
Syntax-Directed Translation
ASU Textbook Chapter 5.1–5.6, 4.9

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1

What is syntax-directed translation?

Definition:
• The compilation process is driven by the syntax.
• The semantic routines perform interpretation based on the syntax

structure.
• Attaching attributes to the grammar symbols.

• Values for attributes are computed by semantic actions associated
with the grammar productions.

Compiler notes #4, 20060508, Tsan-sheng Hsu 2

Example: Syntax-directed translation

Example in a parse tree:
• Annotate the parse tree by attaching semantic attributes to the nodes

of the parse tree.
• Generate code by visiting nodes in the parse tree in a given order.
• Input: y := 3 ∗ x + z

:=

+

*

id

id

const id

:=

+

*

id

id

const id

(y)

(3) (x)

(z)

parse tree annotated parse tree

Compiler notes #4, 20060508, Tsan-sheng Hsu 3

Syntax-directed definitions

Each grammar symbol is associated with a set of attributes.

• Synthesized attribute : value computed from its children or associated

with the meaning of the tokens.

• Inherited attribute : value computed from parent and/or siblings.

• General attribute : value can be depended on the attributes of any
nodes.

Compiler notes #4, 20060508, Tsan-sheng Hsu 4

Format for writing syntax-directed definitions

Production Semantic actions
L → E print(E.val)
E → E1 + T E.val := E1.val + T.val
E → T E.val := T.val
T → T1 ∗ F T.val := T1.val ∗ F.val
T → F T.val := F.val
F → (E) F.val := E.val
F → digit F.val := digit.lexval

E.val is one of the attributes of E.
To avoid confusion, recursively defined nonterminals are num-
bered on the LHS.
Semantic actions are performed when this production is “used”.

Compiler notes #4, 20060508, Tsan-sheng Hsu 5

Order of evaluation (1/2)

Order of evaluating attributes is important.
General rule for ordering:

• Dependency graph :

. If attribute b needs attributes a and c, then a and c must be evaluated
before b.

. Represented as a directed graph without cycles.

. Topologically order nodes in the dependency graph as n1, n2, . . ., nk

such that there is no path from ni to nj with i > j.

:=

+

*

id

id

const id

(y)

(3) (x)

(z)

:=

+

*

id

id

const id

(y)

(3) (x)

(z)

Compiler notes #4, 20060508, Tsan-sheng Hsu 6

Order of evaluation (2/2)

It is always possible to rewrite syntax-directed definitions using
only synthesized attributes, but the one with inherited attributes
is easier to understand.

• Use inherited attributes to keep track of the type of a list of variable
declarations.

. Example: int i, j

• Grammar 1: using inherited
attributes

. D → TL

. T → int | char

. L → L, id | id

• Grammar 2: using only syn-
thesized attributes

. D → L id

. L → L id, | T

. T → int | char

L j

L i ,

T

T L

L , j

i

int

int

D D

Compiler notes #4, 20060508, Tsan-sheng Hsu 7

Attribute grammars

Attribute grammar: a grammar with syntax-directed definitions

and having no side effects .
• Side effect: change values of others not related to the return values of

functions themselves.

Tradeoffs:
• Synthesized attributes are easy to compute, but are sometimes difficult

to be used to express semantics.
• Inherited and general attributes are difficult to compute, but are

sometimes easy to express the semantics.
• The dependence graph for computing some inherited and general

attributes may contain cycles and thus not-computable.
• A restricted form of inherited attributes is invented.

. L-attributes.

Compiler notes #4, 20060508, Tsan-sheng Hsu 8

S-attributed definition

Definition: a syntax-directed definition that uses synthesized
attributed only.

• A parse tree can be represented using a directed graph.

• A post-order traverse of the parse tree can properly evaluate gram-

mars with S-attributed definitions.
• Bottom-up evaluation.

Example of an S-attributed definition: 3 ∗ 5 + 4 return

E.val = 19

E.val = 15 + T.val = 4

T.val = 15
F.val = 4

digit.lexval = 4
T.val = 3 * F.val = 5

F.val = 3 digit.lexval = 5

digit.lexval = 3

L

return

1

2

3
4

5

6

7

8
9

10

11

12

13 14

Compiler notes #4, 20060508, Tsan-sheng Hsu 9

L-attributed definition

Definition:
• Each attribute in each semantic rule for the production A → X1, . . . , Xn

is either a synthesized attribute or an inherited attribute Xj de-
pends only on the inherited attribute of A and/or the attributes of
X1, . . . , Xj−1.

• Every S-attributed definition is an L-attributed definition.
For grammars with L-attributed definitions, special evaluation
algorithms must be designed.
Bottom-up evaluation of L-attributed grammars.

• Can handle all LL(1) grammars and most LR(1) grammars.
• All translation actions are taken at the right end of the production.

Key observation:
• L-attributes are always computable.

. Same argument as the one used in discussing Algorithm 4.1.

• When a bottom-up parser reduces by the production A → XY , by
removing X and Y from the top of the stack and replacing them by
A,

. X.s (the synthesized attribute of X) is on the top of the stack and thus
can be used to compute Y.in (the inherited attribute of Y).

