Syntax Analyzer — Parser

ALSU Textbook Chapter 4.1–4.7

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

Main tasks

Abstract representations of the input program:

- abstract-syntax tree + symbol table
- intermediate code
- object code
- Context free grammar (CFG) is used to specify the structure of a legal program.
- Dealing with errors.
 - Syntactic errors.
 - Static semantic errors .
 - ▷ Example: a variable is not declared or declared twice in a language where a variable must be declared before its usage.

Error handling

Goals:

- Report errors clearly and accurately.
- Recover from errors quickly enough to detect subsequent errors.
- Spend minimal overhead.
- Strategies:
 - Panic-mode recovery: skip until synchronizing tokens are found.
 - ▷ ";" marks the end of a C-sentence;
 - ▷ "}" closes a C-scope.
 - Phrase-level recovery: perform local correction and then continue.
 - ▷ Assume a un-declared variable is declared with the default type "int."
 - Error productions: anticipating common errors using grammars.
 - \triangleright Example: write a grammar rule for the case when ";" is missing between two var-declarations in C.
 - Global correction: choose a minimal sequence of changes to obtain a globally least-cost correction.
 - ▷ A very difficult task!
 - ▶ May have more than one interpretations.
 - ▷ C example: In "y = *x;", whether an operand is missing in multiplication or the type of x should be pointer?

Context free grammar (CFG)

• **Definitions:** G = (T, N, P, S).

- \triangleright T: a set of terminals;
- \triangleright N: a set of nonterminals;
- \triangleright P: productions of the form

 $A \rightarrow \alpha_1 \alpha_2 \cdots \alpha_m$, where $A \in N$ and $\alpha_i \in T \cup N$;

 \triangleright S: the starting nonterminal where $S \in N$.

Notations:

- terminals : strings with lower-cased English letters and printable characters.
 - \triangleright **Examples:** $a, b, c, int and int_1$.

• nonterminals: strings started with an upper-cased English letter.

- \triangleright Examples: A, B, C and Procedure.
- $\alpha, \beta, \gamma, \ldots \in (T \cup N)^*$

 $\triangleright \alpha, \beta, \gamma$ and ϵ : alpha, beta, gamma and epsilon.

$$\left. \begin{array}{ccc} A & \to & \alpha_1 \\ A & \to & \alpha_2 \end{array} \right\} \equiv A \to \alpha_1 \mid \alpha_2$$

How does a CFG define a language?

- The language defined by the grammar is the set of strings (sequence of terminals) that can be "derived" from the starting nonterminal.
- How to "derive" something?
 - Start with:
 - \triangleright "current sequence" = the starting nonterminal.
 - Repeat
 - \triangleright find a nonterminal X in the current sequence;
 - ▷ find a production in the grammar with X on the left of the form $X \to \alpha$, where α is ϵ or a sequence of terminals and/or nonterminals;
 - \triangleright create a new "current sequence" in which α replaces X;
 - Until "current sequence" contains no nonterminals;
- We derive either ϵ or a string of terminals.
- This is how we derive a string of the language.

Example

	E
Grammar: • $E \rightarrow int$	$\implies E - E$
• $E \rightarrow E - E$	$\implies 1 - E$
• $E \to E / E$	$\implies 1 - E/E$
• $E \rightarrow (E)$	$\implies 1 - E/2$
	$\implies 1 - 4/2$

Details:

- The first step was done by choosing the second production.
- The second step was done by choosing the first production.

• • • •

Conventions:

- \implies : means "derives in one step";
- $\stackrel{+}{\Longrightarrow}$: means "derives in one or more steps";
- $\stackrel{*}{\Longrightarrow}$: means "derives in zero or more steps";
- In the above example, we can write $E \stackrel{+}{\Longrightarrow} 1 4/2$.

Language

• The language defined by a grammar G is

$$L(G) = \{ w \mid S \stackrel{+}{\Longrightarrow} \omega \},\$$

where S is the starting nonterminal and ω is a sequence of terminals or ϵ .

- An element in a language is ϵ or a sequence of terminals in the set defined by the language.
- More terminology:
 - $E \Longrightarrow \cdots \Longrightarrow 1 4/2$ is a derivation of 1 4/2 from E.
 - There are several kinds of derivations that are important:
 - ▷ The derivation is a leftmost one if the leftmost nonterminal always gets to be chosen (if we have a choice) to be replaced.
 - It is a rightmost one if the rightmost nonterminal is replaced all the times.

A way to describe derivations

Construct a derivation or parse tree as follows:

- start with the starting nonterminal as a single-node tree
- Repeat
 - \triangleright choose a leaf nonterminal X
 - $\triangleright \ \textbf{choose a production } X \to \alpha$
 - \triangleright symbols in α become the children of X
- Until no more leaf nonterminal left

This is called top-down parsing or expanding of the parse tree.

- Construct the parse tree starting from the root.
- Other parsing methods, such as **bottom-up**, are known.

Top-down parsing

- It is better to keep a systematic order in parsing for the sake of performance or ease-to-understand.
 - Ieftmost
 - rightmost

Parse tree examples

Example:

- Using 1 4/2 as the input, the left parse tree is derived.
- A string is formed by reading the leaf nodes from left to right, which gives 1-4/2.
- The string 1 4/2 has another parse tree on the right.

rightmost derivation

Some standard notations:

- Given a parse tree and a fixed order (for example leftmost or rightmost) we can derive the order of derivation.
- For the "semantic" of the parse tree, we normally "interpret" the meaning in a bottom-up fashion. That is, the one that is derived last will be "serviced" first.

Ambiguous grammar

If for grammar G and string α , there are

- more than one leftmost derivation for lpha, or
- more than one rightmost derivation for α , or
- more than one parse tree for α ,

then G is called **ambiguous**.

- Note: the above three conditions are equivalent in that if one is true, then all three are true.
- Q: How to prove this?
 - ▷ Hint: Any un-annotated tree can be annotated with a leftmost numbering.

Problems with an ambiguous grammar:

- Ambiguity can make parsing difficult.
- Underlying structure is ill-defined.
 - ▷ In the previous example, the precedence is not uniquely defined, e.g., the leftmost parse tree groups 4/2 while the rightmost parse tree groups 1-4, resulting in two different semantics.

How to use CFG

Breaks down the problem into pieces.

- Think about a C program:
 - ▷ Declarations: typedef, struct, variables, ...
 - ▷ Procedures: type-specifier, function name, parameters, function body.
 - ▷ function body: various statements.

• Example:

- $\triangleright \ \textit{Procedure} \rightarrow \textit{TypeDef} \ id \ \textit{OptParams} \ \textit{OptDecl} \ \{\textit{OptStatements}\}$
- $\triangleright \ TypeDef \rightarrow integer \mid char \mid float \mid \cdots$
- $\triangleright \quad OptParams \rightarrow (\ ListParams \)$
- $\triangleright \ ListParams \rightarrow \epsilon \mid NonEmptyParList$
- \triangleright NonEmptyParList \rightarrow NonEmptyParList, id | id
- $\triangleright \cdots$
- One of purposes to write a grammar for a language is for others to understand. It will be nice to break things up into different levels in a top-down easily understandable fashion.

Non-context free grammars

- Some grammar is not CFG, that is, it may be context sensitive.
- Expressive power of grammars (in the order of small to large):
 - Regular expression \equiv FA
 - Context-free grammar
 - Context-sensitive grammar
 - • •

• $\{\omega c\omega \mid \omega \text{ is a string of } a \text{ and } b's\}$ cannot be expressed by CFG.

Common grammar problems (CGP)

- A grammar may have some bad "styles" or ambiguity.
- Some common grammar problems (CGP's) are:
 - Useless terms;
 - Dangling-else ambiguity;
 - Left factor;
 - Left recursion.

Need to rewrite a grammar G₁ into another grammar G₂ so that G₂ has no CGP's and the two grammars are equivalent and C₂ contains no CGP's

- and G_2 contains no CGP's.
 - G_1 and G_2 must accept the same set of strings, that is, $L(G_1) = L(G_2)$.
 - The "semantic" of a given string α must stay the same using G_2 .
 - ▶ The "main structure" of the parse tree needs to stay unchanged.

CGP: useless terms

• A nonterminal X is useless if either

- a sequence includes X cannot be derived from the starting nonterminal, or
- no string can be derived starting from X, where a string means ϵ or a sequence of terminals.

• Example 1:

- $\tilde{S} \to A B$
- $A \rightarrow + \mid \mid \epsilon$
- $B \to digit \mid B \ digit$
- $C \rightarrow . B$

In Example 1:

- C is useless and so is the last production.
- Any nonterminal not in the right-hand side of any production

is useless!

