
Run Time Storage Organization
ASU Textbook Chapter 7.1–7.4, and 7.7–7.8

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1

Preliminaries

During the execution of a program, the same name in the
source can denote different data objects.
The allocation and deallocation of data objects is managed by

the run-time support package .

Terminologies:
• environment : the mapping of names to storage spaces.

name → storage space

• state : the current value of a storage space.
storage space → value

• binding : the association of a name to a storage location.

Each execution of a procedure is called an activation .
• Several activations of a recursive procedure may exist at the same

time.
. A recursive procedure needs not to call itself directly.

• Life time: the time between the first and last steps in a procedure.

Compiler notes #6, 20060526, Tsan-sheng Hsu 2

Activation record

returned value

actual parameters

optional control link

optional access link

saved machine status

local data

temporaries

Activation record (A.R.): data about an execution of a
procedure.

Compiler notes #6, 20060526, Tsan-sheng Hsu 3

Contents of A.R.

Returned value for a function.
Parameters:

• Formal parameters: the declaration of parameters.

• Actual parameters: the values of parameters for this activation.

Links: where variables can be found.
• Control (or dynamic) link: a pointer to the activation record of the

caller.

• Access (or static) link: a pointer to places of non-local data,

Saved machine status.
Local variables.
Temporary variables..

• Evaluation of expressions.
• Evaluation of arguments.

Compiler notes #6, 20060526, Tsan-sheng Hsu 4

Issues in storage allocation

There are two different approaches for run time storage
allocation.

• Static allocation.
. Allocate all needed space when program starts.
. Deallocate all space when program terminates.

• Dynamic allocation.
. Allocate space when it is needed.
. Deallocate space when it is no longer needed.

Need to worry about how variables are stored.
• That is the management of activation records.

Need to worry about how variables are accessed.
• Global variables.

• Locally declared variables , that is the ones allocated within the cur-

rent activation record.
• Non-local variables , that is the ones declared and allocated in other

activation records and still can be accessed.
. Non-local variables are different from global variables.

Compiler notes #6, 20060526, Tsan-sheng Hsu 5

Static storage allocation

global data

code

A.R. 1

A.R. 2

A.R. 3

...

activation records for
all procedures

Compiler notes #6, 20060526, Tsan-sheng Hsu 6

Static storage allocation (1/3)

Static allocation: uses no stack and heap.
• Strategies:

. For each procedure in the program, allocate a space for its activation
record.

. A.R.’s can be allocated in the static data area.

. Names bound to locations at compiler time.

. Every time a procedure is called, a name always refer to the same
pre-assigned location.

• Used by simple or early programming languages.
Disadvantages:

• No recursion.
• Waste lots of space when procedures are inactive.
• No dynamic allocation.

Advantages:
• No stack manipulation or indirect access to names, i.e., faster in

accessing variables.
• Values are retained from one procedure call to the next if block

structure is not allowed.
. For example: static variables in C.

Compiler notes #6, 20060526, Tsan-sheng Hsu 7

Static storage allocation (2/3)

On procedure calls,
• the calling procedure:

. First evaluate arguments.

. Copy arguments into parameter space in the A.R. of called procedure.

Conventions: call that which are passed to a procedure

arguments from the calling side, and parameters from

the called side.

. May need to save some registers in its own A.R.

. Jump and link: jump to the first instruction of called procedure and
put address of next instruction (return address) into register RA (the
return address register).

• the called procedure:
. Copy return address from RA into its A.R.’s return address field.
. control link := address of the previous A.R.
. May need to save some registers.
. May need to initialize local data.

Compiler notes #6, 20060526, Tsan-sheng Hsu 8

Static storage allocation (3/3)

On procedure returns,
• the called procedure:

. Restore values of saved registers.

. Jump to address in the return address field.

• the calling procedure:
. May need to restore some registers.
. If the called procedure is actually a function, that is the one that returns

values, put the return value in the appropriate place.

Compiler notes #6, 20060526, Tsan-sheng Hsu 9

Dynamic storage allocation

code

static data

stack

heap

dynamic
space

lower memory address

higher memory address

storage space for data
that will not be changed
during the execution:
e.g., global data and
constant, ...

for activation records:
local data, parameters,
control info, ...

for dynamic memory
allocated by the program

Compiler notes #6, 20060526, Tsan-sheng Hsu 10

Dynamic storage allocation for stack (1/3)

Stack allocation:
• Each time a procedure is called, a new A.R. is pushed onto the stack.
• A.R. is popped when procedure returns.
• A register (stack pointer or SP) points to top of stack.
• A register (frame pointer or FP) points to start of current A.R.

