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Preliminaries

During the execution of a program, the same name in the
source can denote different data objects.
The allocation and deallocation of data objects is managed by

the run-time support package .

Terminologies:
• environment : the mapping of names to storage spaces.

name → storage space

• state : the current value of a storage space.
storage space → value

• binding : the association of a name to a storage location.

Each execution of a procedure is called an activation .
• Several activations of a recursive procedure may exist at the same

time.
. A recursive procedure needs not to call itself directly.

• Life time: the time between the first and last steps in a procedure.
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Activation record

returned value

actual parameters

optional control link

optional access link

saved machine status

local data

temporaries

Activation record (A.R.): data about an execution of a
procedure.
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Contents of A.R.

Returned value for a function.
Parameters:

• Formal parameters: the declaration of parameters.

• Actual parameters: the values of parameters for this activation.

Links: where variables can be found.
• Control (or dynamic) link: a pointer to the activation record of the

caller.

• Access (or static) link: a pointer to places of non-local data,

Saved machine status.
Local variables.
Temporary variables..

• Evaluation of expressions.
• Evaluation of arguments.
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Issues in storage allocation

There are two different approaches for run time storage
allocation.

• Static allocation.
. Allocate all needed space when program starts.
. Deallocate all space when program terminates.

• Dynamic allocation.
. Allocate space when it is needed.
. Deallocate space when it is no longer needed.

Need to worry about how variables are stored.
• That is the management of activation records.

Need to worry about how variables are accessed.
• Global variables.

• Locally declared variables , that is the ones allocated within the cur-

rent activation record.
• Non-local variables , that is the ones declared and allocated in other

activation records and still can be accessed.
. Non-local variables are different from global variables.
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Static storage allocation

global data

code

A.R. 1

A.R. 2

A.R. 3

...

activation records for
all procedures
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Static storage allocation (1/3)

Static allocation: uses no stack and heap.
• Strategies:

. For each procedure in the program, allocate a space for its activation
record.

. A.R.’s can be allocated in the static data area.

. Names bound to locations at compiler time.

. Every time a procedure is called, a name always refer to the same
pre-assigned location.

• Used by simple or early programming languages.
Disadvantages:

• No recursion.
• Waste lots of space when procedures are inactive.
• No dynamic allocation.

Advantages:
• No stack manipulation or indirect access to names, i.e., faster in

accessing variables.
• Values are retained from one procedure call to the next if block

structure is not allowed.
. For example: static variables in C.
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Static storage allocation (2/3)

On procedure calls,
• the calling procedure:

. First evaluate arguments.

. Copy arguments into parameter space in the A.R. of called procedure.

Conventions: call that which are passed to a procedure

arguments from the calling side, and parameters from

the called side.

. May need to save some registers in its own A.R.

. Jump and link: jump to the first instruction of called procedure and
put address of next instruction (return address) into register RA (the
return address register).

• the called procedure:
. Copy return address from RA into its A.R.’s return address field.
. control link := address of the previous A.R.
. May need to save some registers.
. May need to initialize local data.
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Static storage allocation (3/3)

On procedure returns,
• the called procedure:

. Restore values of saved registers.

. Jump to address in the return address field.

• the calling procedure:
. May need to restore some registers.
. If the called procedure is actually a function, that is the one that returns

values, put the return value in the appropriate place.
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Dynamic storage allocation

code

static data

stack

heap

dynamic
space

lower memory address

higher memory address

storage space for data
that will not be changed
during the execution:
e.g., global data and
constant, ...

for activation records:
local data, parameters, 
control info, ...

for dynamic memory
allocated by the program
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Dynamic storage allocation for stack (1/3)

Stack allocation:
• Each time a procedure is called, a new A.R. is pushed onto the stack.
• A.R. is popped when procedure returns.
• A register (stack pointer or SP) points to top of stack.
• A register (frame pointer or FP) points to start of current A.R.

AR 1

stack
FP

SP

AR 1

AR 2

stack
FP

SP

control link

AR 1

stack
FP

SP

before procedure call after procedure call return from procedure call
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Dynamic storage allocation for stack (2/3)

On procedure calls,
• the calling procedure:

. May need to save some registers in its own A.R..

. May need to set an optional access link.

. Push parameters onto stack.

. Jump and Link: jump to the first instruction of called procedure and
put address of next instruction into register RA.

• the called procedure:
. Save return address in RA.
. Save old FP (in the control link space).
. Set new FP (FP := SP).
. Set new SP

(SP := SP +(size of parameters) + (size of RA) + (size of FP).
(These sizes can be computed at compile time.)

. May need to save some registers.

. Push local data (produce actual data if initialized or just allocate spaces
if not)
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Dynamic storage allocation for stack (3/3)

On procedure returns,
• the called procedure:

. Restore values of saved registers if needed.

. Load return address into special register RA.

. Restore SP (SP := FP).

. Restore FP (FP := control link).

. Return.