More examples for useless terms

- Example 2:
 - $S \to X \mid Y$
 - $X \to ()$
 - $Y \to (Y Y)$
- Y derives more and more nonterminals and is useless.
- Any recursively defined nonterminal without a production

of deriving ϵ or a string of all terminals is useless!

- From now on, we assume a grammar contains no useless nonterminals.
- Q: How to detect and remove indirect useless terms?

CGP: dangling-else (1/2)

CGP: dangling-else (2/2)

Rewrite G₁ into the following:

• G_2

- $\triangleright \ S \to M \mid O$
- $\triangleright \ M \to if \ E \ then \ M \ else \ M \ | \ Others$
- \triangleright $O \rightarrow if \ E \ then \ S$
- $\triangleright \ O \to if \ E \ then \ M \ else \ O$
- Only one parse tree for the input

if E_1 then if E_2 then S_1 else S_2

using grammar G_2 .

• Intuition: "else" is matched with the nearest "then."

CGP: left factor

- Left factor: a grammar G has two productions whose righthand-sides have a common prefix.
 - ▷ Have left-factors.
 - ▷ Potentially difficult to parse in a top-down fashion, but may not have ambiguity.
- Example: $S \to \{S\} \mid \{\}$
 - \triangleright In this example, the common prefix is "{".
- This problem can be solved by using theleft-factoringtrick.• $A \rightarrow \alpha \beta_1$
• $A \rightarrow \alpha \beta_2$ transform to• $A \rightarrow \alpha A'$
• $A' \rightarrow \beta_1 \mid \beta_2$ Example:
• $S \rightarrow \{S\}$
• $S \rightarrow \{\}$ transform to• $S \rightarrow \{S'$
• $S' \rightarrow S\} \mid \}$

Algorithm for left-factoring

- Input: context free grammar G
- Output: equivalent left-factored context-free grammar G'
- for each nonterminal A do
 - find the longest non- ϵ prefix α that is common to right-hand sides of two or more productions;
 - replace

 $\triangleright A \to \alpha \beta_1 \mid \cdots \mid \alpha \beta_n \mid \gamma_1 \mid \cdots \mid \gamma_m$

with

$$\triangleright A \to \alpha A' \mid \gamma_1 \mid \dots \mid \gamma_m$$
$$\triangleright A' \to \beta_1 \mid \dots \mid \beta_n$$

 repeat the above step until the current grammar has no two productions with a common prefix;

• Example:

- $\dot{S} \rightarrow aaWaa \mid aaaa \mid aaTcc \mid bb$
- Transform to

 $\begin{array}{l} \triangleright \hspace{0.2cm} S \rightarrow aaS' \mid bb \\ \triangleright \hspace{0.2cm} S' \rightarrow Waa \mid aa \mid Tcc \end{array}$

CGP: left recursion

Definitions:

- recursive grammar: a grammar is recursive if this grammar contains a nonterminal X such that
 - $\triangleright \ X \stackrel{+}{\Longrightarrow} \alpha X \beta.$
- G is immediately left-recursive if $X \Longrightarrow X\beta$.
- G is left-recursive if $X \stackrel{+}{\Longrightarrow} X\beta$.
- Why left recursion is bad?
 - Potentially difficult to parse if you read input from left to right.
 - Difficult to know when recursion should be stopped.
- Remark: A left-recursived grammar cannot be parsed efficiently by a top-down parser, but may have no ambiguity.

Removing immediate left-recursion (1/3)

• Algorithm:

• Grammar G:

 $\triangleright A \rightarrow A\alpha \mid \beta$, where β does not start with A

- Revised grammar G':
 - $\begin{array}{l} \triangleright \ A \to \beta A' \\ \triangleright \ A' \to \alpha A' \mid \epsilon \end{array}$
- The above two grammars are equivalent.
 - ▷ That is, $L(G) \equiv L(G')$.

Removing immediate left-recursion (2/3)

Example:

• Grammar G:

 $\triangleright \ A \to Aa \mid b$

• Revised grammar G':

$$\triangleright A \to bA' \triangleright A' \to aA' \mid e$$

• The above two grammars are equivalent.

```
▶ That is, L(G) \equiv L(G').
```

Parsing example:

Removing immediate left-recursion (3/3)

- Both grammars recognize the same string, but G' is not left-recursive.
- However, G is clear and intuitive.
- General algorithm for removing immediately left-recursion:
 - **Replace** $A \to A\alpha_1 \mid \cdots \mid A\alpha_n \mid \beta_1 \mid \cdots \mid \beta_m$
 - with

 $\triangleright A \to \beta_1 A' | \cdots | \beta_m A'$

 $\triangleright A' \to \alpha_1 A' \mid \dots \mid \alpha_n A' \mid \epsilon$

• This rule does not work if $\alpha_i = \epsilon$ for some *i*.

- This is called a **direct cycle** in a grammar.
 - $\triangleright A direct cycle: X \Longrightarrow X.$
 - $\triangleright A cycle: X \stackrel{+}{\Longrightarrow} X.$
- Q: why do you need to define direct cycles or cycles?

• May need to worry about whether the semantics are equivalent between the original grammar and the transformed grammar.

Removing left recursion: Algorithm 4.19

- Algorithm 4.19 systematically eliminates left recursion and works when the input grammar has no cycles or ϵ -productions.
 - $\triangleright Cycle: A \stackrel{+}{\Longrightarrow} A$
 - $\triangleright \ \epsilon$ -production: $A \rightarrow \epsilon$
 - ▷ Can remove cycles and all but one ϵ -production using other algorithms.

Input: grammar G without cycles and ε-productions.
Output: An equivalent grammar without left recursion.
Number the nonterminals in some order A₁, A₂,..., A_n
for i = 1 to n do

for j = 1 to i − 1 do
replace A_i → A_jγ with A_i → δ₁γ | ··· | δ_kγ, where A_j → δ₁ | ··· | δ_k are all the current A_j-productions.

Eliminate immediate left-recursion for A_i

New nonterminals generated above are numbered A_{i+n}

Algorithm 4.19 — Discussions

Intuition:

- Consider only the productions where the leftmost item on the right hand side are nonterminals.
- If it is always the case that

 $\triangleright A_i \stackrel{+}{\Longrightarrow} A_j \alpha \text{ implies } i < j, \text{ then}$

 \triangleright it is not possible to have left-recursion.

Why cycles are not allowed?

- The algorithm of removing immediate left-recursion cannot handle direct cycles.
- A cycle becomes a direct cycle during the process of substituting nonterminals.

Why e-productions are not allowed?

- Inside the loop, when $A_j
 ightarrow \epsilon$,
 - $\triangleright \ \ \text{that is some} \ \ \delta_g = \epsilon,$
 - \triangleright and the prefix of γ is some A_k where k < i,
 - \triangleright it generates $A_i \rightarrow A_k$, and i > k.

Time and space complexities:

- The size may be blowed up exponentially.
- Works well in real cases.

Trace an instance of Algorithm 4.19

- After each *i*-loop, only productions of the form $A_i \rightarrow A_k \gamma$, k > i remain.
 - Inside *i*-loop, at the end of *j*-loop, only productions of the form $A_i \to A_k \gamma$, k>j remain.
- i = 1

. . .

- allow $A_1 \rightarrow A_k \alpha$, $\forall k$ before removing immediate left-recursion
- remove immediate left-recursion for A_1

•
$$i = 2$$

• $j = 1$: replace $A_2 \rightarrow A_1 \gamma$ by
 $A_2 \rightarrow (A_{k_1}\alpha_1 | \cdots | A_{k_p}\alpha_p) \gamma$, where
 $A_1 \rightarrow (A_{k_1}\alpha_1 | \cdots | A_{k_p}\alpha_p)$ and $k_j > 1 \forall k_j$
• remove immediate left-recursion for A_2
• $i = 3$
• $j = 1$: replace $A_3 \rightarrow A_1 \gamma_1$
• $j = 2$: replace $A_3 \rightarrow A_2 \gamma_2$

• remove immediate left-recursion for A_3

Example

• Original Grammar:

- (1) $S \rightarrow Aa \mid b$
- (2) $A \rightarrow Ac \mid Sd \mid e$

• Ordering of nonterminals: $S \equiv A_1$ and $A \equiv A_2$.

