
�

��

Monte-Carlo Game Tree Search:
Basic Techniques

Tsan-sheng Hsu

�

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1



Abstract

Introducing the original ideas of using Monte-Carlo simulation
in computer Go.
• Pure Monte-Carlo simulation.
• UCB score.
• UCT tree expansion.

Only introduce sequential implementation here. Parallel
implementation will be introduced later.
Conclusion:
• A new search technique that proves to be very useful in solving selective

games including computer Go.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 2



Basics of Go (1/2)

Black first, a player can pass anytime. The game is over when
both players pass in consecutive turns.
intersection: a cell where a stone can be placed or is placed.
two intersections are connected: they are either adjacent
vertically or horizontally.
string: a connected, i.e., vertically or horizontally, set of stones
of one color.
liberty: the number of connected empty intersections.
• Usually we find the amount of liberties for a stone or a string.
• A string with no liberty is captured.

eye:
• Exact definition: very difficult to be understood and implemented.
• Approximated definition:

. An empty intersection surrounded by stones of one color with two lib-
erties or more.

. An empty intersection surrounded by stones belonging to the same
string.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 3



Basics of Go (2/2)

A black string with 3 liberties.

���������
���������
���� 3 ����
��� 1 �
 2 ���
���
�
�
�
�
��
����
�
�
���
���������
���������

A black string with 2 eyes.
• A string with 2 internal eyes cannot be captured by the opponent

unless you fill in one of the eyes yourself first.

���������
���������
���������
�����
�
�
�
�
����
 1 �
 2 �
�
����
�
�
�
��
���������
���������

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 4



Atari

A string with liberty = 1 is in danger and is called atari.
• Placing a white stone at the intersection 1 threatens the black string.
• The black string is in danger. The intersection at 2 is now critical.

��������
��������
����
�
���
���
�
�
 2 ��
����
�
���
��������
��������
��������

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 5



Legal ply

Place your stone in an empty intersection and not causing
suicide.
• Black cannot place a black stone at the intersection 1.
��������
��������
����
�
���
���
 1 �
���
����
����
��������
��������
��������

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 6



The rule of Ko

Use the rule of Ko to avoid endless repeated plys.
• Place a white stone at 1, a black stone is captured.
��������
��������
����
�
���
���
�
 1 �
��
����
�
���
��������
��������
��������

• Place a black stone at 2, a white stone is captured.
��������
��������
����
�
���
���
 2 �
�
��
����
�
���
��������
��������
��������

• This can go on forever and thus is forbidden (to the black).

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 7



General rules of Go

Black plays first.
A string without liberty is removed.
You cannot place a stone and results in a previous position.
after the removing of strings without liberty.
• You cannot create a loop.

. Note: exact rules for avoiding loops are very complicated and have
many different definitions.

You can pass, but cannot play a suicide ply.
• A suicide ply is one that causes the stone played being removed

immediately by itself.
• You can place a stone in an intersection without liberty if as a result

you can capture opponent’s stones.

When both players pass in consecutive plys, the game ends.
The one with more stones and eyes wins at the end of the
game after discounting Komi.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 8



Komi

When calculating the final score, the black side, namely the
first player, has a penalty of K stones, which is set by what is
called Komi.
• To offset the initiative.
• When K is an integer, you can draw a game.

Go has different very subtle rules which set the value of Komi
differently.
• For 9 by 9 Go, currently it is 7.

. It is possible to draw!

• For 19 by 19 Go, it is either 6.5 or 7.5.
. No draw!

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 9



Ranking system

Dan-kyu system: from good to bad in the order of
• Professional level: dan.

. 9, 8, . . ., 2, 1

• Amateur level: dan.
. 9, 8, . . ., 2, 1

• Kyu.
. 1, 2, 3, 4, . . .

Elo: assign a numerical score to a player so that the larger the
score, the better a player is.
• Usually between 1 to 3000+.
• More details in later lectures.
• Human

. ≥ 2940: professional 9 dan

. ∼ 2820: professional 5 dan

. Note: human history high is 3656.