AR 1

stack
FP

SP

AR 1

AR 2

stack
FP

SP

control link

AR 1

stack
FP

SP

before procedure call after procedure call return from procedure call

Compiler notes #6, 20060526, Tsan-sheng Hsu 11

Dynamic storage allocation for stack (2/3)

On procedure calls,
• the calling procedure:

. May need to save some registers in its own A.R..

. May need to set an optional access link.

. Push parameters onto stack.

. Jump and Link: jump to the first instruction of called procedure and
put address of next instruction into register RA.

• the called procedure:
. Save return address in RA.
. Save old FP (in the control link space).
. Set new FP (FP := SP).
. Set new SP

(SP := SP +(size of parameters) + (size of RA) + (size of FP).
(These sizes can be computed at compile time.)

. May need to save some registers.

. Push local data (produce actual data if initialized or just allocate spaces
if not)

Compiler notes #6, 20060526, Tsan-sheng Hsu 12

Dynamic storage allocation for stack (3/3)

On procedure returns,
• the called procedure:

. Restore values of saved registers if needed.

. Load return address into special register RA.

. Restore SP (SP := FP).

. Restore FP (FP := control link).

. Return.

• the calling procedure:
. May need to restore some registers.
. If a function that was called, put the return value into the appropriate

place.

Compiler notes #6, 20060526, Tsan-sheng Hsu 13

Activation tree

Use a tree structure to record the changing of the activation
records.
Example:

main{
r();
q(1);

}

r{
...
}

q(int i)
{
if(i>0) then q(i-1);
}

stack

main

stack

main

stack

main

q(1)

stack

main

q(1)

q(0)

main

q(1)

q(0)

stack

main

r()
r()

Compiler notes #6, 20060526, Tsan-sheng Hsu 14

Dynamic storage allocation for heap

Storages requested from programmers during execution:
• Example:

. PASCAL: new and free.

. C: malloc and free.

• Issues:
. Garbage collection.
. Dangling reference.
. Segmentation and fragmentation.

More or less O.S. issues.

Compiler notes #6, 20060526, Tsan-sheng Hsu 15

Accessing global and local variables

Global variables:
• Access by using names.
• Addresses known at compile time.

Local variables:
• Stored in the activation record of declaring procedure.

• Access a local variable v in a procedure P by offset(v) from the

frame pointer (FP).
. Let local start(P) be the amount of spaces used by data in the acti-

vation record of procedure P that are allocated before the local data
area.

. The value local start(P) can be computed at compile time.

. The value offset(v) is the amount of spaces allocated to local variables
declared before v.

. The address of v is FP + local start(P) + offset(v).

. The actual address is only known at run time, depending on the value
of FP.

Compiler notes #6, 20060526, Tsan-sheng Hsu 16

Accessing local variables – example

int P()
{
int I,J,K;
...
}

FP
A.R. for P
when called

return value
pamateters

control link
access link

saved machine status

I
J

K

local data area

local_start

• Address of J is FP +local start(P) + offset(v).
. offset(v) is 1 ∗ sizeof(int) and is known at compile time.
. local start(P) is known at compile time.
. Actual address is only known at run time, i.e., depends on the value of

FP.

Compiler notes #6, 20060526, Tsan-sheng Hsu 17

Accessing non-local variables

Two scoping rules for accessing non-local data.
• Lexical or static scoping.

. PASCAL, C and FORTRAN.

. The correct address of a non-local name can be determined at compile
time by checking the syntax.

. Can be with or without block structures.

. Can be with or without nested procedures.

• Dynamic scoping.
. LISP.
. A use of a non-local variable corresponds to the declaration in the “most

recently called, still active” procedure.
. The question of which non-local variable to use cannot be determined

at compile time. It can only be determined at run-time.

Compiler notes #6, 20060526, Tsan-sheng Hsu 18

Lexical scoping with block structures (1/2)

Block : a statement containing its own local data declaration.

Scoping is given by the following so called

most closely nested rule.