• the calling procedure:
. May need to restore some registers.
. If a function that was called, put the return value into the appropriate

place.
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Activation tree

Use a tree structure to record the changing of the activation
records.
Example:

main{
r();
q(1);

}

r{
...
}

q(int i)
{
if(i>0) then q(i-1);
}

stack

main

stack

main

stack

main

q(1)

stack

main

q(1)

q(0)

main

q(1)

q(0)

stack

main

r()
r()
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Dynamic storage allocation for heap

Storages requested from programmers during execution:
• Example:

. PASCAL: new and free.

. C: malloc and free.

• Issues:
. Garbage collection.
. Dangling reference.
. Segmentation and fragmentation.

More or less O.S. issues.
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Accessing global and local variables

Global variables:
• Access by using names.
• Addresses known at compile time.

Local variables:
• Stored in the activation record of declaring procedure.

• Access a local variable v in a procedure P by offset(v) from the

frame pointer (FP).
. Let local start(P ) be the amount of spaces used by data in the acti-

vation record of procedure P that are allocated before the local data
area.

. The value local start(P ) can be computed at compile time.

. The value offset(v) is the amount of spaces allocated to local variables
declared before v.

. The address of v is FP + local start(P ) + offset(v).

. The actual address is only known at run time, depending on the value
of FP.
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Accessing local variables – example

int P()
{
int I,J,K;
...
}

FP
A.R. for P
when called

return value
pamateters

control link
access link

saved machine status

I
J

K

local data area

local_start

• Address of J is FP +local start(P ) + offset(v).
. offset(v) is 1 ∗ sizeof(int) and is known at compile time.
. local start(P ) is known at compile time.
. Actual address is only known at run time, i.e., depends on the value of

FP.
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Accessing non-local variables

Two scoping rules for accessing non-local data.
• Lexical or static scoping.

. PASCAL, C and FORTRAN.

. The correct address of a non-local name can be determined at compile
time by checking the syntax.

. Can be with or without block structures.

. Can be with or without nested procedures.

• Dynamic scoping.
. LISP.
. A use of a non-local variable corresponds to the declaration in the “most

recently called, still active” procedure.
. The question of which non-local variable to use cannot be determined

at compile time. It can only be determined at run-time.

Compiler notes #6, 20060526, Tsan-sheng Hsu 18



Lexical scoping with block structures (1/2)

Block : a statement containing its own local data declaration.

Scoping is given by the following so called

most closely nested rule.

• The scope of a declaration in a block B includes B itself.
• If x is used in B, but not declared in B, then we refer to x in a block

B′, where
. B′ has a declaration x, and
. B′ is more closely nested around B than any other block with a decla-

ration of x.

If a language does not allow nested procedures, then
• a variable is either global, or is local to the procedure containing it;
• at runtime, all the variables declared (including those in blocks) in a

procedure are stored in its A.R., with possible overlapping;
• during compiling, proper offset for each local data is calculated using

information known from the block structure.
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Lexical scoping with block structures (2/2)

test()
{ int a,b;
    { int a;
       {  int  c;
           ...
       }
      ...
     }
     ...
     { int b,d,e;
     ...
     }
}

B1
B2

B4

B3
a(B1)

b(B1)

a(B1)

b(B1)

a(B2) 

a(B1)

b(B1)

a(B2) 

c(B3) 

a(B1)

b(B1)

e(B4)

b(B4)

d(B4)

a(B1)

b(B1)

a(B2) 

a(B1)

b(B1)

... ... ... ... ... ...

Maintain the current offset in a procedure.
Maintain the amount of spaces used in each block.

• Initialize to 0 when a block is opened.
• Substrate the total amount of spaces used in the block from the current

offset when this block is closed.
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Lexical scoping with nested procedures

Nested procedure : a procedure that can be declared within

another procedure.
Issues:

• What are the procedures that can be called at a given location?
• What are the variables that can be accesses at a given location during

compiler time?
• How to access these variable during run time?
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Calling procedures

• A procedure Qi can call any procedure that is its direct ancestor or the
older siblings of its direct ancestor.

. The procedure Qi−1 who declares Qi.

. The procedure Qi−j who declares Qi−j+1, j > 1.

. The procedure Pj whom is declared together with, and before, Qj, j ≤ i

• Use symbol table to find the procedures that can be called.

main

a1 a2 a3

b1 b2

c1

d1 d2 d3

s1

q1

procedure main

***

procedure a1
     procedure s1
procedure a2
     procedure b1
         procedure q1
     procedure b2
         procedure c1
            procedure d1
            procedure d2

            procedure d3
 procedure a3
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Access variables (1/2)

• A procedure can only access the variables that is global in a procedure
that is its direct ancestor.

. When you call a procedure, a variable name follows the lexical scoping
rule.

. Use the access link to link to the procedure that is lexically enclosing
the called procedure.