A higher ranked player has a better chance of winning, not a
sure win, against a lower ranked player.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 10



Why Alpha-Beta cut won’t work on Go?

Alpha-beta based searching has been used since the dawn of
CS.
• Effective when a good evaluating function can be computed efficiently.
• Good for games with a not-too-large branching factor, say within 40

and a relative small effective branching factor, say within 5.
. Effective plys mean those that are not obviously bad plays.

Go has a huge branching and a good evaluating function cannot
be easily computed.
• First Go program is probably written by Albert Zobrist around 1968.
• Until 2004, due to a lack of major break through, the performance of

computer Go programs is around 5 to 8 kyu for a very long time.
• Need new ideas.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 11



Monte-Carlo search: original ideas

Algorithm MCSpure:
• For each child position of a possible next move from the root

. Play a large number of almost random games from a position to the
end, and score them.

• Evaluate a child position by computing the average of the scores of
the random games in which it had played.

• Play a move going to the child position with the best score.

� avg1 avg2 avg3

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 12



How scores are calculated

Score of a game: the difference of the total numbers of stones
and eyes for the two sides.
Evaluation of the child positions from the possible next moves:
• Child positions are considered independently.
• Child positions were evaluated according to the average scores of the

games in which they were played, not only at the beginning but at
every stage of the games provided that it was the first time one player
had played at the intersection.

Can use winning rate or non-losing rate as the score.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 13



How almost random games are played

No filling of the eyes when doing a random game.
• The only domain-dependent knowledge used in the original version of

GOBBLE in 1993.

Moves are ordered according to their current scores.
Ideas from “simulating annealing” were used to control the
probability that a move could be played out of order.
• The amount of randomness put in the games was controlled by the

controlled by the temperature.
. The temperature was set high in the beginning, and then graduately

decreased.
. For example, the amount of randomness can be a random value drawn

from the interval [−v(n) · e−c·t(n), v(n) · e−c·t(n)] where v(n) is the value
at the nth iteration, c is a constant and t(n) = n is the temperature at
the nth iteration.

. Simulating annealing is not required, but was used in the original 1993
version.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 14



Results

Original version: GOBBLE 1993 [Bruegmann’93].
• Performance is not good compared to other Go programs.

Enhanced versions
• Adding the ideas of new scoring function and a mini-max tree search.
• Adding more domain knowledge.
• Adding more techniques.

. Much more than what are discussed here.

. In practice, works out well when the game is approaching the end or
when the state-space complexity is not large.

• Building theoretical foundations from statistics, and on-line and off-line
learning.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 15



Recent results

Recent results
• MoGo

. Won CO champion of the 19 ∗ 19 version in 2007.

. Beat a professional 8 dan with a 8-stone handicap at January 2008.

. Judged to be in a “professional” level for 9 ∗ 9 Go in 2009.

. Very close to professional 1-dan for 19 ∗ 19 Go.

• Zen:
. Close to amateur 3-dan in 2011.
. Beat a 9-dan professional master with handicaps at March 17, 2012.

First game: Five stone handicap and won by 11 points.
Second game: four stones handicap and won by 20 points.

. Add techniques from machine learning.

• AlphaGo Lee: Beat a professional 9-dan at March 2016 with a record
of 4 to 1 !

. Using deep learning.

. Elo 3739 ∼ 10dan?

• AlphaGo Zero: An earlier version beat one of the very top professional
players at May 2017 with a record of 3 to 0 !!!

. Using unsupervised learning.

. Elo 5185 !!! ∼ 10 + Xdan?

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 16



Problems of MCSpure

May spend too much time on hopeless branches.
• In the example below, after some trials on A, it can be concluded that

this branch is hopeless and this time can be spent on B and C to tell
their difference which is currently too close to call.

�0/10000

A B C

2999/100003000/10000

† 2999/10000 means winning 2,999 times out of 10,000
simulations.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 17



First major refinement

Efficient sampling:
• Original: equally distributed among all legal moves.
• Biased sampling: sample some moves more often than others.