• i = 1

- do nothing as there is no immediate left-recursion for ${\cal S}$

• i = 2

- replace $A \to Sd$ by $A \to Aad \mid bd$
- hence (2) becomes $A \rightarrow Ac \mid Aad \mid bd \mid e$
- after removing immediate left-recursion:

 $\begin{array}{l} \triangleright \ A \to b dA' \mid eA' \\ \triangleright \ A' \to cA' \mid a dA' \mid \epsilon \end{array}$

Resulting grammar:

```
 \begin{array}{l} \triangleright \hspace{0.1cm} S \to Aa \mid b \\ \triangleright \hspace{0.1cm} A \to bdA' \mid eA' \\ \triangleright \hspace{0.1cm} A' \to cA' \mid adA' \mid \epsilon \end{array}
```

Left-factoring and left-recursion removal

• Original grammar:

• $S \rightarrow (S) \mid SS \mid ()$

To remove immediate left-recursion, we have

- $S \to (S)S' \mid ()S'$
- $S' \to SS' \mid \epsilon$

To do left-factoring, we have

• $S \to (S''$

•
$$S'' \to S)S' \mid)S'$$

•
$$S' \to SS' \mid \epsilon$$

Top-down parsing

- There are O(n³)-time algorithms to parse a language defined by CFG, where n is the number of input tokens.
- For practical purpose, we need faster algorithms.
 - \bullet Here we make restrictions to CFG so that we can design O(n)-time algorithms.
- Recursive-descent parsing : top-down parsing that allows backtracking.
 - Top-down parsing naturally corresponds to leftmost derivation.
 - Attempt to find a leftmost derivation for an input string.
 - Try out all possibilities, that is, do an exhaustive search to find a parse tree that parses the input.

Recursive-descent parsing: example

error!! backtrack

Problems with the above approach:

- Still too slow!
- Need to be able to select a derivation without ever causing backtracking!
 - Predictive parser : a recursive-descent parser needing no backtracking.

Predictive parser

- Goal: Find a rich class of grammars that can be parsed using predictive parsers.
- The class of LL(1) grammars [Lewis & Stearns 1968] can be parsed by a predictive parser in O(n) time.
 - First "L": scan the input from left-to-right.
 - Second "L": find a leftmost derivation.
 - Last "(1)": allow one lookahead token!
- Based on the current lookahead symbol, pick a derivation when there are multiple choices.
 - Using a STACK during implementation to avoid recursion.
 - Build a PARSING TABLE *T*, using the symbol *X* on the top of STACK and the lookahead symbol *s* as indexes, to decide the production to be used.
 - \triangleright If X is a terminal, then X = s and input s is matched.
 - $\triangleright \ \ \text{If X is a nonterminal, then $T(X,s)$ tells you the production to be used in the next derivation.}$

Predictive parser: Algorithm

- How a predictive parser works:
 - start by pushing the starting nonterminal into the STACK and calling the scanner to get the first token.
 - LOOP:
 - if top-of-STACK is a nonterminal, then
 - use the current token and the PARSING TABLE to choose a production;
 - ▶ pop the nonterminal from the STACK;
 - push the above production's right-hand-side to the STACK from right to left;
 - ▷ GOTO LOOP.

• if top-of-STACK is a terminal and matches the current token, then

- ▶ pop STACK and ask scanner to provide the next token;
- ▷ GOTO LOOP.
- if STACK is empty and there is no more input, then **ACCEPT**!
- If none of the above succeed, then **REJECT**!

When does the parser reject an input?

- STACK is empty and there is some input left;
 - A proper prefix of the input is accepted.
- Top-of-STACK is a terminal, but does not match the current token;
- Top-of-STACK is a nonterminal, but the corresponding PARS-ING TABLE entry is ERROR;

Parsing an LL(1) grammar: example

Grammar:

$S \to a \mid$	(S)	$\mid [S]$
----------------	-----	------------

Input: ([a])

Use the current input token to decide which production to derive from the top-of-STACK nonterminal.

About LL(1) - (1/2)

It is not always possible to build a predictive parser given a CFG; It works only if the CFG is LL(1)!

- LL(1) is a proper subset of CFG.
- For example, the following grammar is not LL(1), but is LL(2).

▷ If the next token is (, push "(S)" from right to left.
About LL(1) - (2/2)

- A grammar is not LL(1) if it
 - is ambiguous,
 - \triangleright Q: Why?
 - is left-recursive, or
 - \triangleright Q: Why?
 - has left-factors.
 - \triangleright Q: Why?
- However, grammars that are not ambiguous, are not left-recursive and have no left-factor may still not be LL(1).
 - Q: Any examples?
- Two questions:
 - How to tell whether a grammar G is LL(1)?
 - How to build the PARSING TABLE if it is LL(1)?

Definition of LL(1) grammars

- To see if a grammar is LL(1), we need to compute its FIRST and FOLLOW sets, which are used to build its parsing table.
 FIRST sets:
 - Definition: let α be a sequence of terminals and/or nonterminals or ϵ
 - ▷ **FIRST**(α) is the set of terminals that begin the strings derivable from α ;

 $\triangleright \ \epsilon \in \mathbf{FIRST}(\alpha) \text{ if and only if } \alpha \stackrel{+}{\Longrightarrow} \epsilon.$

• FIRST $(\alpha) =$

 $\{t \mid (t \text{ is a terminal and } \alpha \stackrel{*}{\Longrightarrow} t\beta) \text{ or } (t = \epsilon \text{ and } \alpha \stackrel{*}{\Longrightarrow} \epsilon)\}$

Why do we need FIRST SETS?

- When there are many choices $A \Longrightarrow lpha_1 | \cdots | lpha_k$,
- and the lookahead symbol is s,
- we use $A \Longrightarrow \alpha_i$ if $s \in \mathsf{FIRST}(\alpha_i)$.

How to compute FIRST(X)? (1/2)

- X is a terminal:
 - FIRST $(X) = \{X\}$
- X is ϵ :
 - FIRST $(X) = \{\epsilon\}$
- X is a nonterminal: must check all productions with X on the left-hand side.
- That is, for all $X \to Y_1 Y_2 \cdots Y_k$ perform the following steps:
 - FIRST(X) =FIRST $(Y_1) \{\epsilon\}$;
 - if $\epsilon \in \mathbf{FIRST}(Y_1)$, then
 - ▷ put $FIRST(Y_2) \{\epsilon\}$ into FIRST(X);
 - if $\epsilon \in \mathsf{FIRST}(Y_1) \cap \mathsf{FIRST}(Y_2)$, then
 - ▷ put $FIRST(Y_3) \{\epsilon\}$ into FIRST(X);
 - ... • if $\epsilon \in \bigcap_{i=1}^{k-1} \mathsf{FIRST}(Y_i)$, then
 - ▷ put $FIRST(Y_k) \{\epsilon\}$ into FIRST(X);
 - if $\epsilon \in \cap_{i=1}^k \mathsf{FIRST}(Y_i)$, then
 - \triangleright put ϵ into FIRST(X).

How to compute FIRST(X)? (2/2)

Algorithm to compute FIRST's for all nonterminals.

- compute FIRST's for ϵ and all terminals;
- initialize FIRST's for all nonterminals to \emptyset ;
- Repeat

for all nonterminals X do

 \triangleright apply the steps to compute FIRST(X)

- Until no items can be added to any FIRST set;
- What to do when recursive calls are encountered?
 - Types of recursive calls: direct or indirect recursive calls.
 - Actions: do not go further.

▷ why?

- The time complexity of this algorithm.
 - at least one item, terminal or ϵ , is added to some FIRST set in an iteration;
 - ▷ maximum number of items in all **FIRST** sets are $(|T| + 1) \cdot |N|$, where *T* is the set of terminals and *N* is the set of nonterminals.
 - Each iteration takes O(|N| + |T|) time.
 - $O(|N| \cdot |T| \cdot (|N| + |T|))$.

Example for computing $\mathsf{FIRST}(X)$

• A heuristic ordering to compute FIRST for all nonterminal.

- First process nonterminal X such that $X \Longrightarrow \alpha_1 | \cdots | \alpha_k$, and $\alpha_i = \epsilon$ or a prefix of α_i is a terminal.
- Then find nonterminals that only depends on nonterminals whose FIRST are computed.

Grammar

 $E \to E'T$

 $E' \to -TE' \mid \epsilon$

 $T \to FT'$ $T' \to / FT' \mid \epsilon$

 $F \to int \mid (E)$

```
FIRST(F) = \{int, (\} \}

FIRST(T') = \{/, \epsilon\}

FIRST(E') = \{-, \epsilon\}

FIRST(T) = FIRST(F) = \{int, (\}, 

since \epsilon \notin FIRST(F), that's all.

FIRST(E) = \{-, int, (\}, 

since \epsilon \in FIRST(E').

Note \epsilon \notin FIRST(E') \cap FIRST(T).
```

How to compute $FIRST(\alpha)$?

• To build a parsing table, we need $FIRST(\alpha)$ for all α such that $X \to \alpha$ is a production in the grammar.

