Lexical Analyzer — Scanner

ASU Textbook Chapter 3.1, 3.3, 3.4, 3.6, 3.7, 3.5

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/ " tshsu

Main tasks

Read the input characters and produce as output a sequence of

tokens to be used by the parser for syntax analysis.
o tokens: terminal symbols in grammar.

Lexeme : a sequence of characters matched by a given

pattern associated with a token .

Examples:
lexemes pi = 3.1416 ;
° tokens ID ASSIGN FLOAT-LIT SEMI-COL
e patterns:
“_”, and follows by

> identifier (variable name) starts with a letter or “_”,

letters, digits or “_”;

> Hoating point number starts with a string of digits, follows by a dot,
and terminates with another string of digits;

Compiler notes #2, 20060330, Tsan-sheng Hsu

Strings

Definitions.
alphabet : a finite set of symbols or characters;

[
string : a finite sequence of symbols chosen from the alphabet;

[
o |S|: length of a string S;
o empty string: ¢;

Operations.

e concatenation of strings r and y: zy

> ex = xe = x;
» exponention :

> gV

> s

Compiler notes #2, 20060330, Tsan-sheng Hsu

Parts of a string

Parts of a string: example string “necessary”

o prefix : deleting zero or more tailing characters; | eg: “nece”

o suffix : deleting zero or more leading characters; | eg: “ssary”

o substring : deleting prefix and suffix; | eg: “ssa

o subsequence : deleting zero or more not necessarily contiguous sym-

bols; | eg: “ncsay”

o proper prefix, suffix, substring or subsequence: one that cannot equal
to the original string;

Compiler notes #2, 20060330, Tsan-sheng Hsu 4

Language

Language : any set of strings over an alphabet.

Operations on languages:
o union: LUM = {s|se€ Lorsec M};
concatenation: LM = {stls€ L and t € M };

{6}
Ll

L’—LLZ Lif i > 1;
Kleene closure : L* = UX,L;

o Positive closure : LT = UX LY
o L*=L7TU {6}

Compiler notes #2, 20060330, Tsan-sheng Hsu

Regular expressions

A regular expression r denotes a language L(r) which is also
called a regular set.

Operations on regular expressions:

regular language

expression

0 empty set {}

€ the set containing the empty string {¢}
a {a} where q is a legal symbol

r|s L(r)U L(s) — union

S L(r)L(s) — concatenation

r L(r)* — Kleene closure

b {a, b}
|b)(alb) 1aa, ab, ba, bb}
{e,a,aa,aaa,...}

a|a,*b {a,b,ab,aab, ...}

a
Example: (

Compiler notes #2, 20060330, Tsan-sheng Hsu 6

Regular definitions

For simplicity, give names to regular expressions.
o format:
> name — regular expression

o examples:
> digit — 0[1]2]-- -9

> letter — alb|c|---|z|A|B|---|Z
r* rtle
rt rr*
Notational standards: 7’ rle
labc] alb|c
a —z] alblc]|--- |z

Example:
o C variable name: [A — Za — z_|[A — Za — 20 — 9_]*

Compiler notes #2, 20060330, Tsan-sheng Hsu

Non-regular sets

Balanced or nested construct
o Example: if --- then --- else

o Recognized by context free grammars.

Matching strings:

o {wcw}, where w is a string of a’s and b’s and c is a legal symbol.

o Cannot be recognized even using context free grammars.
Remark: anything that needs to “memorize” “non-constant”
amount of information happened in the past cannot be
recognized by regular expressions.

Compiler notes #2, 20060330, Tsan-sheng Hsu 8

Finite state automata (FA)

FA is a mechanism used to recognize tokens specified by a
regular expression.
Definition:
o A finite set of states, i.e., vertices.
o A set of transitions, labeled by characters, i.e., labeled directed edges.
o A starting state, i.e., a vertex with an incoming edge marked with

“start”.
» A set of final (accepting) states, i.e., vertices of concentric circles.

Example: transition graph for the regular expression (abc™)™

a

Sta_ﬂ@ a jL@C\.[C)

Compiler notes #2, 20060330, Tsan-sheng Hsu 9

Transition graph and table for FA

Transition graph:

Sta_l‘t.@ a ji’@c\‘: C>

b | c

a
1

Transition table: 2

N H e

Rows are input symbols.

Columns are current states.

Entries are resulting states.

Along with the table, a starting state and a set of accepting states are
also given.

This is also called a GOTO table.

