
Handling Syntactic Constraints in
a DTD-Compliant XML Editor

Y. S. Kuo, Jaspher Wang, and N. C. Shih
Academia Sinica, Taiwan

{yskuo | jaspher | ncshi}@iis.sinica.edu.tw

ABSTRACT
By exploiting the theories of automata and graphs, we propose
algorithms and a process for editing valid XML documents [4][5].
The editing process avoids syntactic violations altogether, thus
freeing the user from any syntactic concerns. Based on the proposed
algorithms and process, we build an XML editor with forms as its
user interface.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces –Theory and methods, Interaction styles, Graphical user
interfaces (GUI).

General Terms
Algorithms, Design

Keywords
XML Editor, Regular Expression, Automata Theory

1. INTRODUCTION
Current XML editors [6] provide guidance or hints to assist the user
to construct valid XML documents. However, the guidance or hints
are typically too loose to guarantee the validity of the resulting
document. Frequently the user still needs to correct the syntactic
violations reported by a validity checker. This requires the user’s
knowledge about the syntax of the document.

By exploiting the theories of automata and graphs [1][3], we
propose algorithms and a process for editing valid XML documents.
With this approach, an XML editor can provide accurate guidance
and hints to the user, thus avoiding syntactic violations altogether.
Consequently, the user requires no knowledge about XML and
DTD to edit valid XML documents. To demonstrate the
effectiveness of the algorithms and editing process, we build an
XML editor with forms as its user interface.

2. GLUSHKOV AUTOMATA [1]
A regular expression E over a finite alphabet of symbols Σ ={x1,
x2, …, xn} is simple if each symbol xi appears in E only once. The
language L specified by E can be recognized by a deterministic
finite automaton (DFA) G, known as the Glushkov automaton for E,
defined as follows:
(1) Every symbol of Σ is a state of G. G has two additional states s

and f as its start and final states, respectively. (If L contains the
empty string, s is also a final state.)

(2) The transition function δ(xi, xj) = xj for any xi Є Σ and xj Є
follow(xi), i.e. xj immediately follows xi in some string in L. δ(s,
xj) = xj for any xj Є first(E), i.e. xj is the first symbol in some
string in L. δ(xi, $) = f for any xi Є last(E), i.e. xi is the last
symbol in some string in L, where $ is a special end symbol
appended to every string.

Note that the functions first(E), last(E) and follow(xi) can be
computed easily by traversing the tree structure of E once. Take the
regular expression E = (a, b, c*, (d | e+))* as an example. The
Glushkov automaton G for E is as shown in Figure 1.

Edges in the Glushkov automaton G are of several types: If E1 and
E2 are two subexpressions of E in sequence, i.e. (E1, E2) is a
subexpression of E, then G contains a sequence edge (u,v) for every
u Є last(E1) and every v Є first(E2). Sequence edges and edges
from the start state s and edges to the final state f are referred to as
forward edges collectively. If E1* is a subexpression of E, then G
contains an iteration edge (u,v) for every u Є last(E1) and every v Є
first(E1). In general, an edge may be a sequence edge as well as an
iteration edge. An iteration edge that is not a sequence edge is
referred to as a backward edge.

For a subexpression E1 of E, let A(E1) denote the set of symbols in
Σ that E1 covers. Let reachable(u) denote the set of states in G
reachable from state u, and f-reachable(u) the set of states in G
reachable from u through forward edges.

Lemma 1. The forward edges in G form no cycles.

Lemma 2. Let E1 be a subexpression of E. For any x Є A(E1), there
exists some u Є first(E1) and v Є last(E1) such that x Є
f-reachable(u) and v Є f-reachable(x).

Lemma 3. Let E1* be a subexpression of E. Then for any two
symbols u and v in A(E1), we have v Є reachable(u) and u Є
reachable(v).

Consider a regular expression E’ over a finite alphabet of symbols
Σ’={y1, y2, …, ym} in general. One can map E’ to a simple regular
expression E over an alphabet Σ ={x1, x2, …, xn} by renaming each
occurrence of symbol yi Є E’ as a distinct symbol xj Є Σ. Let
origin(xj) = yi denote the original symbol yi that xj represents. Let G
be the DFA constructed above for E. One can construct an
automaton G’, known as the Glushkov automaton for E’, from G to
recognize the language L’ specified by E’. Treating automata as
labeled graphs, G’ is constructed from G by replacing all labels xj
on edges in G by origin(xj). Different from G, G’ is a
non-deterministic automaton (NFA) in general since multiple xj’s
may have the same origin(xj) in δ(xi, origin(xj)) = xj.

Consider the regular expression E’ = (a, b, a*, (d | e+))*. E’ can be
mapped to the simple regular expression E = (a, b, c*, (d | e+))* by
renaming the second occurrence of a in E’ to c. We can then
construct the Glushkov automaton G’ for E’ from the Glushkov
automaton G for E in Figure 1 by replacing the label c on all edges
by label a.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’03, November 20–22, 2003, Grenoble, France. Copyright 2003
ACM 1-58113-724-9/03/0011…$5.00.

