
Scout and NegaScout

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1



Abstract

It looks like alpha-beta pruning is the best we can do for an
exact generic searching procedure.
• What else can be done generically?
• Alpha-beta pruning follows basically the “intelligent” searching behav-

iors used by human when domain knowledge is not involved.
• Can we find some other “intelligent” behaviors used by human during

searching?

Intuition: MAX node.
• Suppose we know currently we have a way to gain at least 300 points

at the first branch.
• If there is an efficient way to know the second branch is at most

gaining 300 points, then there is no need to search the second branch
in detail.

. Alpha-beta cut algorithm is one way to make sure of this by returning
an exact value.

. Is there a way to search a tree by only returning a bound?

. Is searching with a bound faster than searching exactly?

Similar intuition holds for a MIN node.

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 2



SCOUT procedure

It may be possible to verify whether the value of a branch
is greater than a value v or not in a way that is faster than
knowing its exact value [Judea Pearl 1980].
High level idea:
• While searching a branch Ti of a MAX node, if we have already

obtained a lower bound v`.
. First TEST whether it is possible for Ti to return something greater

than v`.
. If FALSE, then there is no need to search Ti.
⇒ This is called fails the test.

. If TRUE, then search Ti.
⇒ This is called passes the test.

• While searching a branch Tj of a MIN node, if we have already obtained
an upper bound vu

. First TEST whether it is possible for Tj to return something smaller
than vu.

. If FALSE, then there is no need to search Tj.
⇒ This is called fails the test.

. If TRUE, then search Tj.
⇒ This is called passes the test.

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 3



How to TEST > v

procedure TEST>(position p, value v)
// test whether the value of the branch at p is > v

determine the successor positions p1, . . . , pb of p
if b = 0, then // terminal

. if f(p) > v then // f(): evaluating function

. return TRUE

. else return FALSE

if p is a MAX node, then
• for i := 1 to b do

. if TEST>(pi, v) is TRUE, then
return TRUE // succeed if a branch is > v

• return FALSE // fail only if all branches ≤ v
if p is a MIN node, then
• for i := 1 to b do

. if TEST>(pi, v) is FALSE, then
return FALSE // fail if a branch is ≤ v

• return TRUE // succeed only if all branches are > v

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 4



How to TEST < v

procedure TEST<(position p, value v)
// test whether the value of the branch at p is < v

determine the successor positions p1, . . . , pb of p
if b = 0, then // terminal

. if f(p) < v then // f(): evaluating function

. return TRUE

. else return FALSE

if p is a MAX node, then
• for i := 1 to b do

. if TEST<(pi, v) is FALSE, then
return FALSE // fail if a branch is ≥ v

• return TRUE // succeed only if all branches < v
if p is a MIN node, then
• for i := 1 to b do

. if TEST<(pi, v) is TRUE, then
return TRUE // succeed if a branch is < v

• return FALSE // fail only if all branches are ≥ v

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 5



Illustration of TEST>

max

min

max

min

max

false true

true
false true true true

true

false false falsetrue

true true true
false

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 6



How to TEST — Discussions

Sometimes it may be needed to test for “≥ v”, or “≤ v”.

• TEST>(p,v) is TRUE ≡ TEST≤(p,v) is FALSE

• TEST>(p,v) is FALSE ≡ TEST≤(p,v) is TRUE

• TEST<(p,v) is TRUE ≡ TEST≥(p,v) is FALSE

• TEST<(p,v) is FALSE ≡ TEST≥(p,v) is TRUE

Practical consideration:
• Set a depth limit and evaluate the position’s value when the limit is

reached.

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 7



Main SCOUT procedure

Algorithm SCOUT(position p)

determine the successor positions p1, . . . , pb
if b = 0, then return f(p)

else v = SCOUT (p1) // SCOUT the first branch
if p is a MAX node
• for i := 2 to b do

. if TEST>(pi, v) is TRUE, // TEST first for the rest of the branches
then v = SCOUT (pi) // find the value of this branch if it can be > v

if p is a MIN node
• for i := 2 to b do

. if TEST<(pi, v) is TRUE, // TEST first for the rest of the branches
then v = SCOUT (pi) // find the value of this branch if it can be < v

return v

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 8



Discussions for SCOUT (1/3)

Note that v is the current best value at any moment.
MAX node:
• For any i > 1, if TEST>(pi, v) is TRUE,

. then the value returned by SCOUT (pi) must be greater than v.