• Need to compute FIRST(X) for each nonterminal X first.

• Let $\alpha = X_1 X_2 \cdots X_n$. Perform the following steps in sequence:

- $\operatorname{FIRST}(\alpha) = \operatorname{FIRST}(X_1) \{\epsilon\};$
- if $\epsilon \in \mathsf{FIRST}(X_1)$, then

▷ put $FIRST(X_2) - \{\epsilon\}$ into $FIRST(\alpha)$;

• if $\epsilon \in \mathsf{FIRST}(X_1) \cap \mathsf{FIRST}(X_2)$, then

 \triangleright put FIRST $(X_3) - \{\epsilon\}$ into FIRST (α) ;

- • •
- if $\epsilon \in \bigcap_{i=1}^{n-1} \mathbf{FIRST}(X_i)$, then

 \triangleright put **FIRST**(X_n) - { ϵ } into **FIRST**(α);

• if $\epsilon \in \bigcap_{i=1}^n \mathbf{FIRST}(X_i)$, then

 \triangleright put $\{\epsilon\}$ into FIRST (α) .

What to do when recursive calls are encountered?What are the time and space complexities?

Example for computing $\mathsf{FIRST}(\alpha)$

$\begin{array}{c} \text{Grammar} \\ E \to E'T \end{array}$	$FIRST(F) = \{int, (\}$
$E' \to -TE' \mid \epsilon$	$FIRST(T') = \{/, \epsilon\}$
$T \to FT'$	$FIRST(T) = \{int, (\}$
$T' \rightarrow /FT' \mid \epsilon$	$FIRST(E') = \{-, \epsilon\}$
$F \rightarrow int \mid (E)$	$FIRST(E) = \{-, int, (\}$

 $FIRST(E'T) = \{-, int, (\}$ $FIRST(-TE') = \{-\}$ $FIRST(\epsilon) = \{\epsilon\}$ $FIRST(FT') = \{int, (\}$ $FIRST(/FT') = \{/\}$ $FIRST(\epsilon) = \{\epsilon\}$ $FIRST(int) = \{int\}$ $FIRST((E)) = \{(\}$

• FIRST
$$(T'E') =$$

• $(FIRST(T') - \{\epsilon\}) \cup$
• $(FIRST(E') - \{\epsilon\}) \cup$
• $\{\epsilon\}$

Why do we need $\mathsf{FIRST}(\alpha)$?

- During parsing, suppose top-of-STACK is a nonterminal A and there are several choices
 - $A \to \alpha_1$
 - $A \to \alpha_2$
 - • •
 - $A \to \alpha_k$

for derivation, and the current lookahead token is \boldsymbol{a}

- If $a \in FIRST(\alpha_i)$, then pick $A \to \alpha_i$ for derivation, pop, and then push α_i .
- If a is in several FIRST (α_i) 's, then the grammar is not LL(1).
- Question: if a is not in any FIRST (α_i) , does this mean the input stream cannot be accepted?
 - Maybe not!
 - What happen if ϵ is in some FIRST (α_i) ?

FOLLOW sets

- Assume there is a special EOF symbol "\$" ends every input.
- Add a new terminal "\$".
- Definition: for a nonterminal X, FOLLOW(X) is the set of terminals that can appear immediately to the right of X in some partial derivation.
 - That is, $S \stackrel{+}{\Longrightarrow} \alpha_1 X t \alpha_2$, where t is a terminal.
- If X can be the rightmost symbol in a derivation derived from S, then \$ is in FOLLOW(X).
- That is, $S \stackrel{+}{\Longrightarrow} \alpha X$. • FOLLOW(X) =

 $\{t \mid (t \text{ is a terminal and } S \stackrel{+}{\Longrightarrow} \alpha_1 X t \alpha_2) \text{ or } (t \text{ is } and S \stackrel{+}{\Longrightarrow} \alpha X)\}.$

How to compute FOLLOW(X)?

Initialization:

- If X is the starting nonterminal, initial value of FOLLOW(X) is $\{\$\}$.
- If X is not the starting nonterminal, initial value of FOLLOW(X) is \emptyset .

Repeat

- for all nonterminals X do
- Find the productions with X on the right-hand-side.
- for each production of the form $Y \to \alpha X \beta$, put $\mathsf{FIRST}(\beta) \{\epsilon\}$ into $\mathsf{FOLLOW}(X)$.
- if $\epsilon \in \mathsf{FIRST}(\beta)$, then put $\mathsf{FOLLOW}(Y)$ into $\mathsf{FOLLOW}(X)$.
- for each production of the form $Y \to \alpha X$, put $\mathsf{FOLLOW}(Y)$ into $\mathsf{FOLLOW}(X)$.

until nothing can be added to any FOLLOW set.

- Questions:
 - What to do when recursive calls are encountered?
 - What are the time and space complexities?

Examples for FIRST's and FOLLOW's

Grammar

- $S \to Bc \mid DB$
- $B \rightarrow ab \mid cS$
- $D \to d \mid \epsilon$

Why do we need FOLLOW sets?

- Note FOLLOW(S) always includes \$.
- Situation:
 - During parsing, the top-of-STACK is a nonterminal X and the lookahead symbol is a.
 - Assume there are several choices for the nest derivation:

 $\begin{array}{c} \triangleright \ X \to \alpha_1 \\ \triangleright \ \cdots \\ \triangleright \ X \to \alpha_k \end{array}$

- If $a \in FIRST(\alpha_i)$ for exactly one *i*, then we use that derivation.
- If $a \in FIRST(\alpha_i)$, $a \in FIRST(\alpha_j)$, and $i \neq j$, then this grammar is not LL(1).
- If $a \notin \mathsf{FIRST}(\alpha_i)$ for all *i*, then this grammar can still be LL(1)!
- If there exists some i such that $\alpha_i \stackrel{*}{\Longrightarrow} \epsilon$ and $a \in \text{FOLLOW}(X)$, then we can use the derivation $X \to \alpha_i$.
 - $\alpha_i \stackrel{*}{\Longrightarrow} \epsilon$ if and only if $\epsilon \in \mathsf{FIRST}(\alpha_i)$.

Whether a grammar is LL(1)? (1/2)

- To see whether a given grammar is LL(1), or to build its parsing table:
 - Compute FIRST(α) for every α such that $X \to \alpha$ is a production;
 - \triangleright Need to first compute FIRST(X) for every nonterminal X.
 - Compute FOLLOW(X) for all nonterminals X;
 - ▷ Need to compute $FIRST(\alpha)$ for every α such that $Y \rightarrow \beta X \alpha$ is a production.
- Note that FIRST and FOLLOW sets are always sets of terminals, plus, perhaps, ϵ for some FIRST sets.
- A grammar is not LL(1) if there exists productions

 $X \to \alpha \mid \beta$

- and any one of the followings is true:
 - **FIRST**(α) \cap **FIRST**(β) $\neq \emptyset$.
 - ▷ It may be the case that $\epsilon \in FIRST(\alpha)$ and $\epsilon \in FIRST(\beta)$.
 - $\epsilon \in \mathsf{FIRST}(\alpha)$, and $\mathsf{FIRST}(\beta) \cap \mathsf{FOLLOW}(X) \neq \emptyset$.

Whether a grammar is LL(1)? (2/2)

- If a grammar is not LL(1), then
 - you cannot write a linear-time predictive parser as described previously.
- If a grammar is not LL(1), then we do not know to use the production $X \to \alpha$ or the production $X \to \beta$ when the lookahead symbol is a in any of the following cases:
 - $a \in \mathbf{FIRST}(\alpha) \cap \mathbf{FIRST}(\beta)$;
 - $\epsilon \in \mathsf{FIRST}(\alpha)$ and $\epsilon \in \mathsf{FIRST}(\beta)$;
 - $\epsilon \in \mathsf{FIRST}(\alpha)$, and $a \in \mathsf{FIRST}(\beta) \cap \mathsf{FOLLOW}(X)$.

A complete example (1/2)

Grammar:

- **ProgHead** $\rightarrow prog id$ **Parameter** semicolon
- Parameter $\rightarrow \epsilon \mid id \mid l_paren$ Parameter r_paren

FIRST and FOLLOW sets:

lpha	$\mathrm{FIRST}(\alpha)$	$\mathrm{FOLLOW}(\alpha)$
ProgHead	$\{prog\}$	$\{\$\}$
Parameter	$\{\epsilon, id, l_paren\}$	$\{semicolon, r_paren\}$
prog id Parameter semicolon	$\{prog\}$	
l_paren Parameter r_paren	$\{l_paren\}$	

A complete example (2/2)

Input: | prog id semicolon

STACK	INPUT	ACTION
\$ ProgHead	$prog \; id \; semicolon \; \$$	pop, push
\$ semicolon Parameter id prog	$prog \; id \; semicolon \; \$$	match with input
\$ semicolon Parameter id	$id\ semicolon\$	match with input
\$ semicolon Parameter	semicolon \$	WHAT TO DO?