Compiler notes #2, 20060330, Tsan-sheng Hsu 10

Types of FA's

Deterministic FA (DFA):

e has a unique next state for a transition

e and does not contain e-transitions , that is, a transition takes ¢ as the
input symbol.

Nondeterministic FA (NFA):

e either “could have more than one next state for a transition;”

e or “contains e-transitions.”
o Example: aa*|bb*.

a
b
8\\@

: (D
start —~_~—"
“©®

Compiler notes #2, 20060330, Tsan-sheng Hsu 11

How to execute a DFA

s «— starting state;

while there are inputs and s is a legal state do
Algorithm: s < Table[s, input]

end while

if s € accepting states then ACCEPT else REJECT

Example: input “abccabc”. The accepting path:

—_—

Compiler notes #2, 20060330, Tsan-sheng Hsu 12

How to execute an NFA (informally)

An NFA accepts an input string x if and only if there is some
path in the transition graph initiating from the starting state to
some accepting state such that the edge labels along the path
spell out .

Could have more than one path. (Note DFA has at most one.)

Example: regular expression: (a|b)*abb; input aabb

a
{0,1} 0-20-%1-22-" 3 Accept!

0
1 a a b .
9 0 — 0 —0— 0 — 0 Reject!

Compiler notes #2, 20060330, Tsan-sheng Hsu 13

From regular expressions to NFA’s

Structural decomposition:
o atomic items: (), ¢ and a legal symbol.

starting state for r

I’| S A % T k *
~ | r . ;
€ N FA fOI’ r : Startmg\iater(i I‘_ ________
I start e,
start : —-Cb NFA for r

P —————— -
: € S ——
€ NFA for s I accepting states for r
|
starting state fors =) Lommmmm e I
starting state for r s;arting state for s
N © N i
\ : \ I
|
start NFA forr | ” NFA fors |
|

—
L e e e @ € e l

convert all accepting states in r into non accepting states and
I'S add ¢ —transitions

Compiler notes #2, 20060330, Tsan-sheng Hsu

14

Example: (a|b)*abb

This construction produces only c-transitions, and never pro-
duces multiple transitions for an input symbol.

It is possible to remove all e-transitions from an NFA and
replace them with multiple transitions for an input symbol, and
vice versa.

Compiler notes #2, 20060330, Tsan-sheng Hsu 15

Construction theorems

Theorem #1.:

e Any regular expression can be expressed by an NFA.
e Any NFA can be converted into a DFA.

That is, any regular expression can be expressed by a DFA.

Important operations in converting an NFA to a DFA:

e Find out the set of possible states that can be reached from an NFA
state using e-transitions.

o Find out the set of possible states that can be reached from an NFA
state on an input symbol.

Theorem #2:

o Every DFA can be expressed as a regular expression.
o Every regular expression can be expressed as a DFA.
o DFA and regular expression have the same expressive power.

How about the power of DFA and NFA?

Compiler notes #2, 20060330, Tsan-sheng Hsu 16

Converting an NFA to a DFA

Definitions: let 1" be a set of states and a be an input symbol.

o e-closure(T’): the set of NFA states reachable from some state s € T
using e-transitions.

o move(T,a): the set of NFA states to which there is a transition on the
input symbol a from state s € T..

e Both can be computed using standard graph algorithms.

o e-closure(move(T,a)): the set of states reachable from a state in T for
the input «a.

Example: NFA for (a|b)*abb

o e-closure({0}) = {0,1,2,4,6,7}, that is, the set of all possible starting
states
o move({2,7},a) ={3,8}

Compiler notes #2, 20060330, Tsan-sheng Hsu 17

Subset construction algorithm

In the converted DFA, each state represents a subset of NFA
states.
o T - e-closure(move(T, a))

Subset construction algorithm :

initially, we have an unmarked state labeled with e-closure({sy}),
where s is the starting state.

while there is an unmarked state with the label 7" do
> mark the state with the label T
> for each input symbol a do
> U «— e-closure(move(T, a))
> if U is a subset of states that is never seen before
> then add an unmarked state with the label U
> end for

end while

New accepting states: those contain an original accepting state.