. Need to set up the access link properly to access the right storage space.

main

a1 a2 a3

b1 b2

c1

d1 d2 d3

s1

q1

procedure main

***

procedure a1
     procedure s1
procedure a2
     procedure b1
         procedure q1
     procedure b2
         procedure c1
            procedure d1
            procedure d2

            procedure d3
 procedure a3
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Accessing variables(2/2)

Nesting depth :
• depth of main program = 1.
• add 1 to depth each time entering a nested procedure.
• substrate 1 from depth each time existing from a nested procedure.
• Each variable is associated with a nesting depth.
• Assume in a depth-h procedure, we access a variable at depth k, then

. h ≥ k.

. follow the access (static) link h − k times, and then use the offset
information to find the address.

program main
   procedure P
       procedure R
       end
       R
    end
    procedure Q
        P
    end
    Q
 end.

depth=1

depth =2

depth=3

depth =2

main(1)

Q(2)

P(2)

R(3)
dynamic link static link

(access)
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Algorithm for setting the links

The control link is set to point to the A.R. of the calling
procedure.
How to properly set the access link at compile time.

• Procedure P at depth nP calls procedure X at depth nX:
• If nP < nX, then X is enclosed in P and nP = nX − 1.

. Same with setting the control link.

• If nP ≥ nX, then it is either a recursive call or calling a previously
declared procedure.

. Observation: go up the access link once, then the depth is decreased
by 1.

. Hence, the access link of X is the access link of P going up nP −nX +1
times.

• Content of the access link of an A.R. for a procedure P :
. Points to the A.R. of the procedure Q whose encloses P lexically.
. An A.R. of Q must be active at this time.
. Several A.R. of Q may exist at the same time, it points to the latest

activated one.
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Access links – example
Program sort

var a: array[0..10] of int;
x: int;

procedure r
var i: int;
begin ... r
end

procedure e(i,j)
begin ... e

a[i] <-> a[j]
end

procedure q
var k,v: int;
procedure p
var i,j;
begin ... p

call e
end

begin ... q
call q or p

end

begin ... sort
call q

end

a,x

k,v
access link

k,v
access link

i,j
access link

access link

sort(1)

q(2)

q(2)

p(3)

e(2)

static links
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Accessing non-local data using DISPLAY

Idea:
• Maintain a global array called DISPLAY.

. Using registers if available.

. Otherwise, stored in the static data area.

• When procedure P at nesting depth k is called,
. DISPLAY[1], . . ., DISPLAY[k-1] hold pointers to the A.R.’s of the most

recent activation of the k − 1 procedures that lexically enclose P .
. DISPLAY[k] holds pointer to P ’s A.R.
. To access a variable with declaration at depth x, use DISPLAY[x] to

get to the A.R. that holds x, then use the usual offset to get x itself.
. Size of DISPLAY equals maximum nesting depth of procedures.

• Bad for languages allow recursions.

To maintain the DISPLAY:
• When a procedure at nesting depth k is called

. Save the current value of DISPLAY[k] in the save-display area of the
new A.R.

. Set DISPLAY[k] to point to the new A.R., i.e., to its save-display area.

• When the procedure returns, restore DISPLAY[k] using the value saved
in the save-display area.
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Access links v.s. DISPLAY

Time and space trade-off.
• Access links require more time (at run time) to access non-local data,

especially when non-local data are many nesting levels away.
• DISPLAY probably require more space (at run time).
• Code generated using DISPLAY is simpler.
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Dynamic scoping

Dynamic scoping: a use of a non-local variable refers to the one
declared in the “most recently called, still active” procedure.
The question of which non-local variable to use cannot be
determined at compile time.
It can only be determined at run time.
May need symbol tables at run time.
Two ways to implement non-local accessing under dynamic
scoping.

• Deep access.
• Shallow access.

Compiler notes #6, 20060526, Tsan-sheng Hsu 29



Dynamic scoping – Example

Code:

program main
procedure UsesX
begin

write(x);
end
procedure DeclaresX

var x: int;
begin

x := 100;
call UsesX;

end
procedure test
var x : int;
begin

x := 30;
call DeclaresX;
call UsesX;

end
begin

call test;
end

• Which x is it in the procedure
UsesX?

• If we were to use static scoping,
this is not a legal statement; No
enclosing scope declares x.
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Deep access

Def: given a use of a non-local variable, use control links to
search back in the stack for the most recent A.R. that contains
space for that variable.
Requirements:

• Be able to locate the set of variables stored in each A.R. at run time.
• Need to use the symbol table at run time.
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Shallow access

Idea:
• Maintain a current list of variables.
• Space is allocated (in registers or in the static data area) for every

possible variable name that is in the program (i.e., one space for variable
x even if there are several declarations of x in different procedures).

• For every reference to x, the generated code refers to the same
location.

When a procedure is called,
• it saves, in its own A.R., the current values of all of the variables that

it declares (i.e., if it declares x and y, then it saves the values of x and
y that are currently in the space for x and y);

• it restores those values when it finishes.
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Comparisons of deep and shallow accesses

Shallow access allows fast access to non-locals variables, but
there is an overhead on procedure entry and exit that is
proportional to the number of local variables.
Deep access needs to use a symbol table at run time.
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