; no need to write
“break” inside each case;

. OTHERWISE is for the “default” case and must be the last entry.

Compiler notes #10, 20060703, Tsan-sheng Hsu 18

For loop

Two different formats

/* add 1 at a time */
FOR var := int-expression-1 TO int-expression-2 DO
statement / block of statements

/* minus 1 at a time */
FOR var := int-expression-1 DOWNTO int-expression-2 DO
statement / block of statements

. var must be a declared integer variable

. if the loop is not executed, then the value of the loop variable stays unchanged

. int-expression-1 and int-expression-2 are evaluated only once when the loop
is first entered

. if a loop is entered, then the value of var must be int-expression-2 after it is
finished

Compiler notes #10, 20060703, Tsan-sheng Hsu 19

Examples of for loops

i:=3;
FOR i:=1000 TO 10 DO
BEGIN
...
END
WRITE(i); %% i is 3

FOR i:=1 TO 10 DO
BEGIN
...
END
WRITE(i); %% i is 10

FOR i:=10 DOWNTO 2 DO
BEGIN
...
END
WRITE(i); %% i is 2

Compiler notes #10, 20060703, Tsan-sheng Hsu 20

While loop

while loop

WHILE boolean-expression DO
statement / block of statments

Compiler notes #10, 20060703, Tsan-sheng Hsu 21

Scores

Teams
• Two persons per team
• One person per team: project score ∗1.1

Phases: in this order.
• 1. (25%) simple expression language with two data types and block

structure
• 2. (30%) constant and typedef
• 3. (35%) 1-D array and then multi-D array
• 4. (50%) boolean expressions, conditional, branching and looping

statements
• 5. (70%) non-nested procedure/function with call-by-value parameters

and recursive calls
• 6. (80%) call-by-reference parameters
• 7. (100%) nested procedure/function

Compiler notes #10, 20060703, Tsan-sheng Hsu 22

Bonus

Do these only when everything required is done.
• record: + 10%

. RECORD a,b:INTEGER; ENDRECORD;

. A new elementary type

. X.a to access a field

. Need to allow array of records

. Need to allow record having arrays as elements

• pointer: +10 %
. ptr = ^INTEGER;
. To access the content: *ptr
. Need to allow array of pointers
. Need to allow pointer of records
. Do not allow pointer arithmetics
. Can only swap, assign and de-reference.

• run-time/compiler time checking: +10%
. array bounds
. divide by zero for both integer and float

Compiler notes #10, 20060703, Tsan-sheng Hsu 23

Submitted packages (1/2)

Format of your package: check out the TA’s web site.
Your final project package must include

• A make file that produces a compiler with the name “pcompiler”,
compiles and runs all of your test programs.

. “pcompiler file.p”
generates an executable object file “ p.out”
to execute the compiled program: p.out

. “pcompiler -a file.p”
generates a C– code file named “file.out”

• Subdirectories:
. src
. doc
. tests

• Common and fatal errors:
. Using relative path name, not absolute path name.
. Using standard packages, not add hoc ones.
. Setting up the right environments.
. Specify contact information in case of emergency.

Compiler notes #10, 20060703, Tsan-sheng Hsu 24

Submitted packages (1/2)

• Documentation (in PDF, PS, TXT or HTML format):
. Language reference manual: language.xxx
. List of features implemented and their corresponding test programs:

features.xxx
. Implementation manual: internal.xxx contains the implementation de-

tails.
. Other helpful documents: otherX.xxx
. Can merge everything into one document with clearly marked sections

of the above. Call this file document.xxx

• A collection of test programs, inputs and anticipated outputs.
. programX.p: program.
. inputX Y: input test data.
. outputX Y: output data.
. readmeX: documentation for programX, contains the purpose of having

test programX.
. Example: program1.p, input1 1, input1 2, output1 1, output1 2 and

readme1.

Compiler notes #10, 20060703, Tsan-sheng Hsu 25

Grading

Correctness (50%):
• 35%: produce right codes on correct programs in a reasonable amount

of time.
• 15%: detect and report errors on incorrect programs.

Documentation and Testing (30%):
• 20%: manuals.
• 10%: designs of your own set of test programs.

Elegance (20%):
• 5%: algorithmic issues.
• 5%: exact, helpful and nice error reporting.
• 5%: coding.
• 5%: optimization and other helpful features.

Compiler notes #10, 20060703, Tsan-sheng Hsu 26