• We say the pi passes the test if TEST>(pi, v) is TRUE.
MIN node:
• For any i > 1, if TEST<(pi, v) is TRUE,

. then the value returned by SCOUT (pi) must be smaller than v.

• We say the pi passes the test if TEST<(pi, v) is TRUE.

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 9



Discussions for SCOUT (2/3)

TEST which is called by SCOUT may visit less nodes than that
of alpha-beta.

max

min

max

min

5

8

15

10

0

5

8

15

10

0

KK

SCOUT ALPHA−BETA

p p

• Assume TEST>(p,5) is called by the root after the first branch of the
root is evaluated.

. It calls TEST>(K,5) which skips K’s second branch.

. TEST>(p,5) is FALSE, i.e., fails the test, after returning from the 3rd
branch.

. No need to do SCOUT for the branch rooted p.

• Alpha-beta needs to visit K’s second branch.

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 10



Discussions for SCOUT (3/3)

SCOUT may pay many visits to a node that is cut off by
alpha-beta.

max

min

max

min

max

ALPHA−BETASCOUT

5

10

0

25

20

8

A

B

C

D

TEST>[A,10]: true

TEST<[B,25]: true

TEST>[C,0]: true

TEST<[D,8]: true

5

10

0

25

20

8

[10,25]

[10,25]

[10,25]

[10, infinity]

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 11



Number of nodes visited (1/4)

For TEST to return TRUE for a subtree T , it needs to evaluate
at least

. one child for a MAX node in T , and

. and all of the children for a MIN node in T .

. If T has a fixed branching factor b and uniform depth b, the number of nodes
evaluated is Ω(b`/2) where ` is the depth of the tree.

For TEST to return FALSE for a subtree T , it needs to evaluate
at least

. one child for a MIN node in T , and

. and all of the children for a MAX node in T .

. If T has a fixed branching factor b and uniform depth b, the number of nodes
evaluated is Ω(b`/2).

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 12



Number of nodes visited (2/4)

Assumptions:
• Assume a full complete b-ary tree with depth ` where ` is even.
• The depth of the root, which is a MAX node, is 0.

The total number of nodes in the tree is b`+1−1
b−1 .

H1: the minimum number of nodes visited by TEST when it
returns TRUE.

H1 = 1 + 1 + b + b + b2 + b2 + b3 + b3 + · · ·+ b`/2−1 + b`/2−1 + b`/2

= 2 · (b0 + b1 + · · ·+ b`/2)− b`/2

= 2 · b
`/2+1−1

b−1 − b`/2

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 13



Number of nodes visited (3/4)

Assumptions:
• Assume a full complete b-ary tree with depth ` where ` is even.
• The depth of the root, which is a MAX node, is 0.

H2: the minimum number of nodes visited by alpha-beta.
H2 =

∑`
i=0(b

di/2e + bbi/2c − 1)

=
∑`

i=0 b
di/2e +

∑`
i=0 b

bi/2c − (` + 1)

=
∑`

i=0 b
di/2e + H1 − (` + 1)

= (1 + b + b + · · ·+ b`/2−1 + b`/2 + b`/2) + H1 − (` + 1)

= (H1 − 1 + b`/2 − b`/2−1) + H1 − (` + 1)

= 2 ·H1 + b`/2 − b`/2−1 − (` + 2)

∼ (2.x) ·H1

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 14



Number of nodes visited (4/4)

max

min

max

min

max

OR

AND

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 15



Comparisons

When the first branch of a node has the best value, then TEST
scans the tree fast.
• The best value of the first i − 1 branches is used to test whether the
ith branch needs to be searched exactly.

• If the value of the first i − 1 branches of the root is better than the
value of ith branch, then we do not have to evaluate exactly for the
ith branch.

Compared to alpha-beta pruning whose cut off comes from
bounds of search windows.
• It is possible to have some cut-off for alpha-beta as long as there are

some relative move orderings are “good.”
. The moving orders of your children and the children of your ancestor

who is odd level up decide a cut-off.

• The search bound is updated during the searching.
. Sometimes, a deep alpha-beta cut-off occurs because a bound found

from your ancestor a distance away.

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 16



Performance of SCOUT (1/2)

A node may be visited more than once.
• First visit is to TEST.
• Second visit is to SCOUT.