Observations:
• Some moves are bad and do not need further exploring.
• Should spend some time to verify whether a move that is currently

good will remain good or not.
• Need to have a mechanism for moves that are bad because of extremely

bad luck to have a chance to be reconsidered later.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 18



Better playout allocation

K-arm bandit problem:
• Assume you have K slot machines each with a different payoff, i.e.,

expected value of returns µi, and an unknown distribution.
• Assume you can bet on the machines N times, what is the best strategy

to get the largest returns?

Ideas:
• Try each machine a few, but enough, times and record their returns.
• For the machines that currently have the best returns, play more often

later on.
• For the machines that currently return poorly, give them a chance from

time to time just in case their distributions are bad for the runs you
tried.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 19



UCB

UCB: Upper Confidence Bound [Auer et al’02]
• For each child pi of a parent node p, compute its

UCBi =
Wi
Ni

+ c
√

logN
Ni

where

. Wi is the number of win’s for the position pi,

. Ni is the total number of games played pi,

. N is the total number of games played on p, and

. c is a constant called exploration parameter which controls how often
a slightly bad move be tried.

• Expand a new simulated game for the move with the highest UCB
value.

Note:
• We only compare UCB scores among children of a node.
• It is meaningless to compare scores of nodes that are not siblings.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 20



Exploitation or Exploration

UCBi =
Wi

Ni
+ c

√
logN
Ni

Using c to keep a balance between
• Exploitation: exploring the best move so far.
• Exploration: exploring other moves to see if they can be proven to be

better.

No Ni should be zero.
• Give each child at least some trials.

The theoretical value for c in [Auer et al’02] is

•
√

2 · log 2log e ∼ 1.18 where e is the base of the natural logarithm which is

about 2.718.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 21



Illustration: using UCB scores

Using winning rate, B and C are tied.
Using UCB scores, C is better than B because C obtained the
score using less trials.

�

1/10 2/10

9/50

6/30

score = winning rate UCB score

9/50+x1

1/10+x2 6/30+x3 2/10+x4
A B C

x2=x4
x4>x3

exploration score:

A B C

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 22



Other formulas for UCB

Other formulas are available from the statistic domain.
• Ease of computing
• Better statistical behaviors

. For example, consider the variance of scores in each branch.

Example: consider the games are either win (1) or lose (0), and
there is no draw.
• Then µi =Wi/Ni is the expected value of the playouts simulated from

this position.
• Let σ2

i be the variance of the playouts simulated from this position.

• Define Vi = σ2
i + c1

√
logN
Ni

where c1 is a constant to be decided by

experiments.
• A revised UCB formula is

µi + c

√
logN

Ni
min{Vi, c2},

where c and c2 are both constants to be decided by experiments [Auer
et al’02] and c2 is used to bound the influence of Vi.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 23



Monte-Carlo search using UCB scores

Algorithm MCSUCB(position p, int x, int y):
• Generate all possible child positions p1, p2, . . . , pb of the current position
p

• for each child pi do
. Perform x almost random simulations for pi

. Calculate the UCB score for pi

• While there is still time do
. Pick a child p∗ with the largest UCB score
. Perform y almost random simulations for p∗

. Update the UCB score of p∗

• Pick a child with the largest winning rate to play

It is usually the case we pick a child with the largest winning
rate, not with the largest UCB score to play.
• After enough trials, one with the largest winning rate is usually, but

not always, the one with the largest UCB score.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 24



More problem of MCSpure

The average score of a branch sometimes does not capture the
essential idea of a mini-max tree search.

�

MAX

MIN

MAX

5 10

min=5
avg=7.5

min=3
avg=10

3 17

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 25



More problem of MCSpure

The average score of a branch sometimes does not capture the
essential idea of a mini-max tree search.

�

MAX

MIN

MAX

5 10

min=5
avg=7.5

min=3
avg=10

3 17

mini−max

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 26



More problem of MCSpure

The average score of a branch sometimes does not capture the
essential idea of a mini-max tree search.

�

MAX

MIN

MAX

5 10

min=5
avg=7.5

min=3
avg=10

3 17

MC

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 27



More problem of MCSpure

The average score of a branch sometimes does not capture the
essential idea of a mini-max tree search.