Last actions:

- Three choices:
 - $\triangleright Parameter \rightarrow \epsilon \mid id \mid l_paren Parameter r_paren$
- semicolon ∉ FIRST(ϵ) and semicolon ∉ FIRST(id) and semicolon ∉ FIRST(l_paren Parameter r_paren)
- Parameter $\stackrel{*}{\Longrightarrow} \epsilon$ and $semicolon \in FOLLOW(Parameter)$
- Hence we use the derivation Parameter $\rightarrow \epsilon$

LL(1) parsing table (1/2)

• Check for possible conflicts in $X \to a \mid \epsilon$.

- **FIRST** $(a) \cap$ **FIRST** $(\epsilon) = \emptyset$
- $\epsilon \in FIRST(\epsilon)$ and $FOLLOW(X) \cap FIRST(a) = \{a\}$ Conflict!!
- $\epsilon \not\in \mathsf{FIRST}(a)$

• Check for possible conflicts in $C \rightarrow a \mid \epsilon$.

- **FIRST** $(a) \cap$ **FIRST** $(\epsilon) = \emptyset$
- $\epsilon \in \mathsf{FIRST}(\epsilon)$ and $\mathsf{FOLLOW}(C) \cap \mathsf{FIRST}(a) = \emptyset$
- $\epsilon \notin \mathsf{FIRST}(a)$

LL(1) parsing table (2/2)

• Parsing table:
$$\begin{array}{c|c} a & \$ \\\hline S & S \to XC & S \to XC \\ X & \text{conflict} & X \to \epsilon \\ C & C \to a & C \to \epsilon \end{array}$$

Bottom-up parsing (Shift-reduce parsers)

Intuition: construct the parse tree from the leaves to the root.

- This grammar is not LL(1).
 - Why?
 - It can be rewritten into an LL(1) grammar, though.

Right-sentential form

Rightmost derivation:

- $S \Longrightarrow_{rm} \alpha$: the rightmost nonterminal is replaced.
- $S \stackrel{+}{\Longrightarrow} \alpha$: α is derived from S using one or more rightmost derivations.

 $\triangleright \alpha$ is called a right-sentential form .

• In the previous example: $S \Longrightarrow_{rm} AB \Longrightarrow_{rm} Aw \Longrightarrow_{rm} xw$.

Define similarly for leftmost derivation and left-sentential form.

Handle

Handle : a handle for a right-sentential form $\gamma = \alpha \beta \eta$

- is the combining of the following two information:
 - \triangleright a production rule $A \rightarrow \beta$ and
 - \triangleright a position w in γ where β can be found
- such that $\gamma' = \alpha A \eta$ is also a right-sentential form and
- η contains only terminals or is ϵ .

Properties of a handle.

- γ' is obtained by replacing β at the position w with A in γ .
- $\gamma = \alpha \beta \eta$ and is a right-sentential form.
- $\gamma' = \alpha A \eta$ and is also a right-sentential form.
- $\gamma' \Longrightarrow_{rm} \gamma$ and since η contains no nonterminals.

Handle: example

Handle reducing

- Reduce : replace a handle in a right-sentential form with its left-hand-side at the location specified in the handle.
- In the above example, replace Abc starting at position 2 in γ with A.
- A right-most derivation in reverse can be obtained by handle reducing.
- Problems:
 - How to find handles?
 - What to do when there are two possible handles?
 - ▶ Have a common prefix or suffix.
 - ▶ Have overlaps.

STACK implementation

Four possible actions:

- shift: shift the input to STACK.
- reduce: perform a reversed rightmost derivation.
 - ▶ The first item popped is the rightmost item in the right hand side of the reduced production.
- accept
- error

Make sure handles are always on the top of STACK.

STACK	INPUT	ACTION	
\$	xw\$	shift	
\$ x	w\$	reduce by $A \to x$	
\$ A	w\$	shift	
Aw	\$	reduce by $B \rightarrow w$	x w x w x w
\$AB	\$	reduce by $S \to AB$	$S \Longrightarrow AB \Longrightarrow Aw \Longrightarrow rw$
\$ S	\$	accept	rm rm rm rm rm rm rm rm

Viable prefix

- Definition: the set of prefixes of right-sentential forms that can appear on the top of STACK.
 - Some suffix of a viable prefix is a prefix of a handle.
 - push the current input token to STACK
 shift
 - Some suffix of a viable prefix is a handle.
 - ▶ perform a handle reduction
 - \triangleright reduce

Properties of viable prefixes

Some prefix of a right-sentential form cannot appear on the top of STACK during parsing.

- Grammar:
 - $\begin{array}{c|c} \triangleright & S \to AB \\ \triangleright & A \to x \mid Y \\ \triangleright & B \to w \mid Z \\ \triangleright & Y \to xb \\ \triangleright & Z \to wp \end{array}$
- Input: xw
 - $\triangleright xw$ is a right-sentential form.
 - \triangleright The prefix xw is not a viable prefix.
 - \triangleright You cannot have the situation that some suffix of xw is a handle.
- It cannot be the case a handle on the right is reduced before a handle on the left in a right-sentential form.
- The handle of the first reduction consists of all terminals and can be found on the top of STACK.
 - That is, some substring of the input is the first handle.

Using viable prefixes

Strategy:

- Try to recognize all possible viable prefixes.
 - ▷ Can recognize them incrementally.
- Shift is allowed if after shifting, the top of STACK is still a viable prefix.
- Reduce is allowed if after a handle is found on the top of STACK and after reducing, the top of STACK is still a viable prefix.

Questions:

- ▶ How to recognize a viable prefix efficiently?
- ▶ What to do when multiple actions are allowed?

Model of a shift-reduce parser

Push-down automata!

- Current state S_m encodes the symbols that has been shifted and the handles that are currently being matched.
- $S_0S_1 \cdots S_ma_ia_{i+1} \cdots a_n$ represents a right-sentential form.
- GOTO table:

▶ when a "reduce" action is taken, which handle to replace;

- Action table:
 - ▶ when a "shift" action is taken, which state currently in, that is, how to group symbols into handles.

The power of context free grammars is equivalent to nondeterministic push down automata.

▶ Not equal to deterministic push down automata.

LR parsers

By Don Knuth at 1965.

LR(k): see all of what can be derived from the right side with k input tokens lookahead.

- First *L*: scan the input from left to right.
- Second *R*: reverse rightmost derivation.
- Last (k): with k lookahead tokens.

Be able to decide the whereabout of a handle after seeing all of what have been derived so far plus k input tokens lookahead.

$$X_1, X_2, \dots, \begin{bmatrix} X_i, X_{i+1}, \dots, X_{i+j}, \end{bmatrix} \begin{bmatrix} X_{i+j+1}, \dots, X_{i+j+k}, \\ a \text{ handle} \end{bmatrix}$$
 lookahead tokens

Top-down parsing for LL(k) grammars: be able to choose a production by seeing only the first k symbols that will be derived from that production.

Recognizing viable prefixes

• Use an LR(0) item (item for short) to record all possible

extensions of the current viable prefix.

- It is a production, with a dot at some position in the RHS (right-hand side).
 - ▶ The production is the handle.
 - ▶ The dot indicates the prefix of the handle that has seen so far.

Example:

- $A \rightarrow XY$ $\triangleright A \rightarrow \cdot XY$ $\triangleright A \rightarrow X \cdot Y$ $\triangleright A \rightarrow XY \cdot$ • $A \rightarrow \epsilon$ $\triangleright A \rightarrow \cdot$
- Augmented grammar G' is to add a new starting symbol S' and a new production $S' \to S$ to a grammar G with the original starting symbol S.
 - ▶ We assume working on the augmented grammar from now on.

High-level ideas for LR(0) parsing

Grammar:

- $S' \to S$
- $S \to AB \mid CD$
- $A \to a$
- $B \rightarrow b$
- $C \rightarrow c$
- $D \to d$

Approach:

- ▶ Use a STACK to record the current viable prefix.
- ▷ Use NFA to record information about the next possible handle.
- \triangleright push down automata = FA + stack.
- ▷ Need to use DFA for simplicity.