Notice that the W3C XML specification has imposed the constraint
that regular expressions used for defining the content models of
element types must be deterministic, i.e. their Glushkov automata
are deterministic [4]. On the other hand, in the Glushkov automata
G and G’, the labels on edges can be determined by the target states
of the edges. Thus they can be ignored temporarily in internal
computations. G and G’ become identical in this case. Labels on
edges of G’ are significant only when they are presented to the user.

3. EDITING PROCESS AND ALGORITHMS
Let E’ be a regular expression over the alphabet Σ’= {y1, y2, …, ym}
and E its associated simple regular expression over alphabet Σ= {x1,
x2, …, xn}. Also let G and G’ be the Glushkov automata for E and E’,
respectively, as constructed in Section 2. Assume that E’ is used as
the content model of an element type. Then a valid document
corresponds to a path in G from s to f, and vice versa. An XML
editor, with the goal of producing valid documents, cannot
guarantee always producing a valid document in the process of
construction. (Initially the empty document is typically not valid.)
Instead, we insist that the working document is always
DTD-compliant, which corresponds to a subsequence of some path
in G from s to f.

To be formal, a DTD-compliant document corresponds to a
sequence {z1, z2, …, zp} of states in G where z1=s, zp=f, and zi+1 Є
reachable(zi), 1≤i≤p-1. Document editing then consists of insertions
to and deletions from such a state sequence. Deletions are of no
concerns; the resulting document is DTD-compliant apparently. For
insertions, it is sufficient to consider the issue given a pair of states
u and v in G where v Є reachable(u).

The DTD-compliant editor can generate required elements
automatically in the process of document construction. An element
is required if it is present in all valid documents containing the
current DTD-compliant document. A required element between u
and v then corresponds to a state z through which all paths from u to
v pass. Such a state is known as a cut-vertex or articulation point in
graph theory [3]. It is well known that one can apply a maximum
flow-like algorithm to find the articulation points separating u and v,
i.e. to find the required elements between u and v.

The DTD-compliant XML editor can generate not only elements
but also element slots for the user to fill in. Suppose (u,v) ∉ H,
where H is the edge set of G. Then every valid document containing
the current document must contain at least one element between u
and v. The system thus generates an element slot between u and v
automatically for the user to fill in. Such element slots are referred
to as required element slots. On the other hand, the system may
generate an optional element slot between u and v upon the user’s
request when (u,v) Є H.

When the system generates an element slot between u and v, it also
computes a candidate state set C ⊆ Σ. C is mapped to a candidate
element list C’ ⊆ Σ’ as options for the element slot, where C’= {y Є
Σ’ | y= origin(x) for some x Є C}. The system lets the user select a
desired element, say y, from C’. The system then maps y Є C’ back
to a state x Є C for addition to the current document. The candidate
state set C contains the “possible” paths connecting u to v. A
necessary condition for a state z to be in C is to satisfy z Є
reachable(u) and v Є reachable(z). However, this condition is not
sufficient, too loose to give appropriate options in general. We thus
aim at computing a “minimal” candidate state set that does not
involve cycles and unnecessary backward edges.

Lemma 4. Let u and v be states in G for which v Є reachable(u).

Assume v ∉ f-reachable(u). Then there exists a subexpression E1*
of E covering u and v such that w Є f-reachable(u) for some w Є
last(E1) and v Є f-reachable(z) for some z Є first(E1). This
constructs an acyclic path P connecting u to v.

Algorithm FindCandidateStates1 computes the candidate state set C
for a required element slot between states u and v where v Є
reachable(u) and (u,v) ∉ H. C is composed of the intermediate
states in the acyclic paths from u to v determined by Lemma 4.

Algorithm FindCandidateStates1
IF v Є f-reachable(u) THEN

C= {x Є Σ | x Є f-reachable(u) and v Є f-reachable(x)}
ELSE

let E1* be the smallest iteration subexpression of E that covers
both u and v
C= {x Є A(E1) | x Є f-reachable(u) or v Є f-reachable(x)}

ENDIF

Let us illustrate Algorithm FindCandidateStates1 with the
Glushkov automaton G in Figure 1. The state pair (a,e) satisfies e Є
f-reachable(a). Thus we have C= {b,c}. For the state pair (c,a), a is
not reachable from c through forward edges. c must reach a through
d or e. Thus, we have C= {d,e}.

Algorithm FindCandidateStates2 computes a candidate state set C
for states u and v where v Є reachable(u) and (u,v) Є H. An optional
element slot is inserted between u and v if the result C is not empty.
Here (u,v) can be a forward edge, an iteration edge or both. If (u,v)
is a forward edge, C is first computed as in FindCandidateStates1.
On the other hand, if u is the end or v is the beginning of an iteration
or (u,v) is a backward edge, a new iteration can be inserted between
u and v by adding its symbols to C.