�

MAX

MIN

MAX

5 10

min=5
avg=7.5

min=3
avg=10

3 17

MCmini−max

May spend too much time on the wrong branch.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 28



Second major refinement

Intuition:
• Initially, obtain some candidate choices that are needed to be further

investigated.
• Perform some simulations on the leaf at a PV branch.

. A PV path is a path from the root so that each node in this path has
a largest score among all of its siblings.

. In a mini-max tree, “largest” means different numerical values for min
and max nodes.

• Update the scores of nodes in the current tree using a mini-max
formula.

• Grow a best leaf at the PV one level.
• Repeat the above process until time runs out.

Best-first tree growing [Coulum’06].
• Keep a partial game tree and uses the mini-max formula within the

partial game tree kept.
• Grow the game tree on demand.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 29



Monte-Carlo based tree search

Algorithm MCTSbasic: // Monte-Carlo mini-max tree search
1: Obtain an initial game tree
2: Repeat the following sequence Ntotal times
• 2.1: Selection

. From the root, pick one path to a leaf with the best “score” using a
mini-max formula.

• 2.2: Expansion
. From the chosen leaf with the best “score”, expand it by one level using

a good node expansion policy.

• 2.3: Simulation
. For the expanded leaves, perform some trials (playouts).

• 2.4: Back propagation
. Update the “scores” for nodes from the selected leaves to the root using

a good back propagation policy.

Pick a child of the root with the current best winning rate as
your move.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 30



Illustration: Tree growing

�

0 0 0

selection expansion simulation propagation

1/10 3/10 2/10

6/30

6/30

1/10 3/10 2/10

6/30

1/10 3/10 2/10

6/30

1/10 3/10 2/10 1/10 2/10

9/10 7/10 8/10

8/107/109/10

1/10

9/50

9/10
2/10
8/10

6/30

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 31



Illustration: Best first tree growing

�

A

PV

simulations

A

and then pick the best leaf to expand

Grow the best leaf

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 32



Comments (1/2)

In finding the PV path in a Monte-Carlo tree:
• We do this by a top-down fashion.
• From the root, which is a max node, pick a child p1 with the largest

possible score and then go one step down.
• From p1, which is a MIN node, pick a child with the smallest score p2

and then go one more step down.
• We keep on doing this until we reach a leaf.

In updating the scores of nodes in a Monte-Carlo tree when
some more simulations are done in a leaf q:
• We do it by a bottom-up fashion.
• We first update the score of q.
• Then we update the score of q’s parent q∗ by merging the newly

generated statistics of q with the existing statistics of q∗.
• We keep on doing this until the root is reached.
• This is different from the updating operations done in a mini-max tree.
• The reasons to merge, not to replace, are

. the value is a winning chance from sampling, not really an actual value
obtained from an evaluating function;

. after merging you get a statistical value that is more trustful since the
sample size is increased.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 33



Comments (2/2)

When the number of simulations done on a node is not enough,
the mini-max formula of the scores on the children may not be
a good approximation of the true value of the node.
• For example on a MIN node, if not enough children are probed for

enough number of times, then you may miss a very bad branch.

When the number of simulations done on a node is enough,
the mini-max value is a good approximation of the true value
of the node.
Use a formula to take into the consideration of node counts
so that it will initially act as returning the mean value and
then shift to computing the normal mini-max value [Bouzy’04],
[Coulom’06], [Chaslot et al’06].

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 34



UCT

UCT: Upper Confidence Bound for Tree
• Maintain the UCB value for each node in the game tree that is visited

so far.
• Best first tree growing:

. From the root, pick a PV path such that each node in this path has a
largest UCB score among all of its siblings.

. Pick the leaf-node in the PV path and has been visited more than a
certain amount of times to expand.