Closure

- The closure operation closure(I), where I is a set of some LR(0) items, is defined by the following algorithm:
 - If $A \to \alpha \cdot B\beta$ is in closure(I), then
 - \triangleright at some point in parsing, we might see a substring derivable from $B\beta$ as input;
 - ▷ if $B \to \gamma$ is a production, we also see a substring derivable from γ at this point.
 - ▷ Thus $B \to \cdot \gamma$ should also be in closure(I).

• What does closure(I) mean informally?

- When $A \rightarrow \alpha \cdot B\beta$ is encountered during parsing, then this means we have seen α so far, and expect to see $B\beta$ later before reducing to A.
- At this point if $B \to \gamma$ is a production, then we may also want to see $B \to \cdot \gamma$ in order to reduce to B, and then advance to $A \to \alpha B \cdot \beta$.
- Using closure(I) to record all possible things about the next handle that we have seen in the past and expect to see in the future.

Example for the closure function

- Example: E' is the new starting symbol, and E is the original starting symbol.
- $E' \rightarrow E$ • $E \rightarrow E + T \mid T$ • $T \rightarrow T * F \mid F$ • $F \rightarrow (E) \mid id$ • $closure(\{E' \rightarrow \cdot E\}) =$ • $\{E' \rightarrow \cdot E,$ • $E \rightarrow \cdot E + T,$ • $E \rightarrow \cdot T,$ • $T \rightarrow \cdot T * F,$ • $T \rightarrow \cdot F,$ • $F \rightarrow \cdot (E),$ • $F \rightarrow \cdot id\}$

GOTO table

- GOTO(I, X), where I is a set of some LR(0) items and X is a legal symbol, means

- If $A \to \alpha \cdot X\beta$ is in I, then
- $closure(\{A \to \alpha X \cdot \beta\}) \subseteq GOTO(I, X)$
- Informal meanings:
 - currently we have seen $A \to \alpha \cdot X\beta$
 - expect to see X
 - if we see X,
 - then we should be in the state $closure(\{A \rightarrow \alpha X \cdot \beta\})$.
- Use the GOTO table to denote the state to go to once we are in I and have seen X.

Sets-of-items construction

- Canonical LR(0) items : the set of all possible DFA states, where each state is a set of some LR(0) items.
- Algorithm for constructing LR(0) parsing table.
 - $C \leftarrow \{closure(\{S' \rightarrow \cdot S\})\}$
 - Repeat
 - ▶ for each set of items I in C and each grammar symbol X such that GOTO(I, X) ≠ Ø and not in C do
 ▶ add GOTO(I, X) to C
 - Until no more sets can be added to C
- Kernel of a state:
 - Definitions: items
 - \triangleright not of the form $X \to \cdot \beta$ or
 - \triangleright of the form $S' \rightarrow \cdot S$
 - Given the kernel of a state, all items in this state can be derived.

Example of sets of LR(0) **items**

• **Canonical** LR(0) items:

•
$$I_1 = GOTO(I_0, E) =$$

• $closure(\{E' \to E \cdot, E \to E \cdot +T\}) =$
• $\{E' \to E \cdot, E \to E \cdot +T\}$
• $I_2 = GOTO(I_0, T) =$
• $closure(\{E \to T \cdot, T \to T \cdot *F\}) =$
• $\{E \to T \cdot, T \to T \cdot *F\}$

 $I_0 = closure(\{E' \to \cdot E\}) =$

 $\{E' \rightarrow \cdot E,\$
Transition diagram (1/2)

Transition diagram (2/2)

Meaning of LR(0) transition diagram

- E + T * is a viable prefix that can happen on the top of the stack while doing parsing.
 - $\{T \to T * \cdot F,$

• $F \rightarrow \cdot id$

- After seeing E + T *, we are in state I_7 . $I_7 = \bullet F \to \cdot(E)$,
- We expect to follow one of the following three possible derivations:
 - $E' \Longrightarrow E$ $E' \Longrightarrow_{rm} E$ $E' \Longrightarrow_{rm} E$ rm $\Longrightarrow_{rm} E + T$ $\Longrightarrow_{rm} E + T$ $\Longrightarrow_{rm} E + T$ $\Longrightarrow_{rm} E + T * F$ $\Longrightarrow_{rm} E + T * F$ $\Longrightarrow_{rm} E + T * F$ $\implies E + T * id$ $\Longrightarrow_{rm} \underline{E + T *} (E) \qquad \Longrightarrow_{rm} \underline{E + T *} id$ rm $\Longrightarrow_{rm} \underline{E + T *} F * id$

. . .

High-level ideas of parsing

- Viable prefix: saved in the STACK to record the path it comes from.
 - All possible viable prefixes are compactly recorded in the transition diagram.
- Top of STACK: the current state it is in.
- Shift: we can extend the current viable prefix.
 - PUSH and change state.
- Reduce: we can perform a handle reduction.
 - POP and backtrack to the state we were last in.

Parsing example

Meanings of closure(I) and GOTO(I, X)

closure(I): a state/configuration during parsing recording all possible information about the next handle.

- If $A \to \alpha \cdot B\beta \in I$, then it means
 - \triangleright in the middle of parsing, α is on the top of STACK;
 - \triangleright at this point, we are expecting to see $B\beta$;
 - ▷ after we saw $B\beta$, we will reduce $\alpha B\beta$ to A and make A top of stack.
- To achieve the goal of seeing $B\beta$, we expect to perform some operations below:
 - \triangleright We expect to see B on the top STACK first.
 - ▷ If $B \to \gamma$ is a production, then it might be the case that we shall see γ on the top of the stack.
 - \triangleright If it does, we reduce γ to B.
 - \triangleright Hence we need to include $B \rightarrow \gamma$ into closure(I).

GOTO(I, X): when we are in the state described by I, and then a new symbol X is pushed into the stack,

• If $A \to \alpha \cdot X\beta$ is in *I*, then $closure(\{A \to \alpha X \cdot \beta\}) \subseteq GOTO(I, X)$.

LR(0) parsing

- LR parsing without lookahead symbols.
- Initially,
 - Push I_0 into the stack.
 - Begin to scan the input from left to right.
- In state I_i
 - if $\{A \rightarrow \alpha \cdot a\beta\} \subseteq I_i$ then perform "shift *i*" while seeing the terminal *a* in the input, and then go to the state $I_j = closure(\{A \rightarrow \alpha a \cdot \beta\})$.
 - ▶ Push a into the STACK first.
 - \triangleright Then push I_j into the STACK.
 - if $\{A \to \beta \cdot\} \subseteq I_i$, then perform "reduce by $A \to \beta$ " and then go to the state $I_j = GOTO(I, A)$ where I is the state on the top of STACK after removing β
 - ▷ Pop β and all intermediate states from the STACK.
 - \triangleright Push A into the STACK.
 - ▷ Then push I_j into the STACK.
 - Reject if none of the above can be done.
 - Report "conflicts" if more than one can be done.
- Accept an input if EOF is seen at I_0 .

Parsing example (1/2)

STACK	input	action
\$ I ₀	id * id + id\$	shift 5
\$ I_0 id I_5	* id + id\$	reduce by $F \rightarrow id$
\$ I ₀ F	* id + id\$	in I_0 , saw F, goto I_3
\$ I_0 F I_3	* id + id\$	reduce by $T \rightarrow F$
\$ I ₀ T	* id + id\$	in I_0 , saw T, goto I_2
\$ I ₀ T I ₂	* id + id\$	shift 7
\$ I_0 T I_2 * I_7	id + id\$	shift 5
I_0 T I_2 * I_7 id I_5	+ id\$	reduce by $F \rightarrow id$
\$ I ₀ T I ₂ * I ₇ F	+ id\$	in I_7 , saw F, goto I_{10}
\$ I_0 T I_2 * I_7 F I_{10}	+ id\$	reduce by $T \rightarrow T * F$
\$ I ₀ T	+ id\$	in I_0 , saw T, goto I_2
\$ I ₀ T I ₂	+ id\$	reduce by $E \rightarrow T$
\$ I ₀ E	+ id\$	in I_0 , saw E , goto I_1
\$ I_0 E I_1	+ id\$	shift 6
\$ I_0 E I_1 + I_6	id\$	shift 5
\$ I_0 E I_1 + I_6 F	\$	reduce by $F \rightarrow id$
\$ I_0 E I_1 + I_6 F I_3	\$	in I_6 , saw F, goto I_3
• • •	• • •	• • •

Parsing example (2/2)