Algorithm FindCandidateStates2
IF (u,v) is a forward edge THEN

C= {x Є Σ | x Є f-reachable(u) and v Є f-reachable(x)}
IF u Є last(E1*) for some iteration subexpression E1* of E,

and let E1 be the largest one, THEN
C1= {x Є A(E1) | v Є f-reachable(x)}
C= C ∪ C1

ENDIF
IF v Є first(E2*) for some iteration subexpression E2* of E,

and let E2 be the largest one, THEN
C2= {x Є A(E2) | x Є f-reachable(u)}
C= C ∪ C2

ENDIF
ELSE /* (u,v) is a backward edge */

let E3* be the largest iteration subexpression of E
satisfying u Є last(E3) and v Є first(E3)

C= A(E3)
ENDIF

Consider the Glushkov automaton G in Figure 1. For the state pair
(a,b), we have C= { }, which indicates no optional element slot
should be inserted between a and b. For the state pair (b,d), we have
C= {c}. For the state pair (b,c), since c Є first(c*), we have C= {c},
which allows the user to iterate c. For the state pair (c,c), which is a
backward edge, we have C= {c}. The user can add an iteration c
between the two iterations. For the state pair (e,f), since e Є last(e*)
and e Є last(E) while E is the outer iteration, we have C= {a,b,c,d,e}.
The user may want to add the inner iteration or the outer iteration.
The system provides the user with all possibilities.

Theorem 1. Under the editing process, the user always produces a

DTD-compliant document, and can construct any desirable valid
document.

Lemma 5. All algorithms presented in this section take linear time,
linear in the size of the Glushkov automaton G.

4. FORM-BASED USER INTERFACE
Form-based user interfaces are easy to use and well accepted. But
their applications to XML editors are still not mature due to the
complexity of XML syntax. This motivates our development of a
DTD-compliant XML editor with forms as its user interface. To
cope with the dynamic structure of XML documents, we build a
level-limited tree structure into a form. Thus the user interface is
indeed a mixture of forms and tree views.

Figure 2 shows the top-level form when an empty document is
created. This form displays two levels of elements: levelone has two
required child elements clinical_document_header and body.
clinical_document_header has 5 required child elements. body
contains a required element slot as its child for the user to fill in.
These required elements and required element slots are generated
by the system automatically. The system has a parameter
LEVEL_LIMIT that determines the number of levels of elements a
form may contain. An element at the bottom level in a form appears
as a hyperlink if it may have child elements. One can click it to
display a child form that shows its child (and grandchild, etc.)
elements. A child form may have child forms again so that child
forms may nest indefinitely.

As shown in Figure 2, each form has two buttons for displaying and
hiding all optional element slots, respectively. When a form does
not contain many elements and attributes, this simple setup may be
adequate and desirable. When a form contains many elements and
attributes, displaying all optional element slots may clutter the form
with slots. Alternatively, one may want to display optional element
slots only around a selected element. When one moves the pointer
over an element, a small OPTIONAL icon may pop up following
the element in the same row as shown in the figure. If the user clicks
the icon, the optional element slots around the current element are
displayed as shown in Figure 3. Also shown in Figure 3, the user
can fill in an element slot by selecting from a menu of candidate
elements generated by the system. Upon the user’s any selection,
the system guarantees the resulting document DTD-compliant.

5. RELATED WORK
The current work is most related to Rita, an editor prototype
developed in the late 80’s for manipulating structured documents
[2]. The concept of “DTD-compliant” was introduced in Rita,
referred to as “subsequence-incomplete”. In Rita, the candidate
elements for insertions were computed based on a
non-deterministic finite automaton, and by finding multiple shortest
paths, which is inadequate in terms of both efficiency and
completeness. Required elements and required element slots were
not addressed either.

6. CONCLUDING REMARKS
XML editors have been an area with more practices than theories.
XML editors demand simple user-friendly user interfaces for
non-technical users. That cannot be achieved without techniques to
handle the XML syntactic constraints. The major contribution of
this work is to lay some theoretic foundations for XML editors for
handling syntactic constraints, which would potentially render
these systems more robust and user-friendly.

7. REFERENCES
[1] A. Bruggemann-Klein, “Regular expressions into finite

automata”, Theoretical Computer Science, 120, 1993.
[2] D. D. Cowan, E. W. Mackie, G. M. Pianosi, and G. de V. Smit,

“Rita – an editor and user interface for manipulating
structured documents”, Electronic Publishing, 4(3), Sept.
1991, pp 125-150.

[3] S. Even, Graph Algorithms, Computer Science Press,
Maryland, 1979.

[4] W3C, Extensible Markup Language (XML) 1.0, W3C Rec.,
Feb. 10, 1998.

[5] W3C, XML Schema Part 1: Structures, W3C Rec., May 2,
2001.

[6] XMLSoftware, http://www.xmlsoftware.com/editors.html

a

s a b c
d

e

fa
b

a
d

c

e

c
d

e
$

$

e

Figure 1. Glushkov automaton G

Figure 2. A top-level form

Figure 3. Optional element slots