. During SCOUT, it may be TESTed with a different value.

• Q: Can information obtained in the first search be used in the second
search?

SCOUT is a recursive procedure.
• A node in a branch that is not the first child of a node with a depth

of `.
. Note that the depth of the root is defined to be 0.
. Every ancestor of you may initiate a TEST to visit you.
. It can be visited ` times by TEST.

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 17



Performance of SCOUT (2/2)

Show great improvements on depth > 3 for games with small
branching factors.
• It traverses most of the nodes without evaluating them preciously.
• Few subtrees remained to be revisited to compute their exact mini-max

values.
Experimental data on the game of Kalah show [UCLA Tech
Rep UCLA-ENG-80-17, Noe 1980]:
• SCOUT favors “skinny” game trees, that are game trees with high

depth-to-width ratios.
• On depth = 5, it saves over 40% of time.
• Maybe bad for games with a large branching factor.
• Move ordering is very important.

. The first branch, if is good, offers a great chance of pruning further
branches.

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 18



Alpha-beta revisited

In an alpha-beta search with a window [alpha,beta]:
• Failed-high means it returns a value that is larger than or equal to its

upper bound beta.
• Failed-low means it returns a value that is smaller than or equal to its

lower bound alpha.
Null or Zero window search:
• Using alpha-beta search with the window [m,m+ 1].
• The result can be either failed-high or failed-low.
• Failed-high means the return value is at least m+ 1.

. Equivalent to TEST>(p,m) is TRUE.

• Failed-low means the return value is at most m.
. Equivalent to TEST>(p,m) is FALSE.

The above argument works for the original, fail hard and fail
soft versions of the alpha-beta algorithm.

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 19



Behaviors of Null window search

When F3′(p,m,m+ 1,∞) returns m+ 1:
• for the MAX node p, returns immediately after the first child pi, namely

the smallest index i, the value m+ 1.
• for the MIN node pi, every child pi,j returns m+ 1
• for each MAX node pi,j, returns immediately after the first child ri,j,k,

namely the smallest index k, the value m+ 1.
• . . .

Exactly like the OR-AND tree shown in TEST> when the TEST
is passed.
We can observe similar behaviors when F3′(p,m,m + 1,∞)
returns m as if the TEST is failed.

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 20



Alpha-Beta + Scout

Intuition:
• Try to incooperate SCOUT and alpha-beta together.
• The searching window of alpha-beta if properly set can be used as

TEST in SCOUT.
• Using a searching window is better than using a single bound as in

SCOUT.
• Can also apply alpha-beta cut if it applies.

Modifications to the SCOUT algorithm:
• Traverse the tree with two bounds as the alpha-beta procedure does.

. A searching window.

. Use the current best bound to guide the value used in TEST.

• Use a fail soft version to get a better result when the returned value
is out of the window.

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 21



The NegaScout Algorithm – MiniMax (1/2)

Algorithm F4′(position p, value alpha, value beta, integer depth)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // depth is the remaining depth to search
or time is running up // from timing control
or some other constraints are met // apply heuristic here

• then return f(p) else
begin

. m := −∞ // m is the current best lower bound; fail soft
m := max{m,G4′(p1, alpha, beta, depth− 1)} // the first branch
if m ≥ beta then return(m) // beta cut off

. for i := 2 to b do

. 9: t := G4′(pi,m,m + 1, depth− 1) // null window search

. 10: if t > m then // failed-high
11: if (depth < 3 or t ≥ beta)
12: then m := t
13: else m := G4′(pi, t, beta, depth− 1) // re-search

. 14: if m ≥ beta then return(m) // beta cut off

end
• return m

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 22



The NegaScout Algorithm – MiniMax (2/2)

Algorithm G4′(position p, value alpha, value beta, integer depth)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // depth is the remaining depth to search
or time is running up // from timing control
or some other constraints are met // apply heuristic here

• then return f(p) else
begin

. m =∞ // m is the current best upper bound; fail soft
m := min{m,F4′(p1, alpha, beta, depth− 1)} // the first branch
if m ≤ alpha then return(m) // alpha cut off

. for i := 2 to b do

. 9: t := F4′(pi,m− 1,m, depth− 1) // null window search

. 10: if t < m then // failed-low
11: if (depth < 3 or t ≤ alpha)
12: then m := t
13: else m := F4′(pi, alpha, t, depth− 1) // re-search

