
Introduction to Compiler Construction

ALSU Textbook Chapter 1.1–1.5

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1



What is a compiler?

Definitions:
• a recognizer ;

• a translator .

source program ⇒ compiler ⇒ target program

• Source and target must be equivalent!

Compiler writing spans:
• programming languages;
• machine architecture;
• language theory;
• algorithms and data structures;
• software engineering.

History:
• 1950: the first FORTRAN compiler took 18 man-years;
• now: using software tools, can be done in a few months as a student’s

project.

Compiler notes #1, 20130207, Tsan-sheng Hsu c© 2



Applications

High-level programming language compilers.
Optimizations for computer architectures.
Design of new computer architectures.
Translator: from one format to another.
• query interpreter
• text formatter
• silicon compiler
• infix notation → postfix notation:

3 + 5− 6 ∗ 6 ⇒ 3 5 + 6 6 ∗ −
• pretty printers
• · · ·

Software productivity tools.

Compiler notes #1, 20130207, Tsan-sheng Hsu c© 3



Relations with computational theory

a set of grammar rules ≡ the definition of a particular machine.

• also equivalent to a set of languages recognized by this machine.

a type of machines: a family of machines with a given set of
operations, or capabilities;
power of a type of machines
≡ the set of languages that can be recognized by this type of
machines.

Compiler notes #1, 20130207, Tsan-sheng Hsu c© 4



Flow chart of a typical compiler

source code

target code

lexical analyzer (scanner)

syntax analyzer (parser)

semantic analyzer

intermediate code generator

code optimizer

code generator

sequence of characters

sequence of tokens

abstract−syntax tree

annoted abstract−syntax tree

intermediate code

optimized intermediate code

error handler
symbol
table

Compiler notes #1, 20130207, Tsan-sheng Hsu c© 5



Scanner

Actions:
• Reads characters from the source program;

• Groups characters into lexemes , i.e., sequences of characters that

“go together”, following a given pattern ;

• Each lexeme corresponds to a token .

. the scanner returns the next token, plus maybe some additional infor-
mation, to the parser;

• The scanner may also discover lexical errors, i.e., erroneous characters.

The definitions of what a lexeme , token or bad character
is depend on the definition of the source language.

Compiler notes #1, 20130207, Tsan-sheng Hsu c© 6



Scanner example for C

Lexeme: C sentence

L1: x = y2 + 12;

(Lexeme) L1 : x = y2 + 12 ;

(Token) ID COLON ID ASSIGN ID PLUS INT SEMI-COL

Arbitrary number of blanks between lexemes.
Erroneous sequence of characters, that are not parts of
comments, for the C language:
• control characters
• @
• 2abc

Compiler notes #1, 20130207, Tsan-sheng Hsu c© 7



Parser

Actions:
• Group tokens into grammatical phrases , to discover the underlying

structure of the source
• Find syntax errors , e.g., the following C source line:

(Lexeme) index = 12 * ;

(Token) ID ASSIGN INT TIMES SEMI-COL

Every token is legal, but the sequence is erroneous!

May find some static semantic errors , e.g., use of undeclared
variables or multiple declared variables.
May generate code, or build some intermediate representation
of the source program, such as an abstract-syntax tree.

Compiler notes #1, 20130207, Tsan-sheng Hsu c© 8



Parser example for C

Source code: position = initial + rate ∗ 60;
Abstract-syntax tree:

=

position +

initial *
rate 60

• interior nodes of the tree are OPERATORS;
• a node’s children are its OPERANDS;

• each subtree forms a logical unit .

• the subtree with ∗ at its root shows that ∗ has higher precedence
than +, the operation “rate ∗ 60” must be performed as a unit, not
“initial + rate”.

Compiler notes #1, 20130207, Tsan-sheng Hsu c© 9



Semantic analyzer

Actions:
• Check for more static semantic errors, e.g., type errors .

• May annotate and/or change the abstract syntax tree.

=

position +

initial *
rate 60

=

position +

initial *
rate

60

(float)

(float)
(float)

int−to−float()

Compiler notes #1, 20130207, Tsan-sheng Hsu c© 10



Intermediate code generator

Actions: translate from abstract-syntax trees to intermediate
codes.

One choice for intermediate code is 3-address code :
• Each statement contains

. at most 3 operands;

. in addition to “:=”, i.e., assignment, at most one operator.

• An”easy” and “universal” format that can be translated into most
assembly languages.

Example:

=

position +

initial *
rate

60

(float)

(float)
(float)

int−to−float()

temp1 := int-to-float(60)

temp2 := rate * temp1

temp3 := initial + temp2

position := temp3

Compiler notes #1, 20130207, Tsan-sheng Hsu c© 11



Optimizer

Improve the efficiency of intermediate code.

Goal may be to make code run faster , and/or to use least
number of registers · · ·

Example:

temp1 := int-to-float(60)

temp2 := rate * temp1

temp3 := initial + temp2

position := temp3

⇒ temp2 := rate * 60.0

position := initial + temp2

Current trends:
• to obtain smaller, but maybe slower, equivalent code for embedded

systems;
• to reduce power consumption;
• to enable parallelism;
• · · ·

Compiler notes #1, 20130207, Tsan-sheng Hsu c© 12



Code generation

A compiler may generate
• pure machine codes, namely machine dependent assembly language,

directly, which is rare now ;
• virtual machine code.

Example:

• PASCAL → compiler → P-code → interpreter → execution

• Speed is roughly 4 times slower than running directly generated machine
codes.

Advantages:
• simplify the job of a compiler;

• decrease the size of the generated code: 1/3 for P-code ;

• can be run easily on a variety of platforms
. P-machine is an ideal general machine whose interpreter can be written

easily;
. divide and conquer;
. recent example: JAVA and Byte-code.

Compiler notes #1, 20130207, Tsan-sheng Hsu c© 13



Code generation example

temp2 := rate * 60.0

position := initial + temp2
=⇒

LOADF rate, R1

MULF #60.0, R1

LOADF initial, R2

ADDF R2, R1

STOREF R1, position

Compiler notes #1, 20130207, Tsan-sheng Hsu c© 14



Practical considerations (1/2)

Preprocessing phase:
• macro substitution:

. #define MAXC 10

• rational preprocessing: add new features for old languages.
. BASIC
. C → C++

• compiler directives:
. #include <stdio.h>

• non-standard language extensions.
. adding parallel primitives

Compiler notes #1, 20130207, Tsan-sheng Hsu c© 15



Practical considerations (2/2)

Passes of compiling

• First pass reads the text file once.

• May need to read the text one more time for any forward addressed
objects, i.e., anything that is used before its declaration.

• Example: C language

goto error handling;

· · ·
error handling:

· · ·

Compiler notes #1, 20130207, Tsan-sheng Hsu c© 16



Reduce number of passes

Each pass takes I/O time.

Back-patching : leave a blank slot for missing information, and

fill in the empty slot when the information becomes available.
Example: C language
when a label is used
• if it is not defined before, save a trace into the to-be-processed table

. label name corresponds to LABEL TABLE[i]

• code generated: GOTO LABEL TABLE[i]

when a label is defined
• check known labels for redefined labels
• if it is not used before, save a trace into the to-be-processed table
• if it is used before, then find its trace and fill the current address into

the trace

Time and space trade-off !

Compiler notes #1, 20130207, Tsan-sheng Hsu c© 17