Compiler notes #2, 20060330, Tsan-sheng Hsu 18

Example (1/2)

First step:
o c-closure({0}) = {0,1,2,4,6,7}

o move({0,1,2,4,6,7},a) = {3,8}

o c-closure({3,8}) =
{0,1,2,3,4,6,7,8,9}

o move({0,1,2,4,6,7},b) = {5}
o e-closure({5}) = {0,1,2,4,5,6,7}

Compiler notes #2, 20060330, Tsan-sheng Hsu

b
X oreased

19

Example (2/2)

states:
o A= {0,1,2,4,6,7}

« B=1{0,1,2,3,4,6,7,8,9}

o C=1{0,1,2,4,5,6,7,10,11}
o« D=1{0,1,2,4,5,6,7}

o E=1{0,1,2,4,5,6,7,12}

Compiler notes #2, 20060330, Tsan-sheng Hsu

transition table:

| 3| Q| H| =

0| &3 30| 0| &3 =

wiiw/lc|i@liw]/iSy

start

20

Algorithm for executing an NFA

Algorithm: s, is the starting state, F' is the set of accepting
states.

S « e-closure({sy})

while next input a is not EOF do
> S « e-closure(move(S, a))

end while
if SN F # () then ACCEPT else REJECT

Execution time is O(r” - s), where
o 7 is the number of NFA states, and s is the length of the input.

o Need O(r?) time in running e-closure(7') assuming using an adjacency
matrix representation and a constant-time hashing routine with linear-
time preprocessing to remove duplicated states.

Space complexity is O(r” - ¢) using a standard adjacency matrix
representation for graphs, where c is the cardinality of the
alphabet.

May have slightly better algorithms.

Compiler notes #2, 20060330, Tsan-sheng Hsu 21

Trade-off in executing NFA’s

Can also convert an NFA to a DFA and then execute the

equivalent DFA.

e Running time: linear in the input size.
o Space requirement: linear in the size of the DFA.

Catch:

o May get O(2") DFA states by converting an r-state NFA.

o The converting algorithm may also takes O(2" - ¢) time.

space time

Time-space tradeoff: NFA | O(r*-¢) | O(r* - s)
DFA | O(2" o) | O(s)

o If memory is cheap or programs will be used many times, then use the

DFA approach;
o otherwise, use the NFA approach.

Compiler notes #2, 20060330, Tsan-sheng Hsu

22

LEX

An UNIX utility.
o It has been ported to lots of OS'’s.

An easy way to use regular expressions to specify “patterns”.
Convert your LEX program into an equivalent C program.
Depending on implementation, may use NFA or DFA algorithms.

file.l — | lex file.l | — lex.yy.c

lex.yy.c — | cc -ll lex.yy.c | — a.out

o May produce .o file if there is no main().

input — | a.out | — output a sequence of tokens

May have slightly different implementations and libraries.

Compiler notes #2, 20060330, Tsan-sheng Hsu 23

LEX formats (1/2)

Source format:
o Declarations — a set of regular definitions, i.e., names and their
regular expressions.
%%
Translation rules — actions to be taken when patterns are encountered.
%%
Auxiliary procedures
Global variables:
yyleng: length of current string
yytext: current string
yylex(): the scanner routine

Compiler notes #2, 20060330, Tsan-sheng Hsu 24

LEX formats (2/2)

Declarations:
o C language code between %9{ and %}.

> variables;
> manifest constants, i.e., identifiers declared to represent constants.

e Regular expressions.
Translation rules:

P, {action,}

if regular expression P; is encountered, then
action; is performed.

if needed

LEX internals: regular expressions — NFA — DFA

Compiler notes #2, 20060330, Tsan-sheng Hsu

25

3t

test.| — Declarations

/* some initial C programs */

#define
#define
#define
#define
#define
#define
#define
ht
Digit
Letter
IntLit
Id

BEGINSYM 1
INTEGER 2
IDNAME 3
REAL 4
STRING 5
SEMICOLONSYM 6
ASSIGNSYM 7

[0-9]

[a-zA-Z]

{Digit}+
{Letter}({Letter}|{Digit}|_)*

Compiler notes #2, 20060330, Tsan-sheng Hsu

26

test.l — Rules

Tolh
[\t\n] {/* skip white spaces */}

[Bb] [Ee] [Gg] [Ii] [Nn] {return(BEGINSYM) ;}
{IntLit} {return(INTEGER) ; }
{Id} {
printf ("var has ’%d characters, ",yyleng);
return (IDNAME) ;
+

({IntLit}[.]1{IntLit}) ([Ee] [+-17{IntLit})? {return(REAL);}

\"["\"\n]l*\" {stripquotes(); return(STRING);}

" {return(SEMICOLONSYM) ;}

",=" {return(ASSIGNSYM) ; }
{printf ("error --- %s\n",yytext);}

Compiler notes #2, 20060330, Tsan-sheng Hsu

27

test.l — Procedures

Y/
/* some final C programs */
stripquotes ()