UCT approximates mini-max tree search with cuts on proven
worst portion of trees.
Usable when the “density of goals” is sufficiently large.
• When there is only a unique goal, Monte-Carlo based simulation may

not be efficient.
• The “density” and distribution of the goals may be something to

consider when picking the threshold for the number of playouts needed
to reach a statistical conclusion.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 35



MCTS with UCT

Algorithm MCTS:
1: Obtain an initial game tree
2: Repeat the following sequence Ntotal times
• 2.1: Selection

. From the root, pick a PV path to a leaf such that each node has best
UCB score among its siblings.

. May decide to “trust” the score of a node if it is visited more than a
threshold number of times.

. May decide to “prune” a node if its raw score is too bad to save time.

• 2.2: Expansion
. From a leaf with the best UCB score, expand it by one level.
. Use some node expansion policy to expand.

• 2.3: Simulation
. For the expanded leaves, perform some trials (playouts).
. May decide to add knowledge into the trials.

• 2.4: Back propagation
. Update the UCB scores for nodes using a good back propagation policy.

Pick a child of the root with the best winning rate as your
move.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 36



Tree growing using UCB scores

�

0 0 0

selection expansion simulation propagation

6/30+x1

1/10+x2 3/10+x3 2/10+x4

6/30+x1

1/10+x2 3/10+x3 2/10+x4

6/30+x1

1/10+x2 3/10+x3 2/10+x4

6/30+x1

1/10+x2 3/10+x3 2/10+x4

9/50+x5

1/10+x6 6/30+x7 2/10+x8

2/10+x9 1/10+x10

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 37



Comments about the UCB value

For node i, its UCBi =
Wi

Ni
+ c

√
logN
Ni

.

What does “winning rate” mean:
• For a MAX node, Wi is the number of win’s for the MAX player.
• For a MIN node, Wi is the number of win’s for the MIN player.

When Ni is approaching logN , then UCBi is nothing but the
current winning rate plus a constant.
• When N is very large, then the current winning rate is approaching the

real winning rate for this node.
• If you walk down the tree from the root along the path with the largest

UCB values, then it is like walking down the PV.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 38



Important notes

We only describe some specific implementations of Monte-Carlo
techniques.
• Other implementations exist for say UCB scores.

It is important to know the underling “theory”, not a particular
implementation, that makes a technique work.
Depending on the amount of resources you have, you can
• decide the frequency to update the node information,
• decide the frequency to re-pick PV,

You also need to know the precision and cost of your floating-
point number computation which is the core of calculating UCB
scores.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 39



Implementation for Go

How to partition stones into strings?
• Scan the stones one by one.
• For each unvisited stone

. Do a DFS to find all stones of the same color that are connected.

• Can use a good data structure to maintain this information when a
stone is placed.

. Example: disjoint union-find.

How to know an empty intersection is a potential eye?
• Check its 4 neighbors.
• Each neighbor must be either

. out of board, or

. it is in the same string with the other neighbors.

How to find out the amount of liberties of a string?
• for each empty intersection, check its 4 neighbors:

. check it is a liberty of the string where its neighbors are in;

. make sure an empty intersection contributes at most 1 in counting the
amount of liberties of a string.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 40



General implementation hints (1/3)

Each node pi maintains 3 counters Wi, Li and Di, which are
the number of games won, lost, and drawn, respectively, for
playouts simulated starting from this position.
• Note that Ni =Wi + Li +Di.
• For ease of coding, the numbers are from the view point of the root,

namely MAX, player.

Assume pi,1, pi,2, . . . , pi,b are the children of pi.
• Wi =

∑b
j=1Wi,j

• Li =
∑b

j=1Li,j

• Di =
∑b

j=1Di,j

“Winning rate”:
• For a MAX node, it is Wi/Ni.
• For a MIN node, it is Li/Ni.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 41



General implementation hints (2/3)

Only nodes in the current “partial” tree are maintaining the 3
counters.
Assume pi,1, pi,2, . . . , pi,b are the children of pi that are currently
in the “partial” tree.
• It is better to maintain a “default” node representing the information

of playouts simulated when pi was a leaf.

When any counter of a node v is updated, it is important to
update the counters of all of its ancestors.

. For example: the winning rates of all v’s ancestors are also changed.

