Code Generation and Optimization

ALSU Textbook Chapters 8.4, 8.5, 8.7, 8.8, 9.1

Tsan-sheng Hsu
tshsu@iis.sinica.edu.tw
http://www.iis.sinica.edu.tw/~tshsu

Introduction

- For some compiler, the intermediate code is a pseudo code of a virtual machine.
- Interpreter of the virtual machine is invoked to execute the intermediate code.
- No machine-dependent code generation is needed.
- Usually with great overhead.
- Example:
\triangleright Pascal: P-code for the virtual P machine.
\triangleright JAVA: Byte code for the virtual JAVA machine.
- Motivation:
- Statement by statement translation might generate redundant codes.
- Locally improve the target code performance by examine a short sequence of target instructions (called a peephole) and do optimization on this sequence.
- Note: Complexity depends on the "window size."

Optimization.

- Machine-dependent issues.
- Machine-independent issues.

Machine-dependent issues (1/2)

- Input and output formats:
- The formats of the intermediate code and the target program.
- Memory management:
- Alignment, indirect addressing, paging, segment,
- Those you learned from your assembly language class.
- Instruction cost:
- Special machine instructions to speed up execution.
- Example:
\triangleright Increment by 1.
\triangleright Multiplying or dividing by 2.
\triangleright Bit-wise manipulation.
\triangleright Operators applied on a continuous block of memory space.
- Pick a fastest instruction combination for a certain target machine.

Machine-dependent issues (2/2)

- Register allocation: in-between machine dependent and independent issues.
- C language allows the user to management a pool of registers.
- Some language leaves the task to compiler.
- Idea: save mostly used intermediate result in a register. However, finding an optimal solution for using a limited set of registers is NP-hard.
- Example:

$\mathrm{t}:=\mathrm{a}+\mathrm{b}$	load R0, a	load R0, a	
	load R1, b	add R0,b	
	add R0, R1	store R0,T	
	store R0, T		

- Heuristic solutions: similar to the ones used for the swapping problem.

Machine-independent issues

- Techniques.
- Analysis of dependence graphs.
- Analysis of basic blocks and flow graphs.
- Semantics-preserving transformations.
- Algebraic transformations.

Dependence graphs

- Issues:
- In an expression, assume its dependence graph is given.
- We can evaluate this expression using any topological ordering.
- There are many legal topological orderings.
- Pick one to increase its efficiency.
- Example:

order\#1	reg\#	order\#2	reg\#
E2	1	E6	1
E3	2	E5	2
E5	3	E4	1
E6	4	E3	2
E4	3	E1	1
E1	2	E2	2
E0	1	E0	1

- On a machine with only 2 free registers, some of the intermediate results in order\#1 must be stored in the temporary space.
- STORE/LOAD takes time.

Basic blocks and flow graphs

Basic block : a sequence of code such that

- jump statements, if any, are at the end of the sequence;
- codes in other basic block can only jump to the beginning of this sequence, but not in the middle.
- Example:

$$
\begin{aligned}
& \triangleright t_{1}:=a * a \\
& \triangleright t_{2}:=a * b \\
& \triangleright t_{3}:=2 * t_{2} \\
& \triangleright \text { goto outter }
\end{aligned}
$$

- Single entry, single exit.
- Flow graph : Using a flow chart-like graph to represent a pro-
Flow graph : gram where nodes are basic blocks and edges are flow of control.

How to find basic blocks

- How to find leaders, which are the first statements of basic blocks?
- The first statement of a program is a leader.
- For each conditional and unconditional goto,
\triangleright its target is a leader;
\triangleright its next statement is also a leader.
- Using leaders to partition the program into basic blocks.
- Ideas for optimization:
- Two basic blocks are equivalent if they compute the same expression.
- Use transformation techniques below to perform machine-independent optimization.

Finding basic blocks - examples

- Example: Three-address code for computing the dot product of two vectors a and b.

```
\(\triangleright \operatorname{prod}:=0\)
\(\triangleright i:=1\)
\(\triangleright\) loop:
\(\triangleright t_{1}:=4 * i\)
\(\triangleright t_{2}:=a\left[t_{1}\right]\)
\(\triangleright t_{3}:=4 * i\)
\(\triangleright t_{4}:=b\left[t_{3}\right]\)
\(\triangleright t_{5}:=t_{2} * t_{4}\)
\(\triangleright t_{6}:=\operatorname{prod}+t_{5}\)
\(\triangleright\) prod \(:=t_{6}\)
\(\triangleright t_{7}:=i+1\)
\(\triangleright i:=t_{7}\)
\(\triangleright\) if \(i \leq 20\) goto loop
- ...
```

- There are three blocks in the above example.