• The scope of a declaration in a block B includes B itself.
• If x is used in B, but not declared in B, then we refer to x in a block

B′, where
. B′ has a declaration x, and
. B′ is more closely nested around B than any other block with a decla-

ration of x.

If a language does not allow nested procedures, then
• a variable is either global, or is local to the procedure containing it;
• at runtime, all the variables declared (including those in blocks) in a

procedure are stored in its A.R., with possible overlapping;
• during compiling, proper offset for each local data is calculated using

information known from the block structure.

Compiler notes #6, 20060526, Tsan-sheng Hsu 19

Lexical scoping with block structures (2/2)

test()
{ int a,b;
 { int a;
 { int c;
 ...
 }
 ...
 }
 ...
 { int b,d,e;
 ...
 }
}

B1
B2

B4

B3
a(B1)

b(B1)

a(B1)

b(B1)

a(B2)

a(B1)

b(B1)

a(B2)

c(B3)

a(B1)

b(B1)

e(B4)

b(B4)

d(B4)

a(B1)

b(B1)

a(B2)

a(B1)

b(B1)

...

Maintain the current offset in a procedure.
Maintain the amount of spaces used in each block.

• Initialize to 0 when a block is opened.
• Substrate the total amount of spaces used in the block from the current

offset when this block is closed.

Compiler notes #6, 20060526, Tsan-sheng Hsu 20

Lexical scoping with nested procedures

Nested procedure : a procedure that can be declared within

another procedure.
Issues:

• What are the procedures that can be called at a given location?
• What are the variables that can be accesses at a given location during

compiler time?
• How to access these variable during run time?

Compiler notes #6, 20060526, Tsan-sheng Hsu 21

Calling procedures

• A procedure Qi can call any procedure that is its direct ancestor or the
older siblings of its direct ancestor.

. The procedure Qi−1 who declares Qi.

. The procedure Qi−j who declares Qi−j+1, j > 1.

. The procedure Pj whom is declared together with, and before, Qj, j ≤ i

• Use symbol table to find the procedures that can be called.

main

a1 a2 a3

b1 b2

c1

d1 d2 d3

s1

q1

procedure main

procedure a1
 procedure s1
procedure a2
 procedure b1
 procedure q1
 procedure b2
 procedure c1
 procedure d1
 procedure d2

 procedure d3
 procedure a3

Compiler notes #6, 20060526, Tsan-sheng Hsu 22

Access variables (1/2)

• A procedure can only access the variables that is global in a procedure
that is its direct ancestor.

. When you call a procedure, a variable name follows the lexical scoping
rule.

. Use the access link to link to the procedure that is lexically enclosing
the called procedure.

. Need to set up the access link properly to access the right storage space.

main

a1 a2 a3

b1 b2

c1

d1 d2 d3

s1

q1

procedure main

procedure a1
 procedure s1
procedure a2
 procedure b1
 procedure q1
 procedure b2
 procedure c1
 procedure d1
 procedure d2

 procedure d3
 procedure a3

Compiler notes #6, 20060526, Tsan-sheng Hsu 23

Accessing variables(2/2)

Nesting depth :
• depth of main program = 1.
• add 1 to depth each time entering a nested procedure.
• substrate 1 from depth each time existing from a nested procedure.
• Each variable is associated with a nesting depth.
• Assume in a depth-h procedure, we access a variable at depth k, then

. h ≥ k.

. follow the access (static) link h − k times, and then use the offset
information to find the address.

program main
 procedure P
 procedure R
 end
 R
 end
 procedure Q
 P
 end
 Q
 end.

depth=1

depth =2

depth=3

depth =2

main(1)

Q(2)

P(2)

R(3)
dynamic link static link

(access)

Compiler notes #6, 20060526, Tsan-sheng Hsu 24

Algorithm for setting the links

The control link is set to point to the A.R. of the calling
procedure.
How to properly set the access link at compile time.

• Procedure P at depth nP calls procedure X at depth nX:
• If nP < nX, then X is enclosed in P and nP = nX − 1.

. Same with setting the control link.

• If nP ≥ nX, then it is either a recursive call or calling a previously
declared procedure.

. Observation: go up the access link once, then the depth is decreased
by 1.

. Hence, the access link of X is the access link of P going up nP −nX +1
times.