. 14: if m ≤ alpha then return(m) // alpha cut off

end
• return m

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 23



NegaScout – MiniMax version (1/2)

5 4 7 4 45

[3,9]

3 4

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 24



NegaScout – MiniMax version (2/2)

5 4 7 4 453

[3,9]

[3,9]

[3,9]

[5,6]

5

5

3
(re−search)

[4,5]

[4,5]

4

[3,4] [4,5]

[4,5]

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 25



The NegaScout Algorithm

Use Nega-MAX format.
Algorithm F4(position p, value alpha, value beta, integer depth)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 //depth is the remaining depth to search
or time is running up // from timing control
or some other constraints are met // apply heuristic here

• then return h(p) else
. m := −∞ // the current lower bound; fail soft
. n := beta // the current upper bound
. for i := 1 to b do
. 9: t := −F4(pi,−n,−max{alpha,m}, depth− 1)
. 10: if t > m then

11: if (n = beta or depth < 3 or t ≥ beta)
12: then m := t
13: else m := −F4(pi,−beta,−t, depth− 1) // re-search

. 14: if m ≥ beta then return(m) // cut off

. 15: n := max{alpha,m}+ 1 // set up a null window

• return m

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 26



Search behaviors (1/3)

If the depth is enough or it is a terminal position, then stop
searching further.
• Return h(p) as the value computed by an evaluation function.
• Note:

h(p) =

{
f(p) if depth of p is 0 or even
−f(p) if depth of p is odd

Fail soft version.
For the first child p1, search using the normal alpha beta
window.
• line 9: normal window for the first child
• the initial value of m is −∞, hence −max{alpha,m} = −alpha

. m is the current best value

• that is, searching with the normal window [alpha, beta]

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 27



Search behaviors (2/3)

For the second child and beyond pi, i > 1, first perform a null
window search for testing whether m is the answer.
• line 9: a null-window of [n − 1, n] searches for the second child and

beyond where n = max{alpha,m}+ 1.
. m is best value obtained so far
. alpha is the previous lower bound
. m’s value will be first set at line 12 because n = beta
. The value of n is set at line 15.

• line 11:
. n = beta: we are at the first iteration.
. depth < 3: on a smaller depth subtree, i.e., depth at most 2, NegaScout

always returns the best value.
. t ≥ beta: we have obtained a good enough value from the failed-soft

version to guarantee a beta cut.

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 28



Search behaviors (3/3)

For the second child and beyond pi, i > 1, first perform a null
window search for testing whether m is the answer.
• line 11: on a smaller depth subtree, i.e., depth at most 2, NegaScout

always returns the best value.
. Normally, no need to do alpha-beta or any enhancement on very small

subtrees.
. The overhead is too large on small subtrees.

• line 13: re-search when the null window search fails high.
. The value of this subtree is at least t.
. This means the best value in this subtree is more than m, the current

best value.
. This subtree must be re-searched with the the window [t, beta].

• line 14: the normal pruning from alpha-beta.

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 29



Example for NegaScout

−5 −4 −6 −7 −4 −4

[4,5]

−5−9

[−5,−4]

[4,5]

5

[5,5]
5

−5

[4,5]

6

[6,5]6

−6
[−5,−4]

5

[5,5]

5

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 30



Refinements

When a subtree is re-searched, it is best to use information on
the previous search to speed up the current search.
• Restart from the position that the value t is returned.

Maybe want to re-search using the normal alpha-beta procedure.
F4 runs much better with a good move ordering and some form
of transposition table.
• Order the moves in a priority list.
• Reduce the number of re-searches.

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 31



Performances

Experiments done on a uniform random game tree [Reinefeld
1983].
• Normally superior to alpha-beta when searching game trees with

branching factors from 20 to 60.
• Shows about 10 to 20% of improvement.

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 32



Comments

Incooperating both SCOUT and alpha-beta.
Used in state-of-the-art game search engines.
The first search, though maybe unsuccessful, can provide useful
information in the second search.
• Information can be stored and then reused.

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 33



References and further readings

* J. Pearl. Asymptotic properties of minimax trees and game-
searching procedures. Artificial Intelligence, 14(2):113–138,
1980.

* A. Reinefeld. An improvement of the scout tree search
algorithm. ICCA Journal, 6(4):4–14, 1983.

TCG: Scout and NegaScout, 20171208, Tsan-sheng Hsu c© 34