Compiler notes #4, 20060508, Tsan-sheng Hsu 10

Example for L-attributed definitions
• D → T {L.in := T.type} L
• T → int {T.type := integer}
• T → real {T.type := real}
• L → {L1.in := L.in} L1, id {addtype(id.entry, L.in)}
• L → id {addtype(id.entry, L.in)}

Parsing and dependency graph:

STACK input production used

int p, q, r

int p, q, r

T p, q, r T → int

T p , q, r

T L , q, r L → id

T L , q, r

T L , q , r

T L , r L → L, id

T L , r

T L , r

T L L → L, id

D D → TL

D

T L

L , r

L , q

p

1

2

3

4
5

6

7
8

9

int

10

type
in

in

in

Compiler notes #4, 20060508, Tsan-sheng Hsu 11

Using ambiguous grammars

ambiguous grammars

unambiguous grammars

LR(1)

Ambiguous grammars often provide a shorter, more natural
specification than their equivalent unambiguous grammars.
Sometimes need ambiguous grammars to specify important
language constructs.
For example: declare a variable before its usage.

var xyz : integer
begin

...
xyz := 3;
...

Compiler notes #4, 20060508, Tsan-sheng Hsu 12

Ambiguity from precedence and associativity

Use precedence and associativity to resolve conflicts.
Example:

• G1:
. E → E + E | E ∗ E | (E) | id
. Ambiguous, but easy to understand and maintain!

• G2:
. E → E + T | T
. T → T ∗ F | F
. F → (E) | id
. Unambiguous, but difficult to understand and maintain!
. Parse tree is larger for G2, and thus takes more time to parse.

When parsing the following input for G1: id + id ∗ id.
• Assume the input parsed so far is id + id.
• We now see “*”.
• We can either shift or perform “reduce by E → E + E”.
• When there is a conflict, say in LALR(1) parsing, we use precedence

and associativity information to resolve conflicts.
. Here we need to shift because of seeing a higher precedence operator.

Compiler notes #4, 20060508, Tsan-sheng Hsu 13

Ambiguity from dangling-else

Grammar:
• Statement → Other Statement

| if Condition then Statement
| if Condition then Statement else Statement

When seeing
if C then S else S

• there is a shift or reduce conflict,
• we always favor a shift.
• Intuition: favor a longer match.

Compiler notes #4, 20060508, Tsan-sheng Hsu 14

Special cases

Ambiguity from special-case productions:
• Sometime a very rare happened special case causes ambiguity.
• It is too costly to revise the grammar. We can resolve the conflicts by

using special rules.
• Example:

. E → E sub E sup E

. E → E sub E

. E → E sup E

. E → {E} | character

• Meanings:
. W sub U : WU .

. W sup U : W U .

. W sub U sup V is W V
U , not WU

V

• Resolve by semantic and special rules.
• Pick the right one when there is a reduce/reduce conflict.

. Reduce the production listed earlier.

• Similar to the dangling-else case!

Compiler notes #4, 20060508, Tsan-sheng Hsu 15

Implementation

Passing of synthesized attributes is best.
• Without using global variables.

Cannot use information from its younger siblings because of the
limitation of LR parsing.

• During parsing, the STACK contains information about the older
siblings.

It is difficult and usually impossible to use information passing
from its parent node.

• It may be possible to use the state information to pass some informa-
tion.

Choices:
• Build a parse tree first, then evaluate its semantics.
• Parse and evaluate the semantic actions on the fly.

YACC can be used to implement L-attributed definitions.
• Use top of STACK information to pass synthesized attributes.
• Use global variables and internal STACK information to pass the

inherited values from its older siblings, i.e., L-attributes.

Compiler notes #4, 20060508, Tsan-sheng Hsu 16

YACC

Yet Another Compiler Compiler:
• A UNIX utility for generating LALR(1) parsing tables.
• Convert your YACC code into C programs.

• file.y −→ yacc file.y −→ y.tab.c

• y.tab.c −→ cc y.tab.c -ly -ll −→ a.out

Format:
• declarations
• %%
• grammars and semantic actions.
• %%
• supporting C-routines.

Assume the Lexical analyzer routine is yylex().
• Need to include the scanner routines.

Compiler notes #4, 20060508, Tsan-sheng Hsu 17

YACC code example (1/2)

%{
#include <stdio.h>
#include <ctype.h>
#include <math.h>
#define YYSTYPE int /* integer type for YACC stack */

%}

%token NUMBER ERROR ’(’ ’)’
%left ’+’ ’-’
%left ’*’ ’/’
%right UMINUS

%%

Compiler notes #4, 20060508, Tsan-sheng Hsu 18

YACC code example (2/2)

lines : lines expr ’\n’ {printf("%d\n", $2);}
| lines ’\n’
| /* empty, i.e., epsilon */
| lines error ’\n’ {yyerror("Please reenter:");yyerrok;}
;

expr : expr ’+’ expr { $$ = $1 + $3; }
| expr ’-’ expr { $$ = $1 - $3; }
| expr ’*’ expr { $$ = $1 * $3; }
| expr ’/’ expr { $$ = $1 / $3; }
| ’(’ expr ’)’ { $$ = $2; }
| ’-’ expr %prec UMINUS { $$ = - $2; }
| NUMBER { $$ = atoi(yytext);}
;