DAG representation of a basic block

- Inside a basic block:
- Expressions can be expressed using a DAG that is similar to the idea of a dependence graph.
- Graph might not be connected.
- Example:
(1) $t_{1}:=4 * i$
(2) $t_{2}:=a\left[t_{1}\right]$
(3) $t_{3}:=4 * i$
(4) $t_{4}:=b\left[t_{3}\right]$
(5) $t_{5}:=t_{2} * t_{4}$
(6) $t_{6}:=\operatorname{prod}+t_{5}$
(7) $\operatorname{prod}:=t_{6}$
(8) $t_{7}:=i+1$
(9) $i:=t_{7}$
(10) if $i \leq 20$ goto (1)

Semantics-preserving transformations (1/3)

- Techniques: using the information contained in the flow graph and DAG representation of basic blocks to do optimization.
- Common sub-expression elimination.

$$
\begin{aligned}
& \mathrm{a}:=\mathrm{b}+\mathrm{c} \\
& \mathrm{~b}:=\mathrm{a}-\mathrm{d} \\
& \mathrm{c}:=\mathrm{b}+\mathrm{c} \\
& \mathrm{~d}:=\mathrm{a}-\mathrm{d}
\end{aligned} \quad \longrightarrow \begin{aligned}
& \mathrm{a}:=\mathrm{b}+\mathrm{c} \\
& \mathrm{~b}:=\mathrm{a}-\mathrm{d} \\
& \mathrm{c}:=\mathrm{b}+\mathrm{c} \\
& \mathrm{~d}:=\mathrm{b}
\end{aligned}
$$

- Dead-code elimination: remove unreachable codes.
- Remove redundant codes such as loads and stores.

$$
\begin{aligned}
& \triangleright \operatorname{MOV} R_{0}, a \\
& \triangleright \operatorname{MOV} a, R_{0}
\end{aligned}
$$

- Code motion.
\triangleright Find loop-invariants inside a loop.
\triangleright Obtain the values of loop-invariants outside the loop.
\triangleright Example:
while(i <= limit - 2)

$$
\begin{aligned}
& \mathrm{t}=\text { limit }-2 \\
& \text { while (i <= t) }
\end{aligned}
$$

- Renaming temporary variables: better usage of registers and avoiding using unneeded temporary variables.

Semantics-preserving transformations (2/3)

More techniques:

- Copy propagation:
\triangleright De-reference a chain of variable copies.
\triangleright Example:

$$
\begin{aligned}
& \mathrm{a}=\mathrm{x} ; \\
& \mathrm{y}=\mathrm{a} ; \\
& \mathrm{b}=\mathrm{y} ;
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{a}=\mathrm{x} \\
& \mathrm{y}=\mathrm{x} \\
& \mathrm{~b}=\mathrm{x}
\end{aligned}
$$

- Flow of control simplification:
\triangleright De-reference a chain of goto's.
\triangleright Example:
goto L1 goto L2

L1: goto L2
L1: goto L2

Semantics-preserving transformations (3/3)

- Interchange of two independent adjacent statements, which might be useful in discovering the above transformations.
- Same expressions that are too far away to store E_{1} into a register.

```
    t1 := E1
    t1 := E1
    \(\triangleright\) Example: \({ }^{\text {t2 }:=\text { const } \quad \text { tn }:=\text { E1 // swap t2 and tn }}\)
    ... // value of tn is not used
    tn := E1 t2 := const
\(\triangleright\) In the example above, we can swap t2 and tn since there is no depen-
    dence between t2 and tn.
    \(\triangleright\) After the swapping, we can use the register stroing E1 twice.
```

- Note: The order of dependence cannot be altered after the exchange.

```
    t1 := E1
\(\triangleright\) Example: \(\mathrm{t} 2:=\mathrm{t} 1+\mathrm{tn} / /\) cannot swap t 2 and tn
    tn := E1
\(\triangleright\) In the example above, we cannot swap t2 and tn because t2 needs to
    be executed before tn.
```


Algebraic transformations

- Algebraic identities:
- $x+0 \equiv 0+x \equiv x$
- $x-0 \equiv x$
- $x * 1 \equiv 1 * x \equiv x$
- $x / 1 \equiv x$
- Reduction in strength:
- $x^{2} \equiv x * x$
- $2.0 * x \equiv x+x$
- $x / 2 \equiv x * 0.5$
- Constant folding:
- $2 * 3.14 \equiv 6.28$
- Standard representation for subexpression by commutativity and associativity:
- $n * m \equiv m * n$.
- $b<a \equiv a>b$.

Correctness after optimization

- When side effects are expected, different evaluation orders may produce different results for expressions.

- Assume E_{5} is a procedure call with the side effect of changing some values in E_{6}.
- $L L$ and $L R$ parsing produce different results.
- Watch out precisions when doing algebraic transformations.
- if $(x=321.00000123456789-321.00000123456788)>0$ then
- Need to make sure code before and after optimization produce the same result.
- Complications arise when debugger is involved.