• Content of the access link of an A.R. for a procedure P :
. Points to the A.R. of the procedure Q whose encloses P lexically.
. An A.R. of Q must be active at this time.
. Several A.R. of Q may exist at the same time, it points to the latest

activated one.

Compiler notes #6, 20060526, Tsan-sheng Hsu 25

Access links – example
Program sort

var a: array[0..10] of int;
x: int;

procedure r
var i: int;
begin ... r
end

procedure e(i,j)
begin ... e

a[i] <-> a[j]
end

procedure q
var k,v: int;
procedure p
var i,j;
begin ... p

call e
end

begin ... q
call q or p

end

begin ... sort
call q

end

a,x

k,v
access link

k,v
access link

i,j
access link

access link

sort(1)

q(2)

q(2)

p(3)

e(2)

static links

Compiler notes #6, 20060526, Tsan-sheng Hsu 26

Accessing non-local data using DISPLAY

Idea:
• Maintain a global array called DISPLAY.

. Using registers if available.

. Otherwise, stored in the static data area.

• When procedure P at nesting depth k is called,
. DISPLAY[1], . . ., DISPLAY[k-1] hold pointers to the A.R.’s of the most

recent activation of the k − 1 procedures that lexically enclose P .
. DISPLAY[k] holds pointer to P ’s A.R.
. To access a variable with declaration at depth x, use DISPLAY[x] to

get to the A.R. that holds x, then use the usual offset to get x itself.
. Size of DISPLAY equals maximum nesting depth of procedures.

• Bad for languages allow recursions.

To maintain the DISPLAY:
• When a procedure at nesting depth k is called

. Save the current value of DISPLAY[k] in the save-display area of the
new A.R.

. Set DISPLAY[k] to point to the new A.R., i.e., to its save-display area.

• When the procedure returns, restore DISPLAY[k] using the value saved
in the save-display area.

Compiler notes #6, 20060526, Tsan-sheng Hsu 27

Access links v.s. DISPLAY

Time and space trade-off.
• Access links require more time (at run time) to access non-local data,

especially when non-local data are many nesting levels away.
• DISPLAY probably require more space (at run time).
• Code generated using DISPLAY is simpler.

Compiler notes #6, 20060526, Tsan-sheng Hsu 28

Dynamic scoping

Dynamic scoping: a use of a non-local variable refers to the one
declared in the “most recently called, still active” procedure.
The question of which non-local variable to use cannot be
determined at compile time.
It can only be determined at run time.
May need symbol tables at run time.
Two ways to implement non-local accessing under dynamic
scoping.

• Deep access.
• Shallow access.

Compiler notes #6, 20060526, Tsan-sheng Hsu 29

Dynamic scoping – Example

Code:

program main
procedure UsesX
begin

write(x);
end
procedure DeclaresX

var x: int;
begin

x := 100;
call UsesX;

end
procedure test
var x : int;
begin

x := 30;
call DeclaresX;
call UsesX;

end
begin

call test;
end

• Which x is it in the procedure
UsesX?

• If we were to use static scoping,
this is not a legal statement; No
enclosing scope declares x.

Compiler notes #6, 20060526, Tsan-sheng Hsu 30

Deep access

Def: given a use of a non-local variable, use control links to
search back in the stack for the most recent A.R. that contains
space for that variable.
Requirements:

• Be able to locate the set of variables stored in each A.R. at run time.
• Need to use the symbol table at run time.

Compiler notes #6, 20060526, Tsan-sheng Hsu 31

Shallow access

Idea:
• Maintain a current list of variables.
• Space is allocated (in registers or in the static data area) for every

possible variable name that is in the program (i.e., one space for variable
x even if there are several declarations of x in different procedures).

• For every reference to x, the generated code refers to the same
location.

When a procedure is called,
• it saves, in its own A.R., the current values of all of the variables that

it declares (i.e., if it declares x and y, then it saves the values of x and
y that are currently in the space for x and y);

• it restores those values when it finishes.

Compiler notes #6, 20060526, Tsan-sheng Hsu 32

Comparisons of deep and shallow accesses

Shallow access allows fast access to non-locals variables, but
there is an overhead on procedure entry and exit that is
proportional to the number of local variables.
Deep access needs to use a symbol table at run time.

Compiler notes #6, 20060526, Tsan-sheng Hsu 33