Need efficient data structures and algorithms to maintain the
UCB value of each node.
• When a simulated playout is completed, the UCB scores of all nodes

are updated because the total number of playouts, N , is increased by
1.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 42



General implementation hints (3/3)

How to incrementally update mean and variance of a node?
• Assume the results of the simulation form the sequence
x1, x2, x3, . . . , xi, xi+1, xi+2, . . .

• Let V ar(n) be the variance of the first n elements. Hence
var(n) = 1

n

∑n
i=1(xi − µ(n))2 where µ(n) = 1

n

∑n
i=1 xi.

• In each node, we maintain the following data:
. n
. sum2(n) =

∑n
i=1 x

2
i

Hence sum2(n + 1) = sum2(n) + x2
n+1

. sum1(n) =
∑n

i=1 xi

Hence sum1(n + 1) = sum1(n) + xn+1

• µ(n) = 1
n · sum1(n)

• var(n) = 1
n · (sum2(n)− 2 · µ(n) · sum1(n)) + µ(n)2

Note:
• In general, we do not perform a division operator unless it is really

needed to do so.
• If the value of a node can only be 0 or 1, then sum1(n) = sum2(n).
• If the value of a node can be something else, then sum1(n) and
sum2(n) may be different.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 43



Comments (1/2)

Using the idea of sampling to evaluate a position was used
previously for other games such as 6x6 Othello [Abramson’90].
Proven to be successful on a few games.
• Very successful on computer Go.

Not very successful on some games.
• Not currently outperform alpha-beta based programs on Chess or

Chess-like games.

Performance becomes better when the game is going to
converge, namely the endgame phase.
Need a good random playout strategy that can simulate the
average behavior of the current position efficiently.
• On a bad position, do not try to always get the best play.
• On a good position, try to usually get the best play.

It is still an art to find out what coefficients to set.
• Need a theory to efficiently find out the values of the right coefficients.
• It also depends on the speed of your simulation.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 44



Comments (2/2)

The “reliability” of a Monte-Carlo simulation depends on the
number of trials it performs.
• The rate of convergence is important.
• Do enough number of trials, but not too much for the sake of saving

computing time.

Adding more knowledge can slow down each simulation trial.
• There should be a tradeoff between the amount of knowledge added

and the number of trials performed.
• Similar situation in searching based approach:

. How much time should one spent on computing the evaluating function
for the leaf nodes?

. How much time should one spent on searching deeper?

Knowledge, or patterns, about Go can be computed off-lined
using machine learning or Monte-Carlo methods.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 45



References and further readings (1/2)

* B. Bruegmann. Monte Carlo Go. unpublished manuscript,
1993.

* Browne, Cameron B., et al. ”A survey of Monte Carlo tree
search methods.” Computational Intelligence and AI in Games,
IEEE Transactions on 4.1 (2012): 1-43.

* P. Auer, N. Cesa-Bianchi, P. Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine Learning, pages 235–256,
2002.

* Rémi Coulom. Efficient selectivity and backup operators in
Monte-Carlo tree search. In Lecture Notes in Computer
Science 4630: Proceedings of the 5th International Con-
ference on Computers and Games, pages 72–83. Springer-
Verlag, 2006.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 46



References and further readings (2/2)

Bruno Bouzy. Associating shallow and selective global
tree search with Monte Carlo for 9x9 Go. In Lecture
Notes in Computer Science 3846: Proceedings of the 4th
International Conference on Computers and Games, pages
67–80, 2004.
Guillaume Chaslot, Jahn Takeshi Saito, Jos W. H. M. Uiterwijk,
Bruno Bouzy, and H. Jaap Herik. Monte-Carlo strategies
for computer Go. In Proceedings of the 18th BeNeLux
Conference on Artificial Intelligence, pages 83–91, Namur,
Belgium, 2006.
B. Abramson Expected-outcome: a general model of static
evaluation. IEEE Transactions on Pattern Analysis and Machine
Intelligence archive Volume 12 Issue 2, February 1990 Page
182-193.

TCG: Monte-Carlo Game Tree Search: Basics, 20171117, Tsan-sheng Hsu c© 47