%%
#include "lex.yy.c"

Compiler notes #4, 20060508, Tsan-sheng Hsu 19

Included LEX program

%{
%}
Digit [0-9]
IntLit {Digit}+
%%
[\t] {/* skip white spaces */}
[\n] {return(’\n’);}
{IntLit} {return(NUMBER);}
"+" {return(’+’);}
"-" {return(’-’);}
"*" {return(’*’);}
"/" {return(’/’);}
"(" {return(’(’);}
")" {return(’)’);}
. {printf("error token <%s>\n",yytext); return(ERROR);}
%%

Compiler notes #4, 20060508, Tsan-sheng Hsu 20

YACC rules (1/3)

Declarations:
• System used and C language declarations.

. %{ · · · %} to enclose C declarations.

. Type of attributes associated with each grammar symbol on the stack:
YYSTYPE declaration.

. This area will not be translated by YACC.

• Tokens with associativity and precedence assignments.
. In increasing precedence from top to the bottom.
. %left, %right or %token (non-associativity): e.g., dot products of vec-

tors has no associativity.

• Other declarations.
. %type
. %union
. · · ·

Compiler notes #4, 20060508, Tsan-sheng Hsu 21

YACC rules (2/3)

Productions and semantic actions:
• Format: for productions P with a common LHS

. <LHS of P>: <RHS1 of P> { semantic actions # 1}

. |<RHS2 of P> { semantic actions # 2}

. · · ·
• The semantic actions are performed, i.e., C routines are executed,

when this production is reduced.
• Accessing attributes associated with grammar symbols:

. $$: the return value of this production if it is reduced.

. $i: the returned value of the ith symbol in the RHS production.

• %prec declaration.

When there are ambiguities:
• reduce/reduce conflict: favor the one listed first.
• shift/reduce conflict: favor shift, i.e., longer match.
• Q: How to implement this?

Compiler notes #4, 20060508, Tsan-sheng Hsu 22

YACC rules (3/3)

Error handling:
• Example: lines: error ’\n’ {...}

. When there is an error, skip until newline is seen.

• error: special nonterminal.
. A production with error is “inserted” or “processed” only when it is

in the reject state.
. It matches any sequence on the stack as if the handle “error → · · · ”

is seen.
. Use a special token to immediately follow error for the purpose of

skpping until something special is seen.

. One of the reasons to use statement terminators, instead of

statement separators, in language designs.

. Q: How to implement this?

• yyerrok: a macro to reset error flags and make error invisible again.
• yyerror(string): pre-defined routine for printing error messages.

Compiler notes #4, 20060508, Tsan-sheng Hsu 23

In-production actions

Actions can be inserted in the middle of a production, each
such action is treated as a nonterminal.

• Example:
expr : expr { perform some semantic actions} ’+’ expr

{$$ = $1 + $4; }
is equivalent to
expr : expr $ACT ’+’ expr {$$ = $1 + $4;}
$ACT : { perform some semantic actions}

• Note: $ACT is a nonterminal created automated for this production.

Avoid in-production actions.
• ε-productions can easily generate conflicts.

. Generate a reduce operation for states including this LR(0)-item.

• Split the production.
expr : exprhead exptail {$$ = $1 + $2;}
exphead : expr { perform some semantic actions; $$ = $1;}
exptail : ’+’ expr {$$ = $2;}

. May generate some conflicts.

. May be difficult to specify precedence and associativity.

. May change the parse tree and thus the semantic.

Compiler notes #4, 20060508, Tsan-sheng Hsu 24

Some useful YACC programming styles

Keep the right hand side of a production short.
• Better to have less than 4 symbols.

Language issues.
• Avoiding using names starting with “$”.
• Watch out C-language rules.

. goto

• Some C-language reserved words are used by YACC.
. union

• Some YACC pre-defined routines are macros, not procedures.
. yyerrok

Rewrite the productions for S-attributed or L-attributed defini-
tions.

• Grammar 1: Array → id [Elist]
• Grammar 2:

. Array → Aelist]

. Aelist → Aelist, id | Ahead

. Ahead → id [id

Compiler notes #4, 20060508, Tsan-sheng Hsu 25

Limitations of syntax-directed translation

Limitation of syntax-directed definitions: Without using global
data to create side effects, some of the semantic actions cannot
be performed.
Examples:

• Checking whether a variable is defined before its usage.
• Checking the type and storage address of a variable.
• Checking whether a variable is used or not.

• Need to use a symbol table : global data to show side effects of

semantic actions.

Common approach in using global variables:
• A program with too many global variables is difficult to understand and

maintain.
• Restrict the usage of global variables to essential ones and use them

as objects.
. Symbol table.
. Labels for GOTO’s.
. Forwarded declarations.

• Tradeoff between ease of coding and ease of maintaining.

Compiler notes #4, 20060508, Tsan-sheng Hsu 26