STACK	input	action
\$ I ₀	id + id * id	shift 5
\$ I_0 id I_5	+ id * id\$	reduce by $F \rightarrow id$
\$ I ₀ F	+ id * id\$	in I_0 , saw F, goto I_3
\$ I_0 F I_3	+ id * id\$	reduce by $T \rightarrow F$
\$ I ₀ T	+ id * id\$	in I_0 , saw T, goto I_2
\$ I ₀ T I ₂	+ id * id\$	reduce by $E \rightarrow T$
\$ I ₀ E	+ id * id\$	in I_0 , saw E, goto I_1
\$ I_0 E I_1	+ id * id\$	shift 6
\$ I_0 E I_1 + I_6	id * id\$	shift 5
$\$ I_0 \ \mathbf{E} \ I_1 \ \mathbf{+} \ I_6 \ \mathbf{id} \ I_5$	* id\$	reduce by $F \rightarrow id$
\$ I_0 E I_1 + I_6 F	* id\$	in I_6 , saw F, goto I_3
\$ I_0 E I_1 + I_6 F I_3	* id\$	reduce by $T \rightarrow F$
\$ I_0 E I_1 + I_6 T I_9	* id\$	in I_6 , saw T, goto I_9
\$ I_0 E I_1 + I_6 T I_9 * I_7	id\$	shift 7
$I_0 \in I_1 + I_6 \top I_9 * I_7 $ id I_5	\$	shift 5
\$ I_0 E I_1 + I_6 T I_9 * I_7 F	\$	reduce by $F \rightarrow id$
\$ I_0 E I_1 + I_6 T I_9 * I_7 F I_{10}	\$	in I_7 , saw F, goto I_{10}
\$ I_0 E I_1 + I_6 T	\$	reduce by $T \rightarrow T * F$
\$ I_0 E I_1 + I_6 T I_9	\$	in I_6 , saw T, goto I_9
•••	• • •	• • •

Problems of LR(0) **parsing**

- Conflicts: handles have overlaps, thus multiple actions are allowed at the same time.
 - shift/reduce conflict
 - reduce/reduce conflict
- Very few grammars are LR(0). For example:
 - In I_2 of our example, you can either perform a reduce or a shift when seeing "*" in the input.
 - However, it is not possible to have *E* followed by "*".

▶ Thus we should not perform "reduce."

- Idea: use ${\rm FOLLOW}(E)$ as look ahead information to resolve some conflicts.

$SLR(1)\ {\rm parsing}\ {\rm algorithm}$

- Using FOLLOW sets to resolve conflicts in constructing SLR(1) [DeRemer 1971] parsing table, where the first "S" stands for "Simple".
 - Input: an augmented grammar G'
 - Output: the SLR(1) parsing table
- Construct $C = \{I_0, I_1, \dots, I_n\}$ the collection of sets of LR(0) items for G'.
- The parsing table for state I_i is determined as follows:
 - If $A \to \alpha \cdot a\beta$ is in I_i and $GOTO(I_i, a) = I_j$, then
 - \triangleright action(I_i , a) is "shift j" for a being a terminal.
 - If $A \to \alpha \cdot$ is in I_i , then
 - ▷ $action(I_i, a)$ is "reduce by $A \to \alpha$ " for all terminal $a \in FOLLOW(A)$; here $A \neq S'$.
 - If $S' \to S$ is in I_i , then

 \triangleright action(I_i , \$) is "accept".

If any conflicts are generated by the above algorithm, we say the grammar is not SLR(1).

$SLR(1)\ {\rm parsing\ table}$

		acti	lon					GC	OTO	
	state	id	+	*	()	\$	Е	Т	F
	0	s5			s4			1	2	3
(1) $E'' \rightarrow E'$	1		$\mathbf{s6}$				accept			
(2) $E \rightarrow E + T$	2		r2	s7		r2	r2			
(3) $E \rightarrow T$	3		r5	r5		r5	r5			
$(\Lambda) T \rightarrow T * F$	4	s5			s4			8	2	3
$(4) I \rightarrow I * I$	5		m r7	r7		m r7	m r7			
(b) $T \rightarrow F$	6	s5			s4				9	3
(6) $F \to (E)$	7	s5			s4					10
(7) $F \rightarrow id$	8		$\mathbf{s6}$			s11				
	9		r2	s7		r2	r2			
	10		r4	r4		r4	r4			
	11		r6	r6		r6	r6			

ri means reduce by the ith production.
si means shift and then go to state I_i.
Use FOLLOW sets to resolve some conflicts.

Discussion (1/3)

• Every SLR(1) grammar is unambiguous, but there are many unambiguous grammars that are not SLR(1).

Grammar:

• $S \rightarrow L = R \mid R$ • $L \rightarrow *R \mid id$ • $R \rightarrow L$

States:

 I_0 : $\triangleright S' \rightarrow \cdot S$ I_6 : $\triangleright S \rightarrow \cdot L = R$ $\triangleright S \rightarrow L = \cdot R$ $I_3: S \to R$ $\triangleright S \rightarrow \cdot R$ $\triangleright R \rightarrow \cdot L$ $\triangleright L \rightarrow \cdot \ast R$ $\triangleright L \rightarrow \cdot \ast R$ I_4 : $\triangleright L \rightarrow \cdot id$ $\triangleright L \rightarrow \cdot id$ $\triangleright L \rightarrow * \cdot R$ $\triangleright R \rightarrow \cdot L$ $\triangleright R \rightarrow \cdot L$ $I_1: S' \to S$. $I_7: L \to *R$ $\triangleright L \rightarrow \cdot \ast R$ I_2 : $\triangleright L \rightarrow \cdot id$ $I_8: R \to L$ $\triangleright S \rightarrow L = R$ $\triangleright R \rightarrow L$. $I_0: S \to L = R$. $I_5: L \to id$

Discussion (2/3)

Discussion (3/3)

- Suppose the STACK has "\$ $I_0 L I_2$ " and the input is "=". We can either
 - shift 6, or
 - reduce by $R \to L$, since $= \in \mathsf{FOLLOW}(R)$.
- This grammar is ambiguous for SLR(1) parsing.
- However, we should not perform a $R \rightarrow L$ reduction.
 - After performing the reduction, the viable prefix is R;
 - $= \notin \mathsf{FOLLOW}(\$R);$
 - $=\in$ **FOLLOW**(**R*);
 - That is to say, we cannot find a right-sentential form with the prefix $R = \cdots$.
 - We can find a right-sentential form with $\cdots * R = \cdots$

Canonical LR - LR(1)

- In SLR(1) parsing, if $A \to \alpha \cdot$ is in state I_i , and $a \in FOLLOW(A)$, then we perform the reduction $A \to \alpha$.
- However, it is possible that when state I_i is on the top of the stack, we have the viable prefix $\beta \alpha$ on the top of STACK, and βA cannot be followed by a.

• In this case, we cannot perform the reduction $A \rightarrow \alpha$.

- It looks difficult to find the FOLLOW sets for every viable prefix.
- We can solve the problem by knowing more left context using the technique of lookahead propagation.
 - Construct FOLLOW(ω) on the fly.
 - Assume $\omega = \omega' X$ and FOLLOW (ω') is known.
 - Can FOLLOW($\omega' X$) be computed efficiently?

LR(1) items

• An LR(1) item is in the form of

 $[A \rightarrow \alpha \cdot \beta, a]$, where the first field is an LR(0) item and the second field a is a terminal belonging to a subset of FOLLOW(A).

- Intuition: perform a reduction based on an LR(1) item $[A \to \alpha \cdot, a]$ only when the next symbol is a.
 - Instead of maintaining FOLLOW sets of viable prefixes, we maintain FIRST sets of possible future extensions of the current viable prefix.
- Formally: $[A \to \alpha \cdot \beta, a]$ is valid (or reachable) for a viable prefix γ if there exists a derivation

$$S \stackrel{*}{\Longrightarrow} \delta A \omega \stackrel{\bullet}{\Longrightarrow} \underbrace{\delta}_{rm} \underbrace{\delta}_{\gamma} \alpha \beta \omega,$$

where

- either $a \in \mathsf{FIRST}(\omega)$ or
- $\omega = \epsilon$ and a =\$.

Examples of LR(1) **items**

Grammar:

• $S \rightarrow BB$ • $B \rightarrow aB \mid b$

 $S \xrightarrow{*}_{rm} aaBab \xrightarrow{}_{rm} aaaBab$ viable prefix aaa can reach $[B \rightarrow a \cdot B, a]$

$$S \Longrightarrow_{rm} BaB \Longrightarrow_{rm} BaaB$$

viable prefix Baa can reach $[B \rightarrow a \cdot B, \$]$

Finding all LR(1) items

Ideas: redefine the closure function.

- Suppose $[A \rightarrow \alpha \cdot B\beta, a]$ is valid for a viable prefix $\gamma \equiv \delta \alpha$.
- In other words,

$$S \stackrel{*}{\Longrightarrow} \delta \boxed{A} a\omega \stackrel{*}{\Longrightarrow} \delta \boxed{\alpha B\beta} a\omega.$$

 $\triangleright \omega$ is ϵ or a sequence of terminals.