{
/* handling string within a quoted string */
int frompos, topos=0, numquotes = 2;
for (frompos=1; frompos<yyleng; frompos++){
yytext [topos++] = yytext[frompos];
+
yyleng —-= numquotes;
yytext [yyleng]l = ’\0’;
+
void main(){
int 1i;
i = yylex(;
while(i>0 && i < 8){
printf ("<Ys> is %d\n",yytext,i);
i = yylex(; r o}

Compiler notes #2, 20060330, Tsan-sheng Hsu

28

Sample run

austiny, lex test.l
austiny, cc lex.yy.c -11
austin), cat data

Begin
123.3 321.4E21
x := 36b;

"this is a string"
austiny, a.out < data
<Begin> is 1

<123.3> is 4

<321.4E21> is 4

var has 1 characters, <x> is 3
<:=> 1is 7

<365> is 2

<;> is 6

<this 1is a string> is 5
haustin

Compiler notes #2, 20060330, Tsan-sheng Hsu

More LEX formats

Special format requirement:
Py
{ action;

}

Note: { and } must indent.

LEX special characters (operators):

CCNTD 1 -7kt

Compiler notes #2, 20060330, Tsan-sheng Hsu

(

)

$ { 7

o

N

30

LEX internals

LEX code:
o regular expression #1 {action #1}
o regular expression #2 {action #2}

€ regular expression
#1 .

€ regular expression | €
#2
=

Compiler notes #2, 20060330, Tsan-sheng Hsu

31

Ambiguity in matching (1/2)

Definition:
o either for a given prefix of the input output “accept” for more than
one pattern, or
> The languages defined by two patterns have some intersection.

e output 'accept” for two different prefixes.

> An element in a language is a proper prefix of another element in a
different language.

When there is any ambiguity in matching, prefer

e longest possible match;
o earlier expression if all matches are of equal length.

White space is needed only when there is a chance of ambiguity.

Compiler notes #2, 20060330, Tsan-sheng Hsu 32

Ambiguity in matching (2/2)

How to find a longest possible match if there are many legal

matches?
o If an accepting state is encountered, do not immediately accept.
o Push this accepting state and the current input position into a stack
and keep on going until no more matches is possible.
o Pop from the stack and execute the actions for the popped accepting
state.
e Resume the scanning from the popped current input position.

How to find the earliest match if all matches are of equal
length?
e Assign numbers 1,2,... to the accepting states using the order they
appear (from top to bottom) in the expressions.
o If you are in multiple accepting states, execute the action associated
with the least indexed accepting state.

What does yylex() do?

e Find the longest possible prefix from the current input stream that can
be accepted by “the regular expression” defined.

o Extract this matched prefix from the input stream and assign its token
meaning according to rules discussed.

Compiler notes #2, 20060330, Tsan-sheng Hsu 33

Practical considerations (1/2)

key word v.s. reserved word

o key word:
> def: word has a well-defined meaning in a certain context.

> example: FORTRAN, PL/1, ...
if if then else = then ;
id id id
> Makes compiler to work harder!

e reserved word:

> def: regardless of context, word cannot be used for other purposes.
example: COBOL, ALGOL, PASCAL, C, ADA, ...

task of compiler is simpler

reserved words cannot be used as identifiers

listing of reserved words is tedious for the scanner, also makes the
scanner larger

solution: treat them as identifiers, and use a table to check whether it
is a reserved word.

v VvV VvV V

v

Compiler notes #2, 20060330, Tsan-sheng Hsu 34

Practical considerations (2/2)

Multi-character lookahead : how many more characters ahead
do you have to look in order to decide which pattern to match?

o Extensions to regular expression when there are ambiguity in matching.

FORTRAN: lookahead until difference is seen without counting
blanks.

e DO10I1 =1, 15 = a loop statement.
e DO 10 I = 1.15 = an assignment statement for the variable DO10I.

PASCAL: lookahead 2 characters with 2 or more blanks treating
as one blank.
e 10..100: needs to look 2 characters ahead to decide this is not part of

a real number.
LEX lookahead operator “/”: ri/ry: match r; only if it is

followed by ry; note that ry is not part of the match.

e This operator can be used to cope with multi-character lookahead.
e How is it implemented in LEX?

Compiler notes #2, 20060330, Tsan-sheng Hsu 35