• Then for each production $B \to \eta$, assume $\beta a \omega$ derives the sequence of terminals $bea \omega$.

$$S \xrightarrow{*}_{rm} \delta \alpha \underline{B} \beta a \omega \xrightarrow{*}_{rm} \delta \alpha \underline{B} bea \omega \xrightarrow{*}_{rm} \delta \alpha \underline{\eta} bea \omega$$

Thus $[B \rightarrow \eta, b]$ is also valid for γ for each $b \in \mathsf{FIRST}(\beta a)$. Note a is a terminal. So $\mathsf{FIRST}(\beta a) = \mathsf{FIRST}(\beta a\omega)$.

Lookahead propagation .

Algorithm for LR(1) parsers

• $closure_1(I)$ Repeat ▷ for each item $[A \rightarrow \alpha \cdot B\beta, a]$ in I do if $B \to \eta$ is in G' \triangleright then add $[B \rightarrow \eta, b]$ to I for each $b \in \mathbf{FIRST}(\beta a)$ \triangleright Until no more items can be added to I • return *I* • $GOTO_1(I, X)$ • let $J = \{ [A \to \alpha X \cdot \beta, a] \mid [A \to \alpha \cdot X\beta, a] \in I \};$ • return $closure_1(J)$ • items(G')• $C \leftarrow \{closure_1(\{[S' \rightarrow \cdot S, \$]\})\}$ • Repeat \triangleright for each set of items $I \in C$ and each grammar symbol X such that $GOTO_1(I, X) \neq \emptyset$ and $GOTO_1(I, X) \notin C$ do add $GOTO_1(I, X)$ to C \triangleright

• Until no more sets of items can be added to ${\cal C}$

Example for constructing LR(1) closures

Grammar:

- $S' \to S$
- $S \to CC$
- $C \to cC \mid d$
- $closure_1(\{[S' \rightarrow \cdot S, \$]\}) =$
 - $\{[S' \rightarrow \cdot S, \$],$
 - $[S \rightarrow \cdot CC, \$],$
 - $[C \rightarrow cC, c/d],$
 - $[C \rightarrow \cdot d, c/d]$

• Note:

- **FIRST** $(\epsilon \$) = \{\$\}$
- **FIRST** $(C$) = \{c, d\}$
- $[C \rightarrow \cdot cC, c/d]$ means
 - $\triangleright [C \to \cdot cC, c] \text{ and} \\ \triangleright [C \to \cdot cC, d].$

LR(1) transition diagram

LR(1) parsing example

Input cdccd

STACK	INPUT	ACTION
\$ I ₀	cdccd\$	
$I_0 \ c \ I_3$	dccd	shift 3
$I_0 \subset I_3 \subset I_4$	ccd	shift 4
$I_0 \subset I_3 \subset I_8$	ccd	reduce by $C \to d$
$I_0 \subset I_2$	ccd	reduce by $C \to cC$
$I_0 \subset I_2 \subset I_6$	$\mathrm{cd}\$$	shift 6
$I_0 \subset I_2 \subset I_6 \subset I_6$	d\$	shift 6
$I_0 \subset I_2 \subset I_6 \subset I_6$	d\$	shift 6
$I_0 \subset I_2 \subset I_6 \subset I_6 \subset I_7$	\$	shift 7
$I_0 \subset I_2 \subset I_6 \subset I_6 \subset I_9$	\$	reduce by $C \to cC$
$I_0 \subset I_2 \subset I_6 \subset I_9$	\$	reduce by $C \to cC$
$I_0 \subset I_2 \subset I_5$	\$	reduce by $S \to CC$
$I_0 S I_1$	\$	reduce by $S' \to S$
$I_0 S'$	\$	accept

Generating LR(1) parsing table

• Construction of canonical LR(1) parsing tables.

- Input: an augmented grammar G^\prime
- Output: the canonical LR(1) parsing table, i.e., the $ACTION_1$ table
- Construct $C = \{I_0, I_1, \ldots, I_n\}$ the collection of sets of LR(1) items form G'.

Action table is constructed as follows:

- if $[A \to \alpha \cdot a\beta, b] \in I_i$ and $GOTO_1(I_i, a) = I_j$, then $action_1[I_i, a] =$ "shift j" for a is a terminal.
- if $[A \to \alpha \cdot, a] \in I_i$ and $A \neq S'$, then $action_1[I_i, a] =$ "reduce by $A \to \alpha$ "
- if $[S' \rightarrow S \cdot, \$] \in I_i$, then $action_1[I_i, \$] =$ "accept."

If conflicts result from the above rules, then the grammar is not LR(1).

- The initial state of the parser is the one constructed from the set containing the item $[S'\to\cdot S,\$].$

Example of an LR(1) parsing table

	$action_1$			G(
state	С	d	\$	S	С	
0	s3	s4		1	2	
1			accept			
2	$\mathbf{s6}$	s7			5	
3	s3	s4			8	
4	r3	r3				
5			r1			
6	$\mathbf{s6}$	s7			9	
7			r3			
8	r2	r2				
9			r2			

• Canonical LR(1) parser:

- Most powerful!
- Has too many states and thus occupies too much space.

LALR(1) parser — Lookahead LR

- The method that is often used in practice.
- Most common syntactic constructs of programming languages can be expressed conveniently by an LALR(1) grammar [DeRemer 1969].
- SLR(1) and LALR(1) always have the same number of states.
- Number of states is about 1/10 of that of LR(1).
- Simple observation:
 - an LR(1) item is of the form $[A \rightarrow \alpha \cdot \beta, c]$
- We call $A \to \alpha \cdot \beta$ the first component.
- Definition: in an LR(1) state, set of first components is called its core .

Intuition for LALR(1) grammars

- In an LR(1) parser, it is a common thing that several states only differ in lookahead symbols, but have the same core.
- To reduce the number of states, we might want to merge states with the same core.
 - If I_4 and I_7 are merged, then the new state is called $I_{4,7}$.
 - After merging the states, revise the $GOTO_1$ table accordingly.
- Merging of states can never produce a shift-reduce conflict that was not present in one of the original states.
 - $I_1 = \{ [A \to \alpha \cdot, a], \ldots \}$
 - ▷ For I_1 , one of the actions is to perform a reduce when the lookahead symbol is "a".
 - $I_2 = \{ [B \rightarrow \beta \cdot a\gamma, b], \ldots \}$
 - ▷ For I_2 , one of the actions is to perform a shift on input "a".
 - Merging I_1 and I_2 , the new state $I_{1,2}$ has shift-reduce conflicts.
 - However, we merge I_1 and I_2 because they have the same core.
 - ▷ That is, $[A \to \alpha \cdot, c] \in I_2$ and $[B \to \beta \cdot a\gamma, d] \in I_1$.
 - \triangleright The shift-reduce conflict already occurs in I_1 and I_2 .

Merging of states can produce a new reduce-reduce conflict.

LALR(1) transition diagram

Possible new conflicts from LALR(1)

- May produce a new reduce-reduce conflict.
- For example (textbook page 267, Example 4.58), grammar:
 - $S' \to S$
 - $S \rightarrow aAd \mid bBf \mid aBe \mid bAe$
 - $A \to c$
 - $B \to c$
- The language recognized by this grammar is {*acd*, *ace*, *bcd*, *bce*}.
- You may check that this grammar is LR(1) by constructing the sets of items.
- You will find the set of items $\{[A \to c \cdot, d], [B \to c \cdot, e]\}$ is valid for the viable prefix ac, and $\{[A \to c \cdot, e], [B \to c \cdot, d]\}$ is valid for the viable prefix bc.
- Neither of these sets generates a conflict, and their cores are the same. However, their union, which is

$$\{[A \to c \cdot, d/e], \\ [P \to c \cdot, d/e]\}$$

• $[B
ightarrow c \cdot, d/e] \}$,

generates a reduce-reduce conflict, since reductions by both $A \to c$ and $B \to c$ are called for on inputs d and e.
How to construct LALR(1) parsing table

Naive approach:

- Construct LR(1) parsing table, which takes lots of intermediate spaces.
- Merging states.
- Space and/or time efficient methods to construct an LALR(1) parsing table are known.
 - Constructing and merging on the fly.
 - • •

Summary

- LR(1) and LALR(1) can almost express all important programming languages issues, but LALR(1) is easier to write and uses much less space.
- LL(1) is easier to understand and uses much less space, but cannot express some important common-language features.
 - May try to use it first for your own applications.
 - If it does not succeed, then use more powerful ones.