
An Efficient Implementation of the PC-Tree Algorithm of Shih & Hsu’s Planarity Test

Wen-Lian Hsu, hsu@iis.sinica.edu.tw

Institute of Information Science, Academia Sinica, Taipei, Taiwan, ROC

Abstract

In Shih & Hsu [9] a simpler planarity test was introduced utilizing a data structure called PC-trees (general-
ized from PQ-trees). In this paper we give an efficient implementation of that linear time algorithm and illus-
trate in detail how to obtain a Kuratowski subgraph when the given graph is not planar, and how to obtain the
embedding alongside the testing algorithm. We have implemented the algorithm using LEDA and an object
code is available at http://qa.iis.sinica.edu.tw/graphtheory/. The main part of the implementation is devoted to the
treatment of the C-nodes that represent those 2-connected components.

Keywords: algorithm, planar graphs, Kuratowski subgraph, PQ-tree, PC-tree, embedding

1. Introduction

Given an undirected graph, the planarity test is to determine whether there exists a clockwise edge ordering

around each vertex, such that the graph can be drawn in the plane without any crossing edges. Linear time

planarity test was first established by Hopcroft and Tarjan [5] based on a “path addition approach.” A “ver-

tex addition approach”, originally developed by Lempel, Even and Cederbaum [6], was later improved by

Booth and Lueker [1] (hereafter, referred to as B&L) to run in linear time using a data structure called a “PQ-

tree”. Both of these approaches are quite complex. Furthermore, both approaches use separate algorithms for

recognition and embedding (Chiba et al [4]). Several other approaches have also been developed for simpli-

fying the planarity test (see for example [3,9,11,14]) and the embedding algorithm [2][8]. Shih and Hsu [10]

developed a very simple linear time test and later in [11] implemented it based on PC-trees. The latter [11] is

referred to as the S&H algorithm hereafter. When the given graph is not planar, their algorithm immediately

produces explicit Kuratowski subgraphs. Furthermore, the recognition and embedding are done simultane-

ously in their algorithm. The algorithm in [10] has been referred to as the simplest linear time planarity test

by Thomas in his lecture notes [13].

 In Section 2 we review the basic notations used in the S&H algorithm. Section 3 outlines the streamlined

algorithm for the simple case (without biconnected components). The notation of PC-trees is introduced in

Section 5. Section 6 discusses the algorithm for the general case.

 1

http://qa.iis.sinica.edu.tw/graphtheory/

2. The Edge-Addition approach of the S&H Algorithm

Let n be the number of vertices of the graph G. Construct a depth-first search tree T for G. Note that every

non-tree edge of G must be a back edge from a vertex to one of its ancestors. To simplify our discussion, as-

sume the given graph G is biconnected. This is certainly not a restriction since we can split the graph into

biconnected components along articulation vertices, which can be identified in the depth-first-search tree. Let

1, ..., n be the order resulting from a postorder traversal of T. So the order of a child is always less than that

of its parent. Denote the subtree of T with root i by Ti. Initially, we include all edges of T, namely the depth-

first-search tree, in the embedding. Then, at iteration i, we add all back edges from the descendants to node i

and update the embedding. Whenever a 2-connected subgraph is created, we use a subset of vertices in its

boundary cycle as representatives to be used for future embedding. Hence, our algorithm can be considered

as an “edge-addition” approach (it was originally called a vertex-addition approach in [9]). The embedding

of each 2-connected component is temporarily stored so that, at the n-th iteration, when the graph is declared

planar, a final embedding can be constructed by tracing back and pasting the internal embedding of each 2-

connected component along its corresponding boundary cycle.

Denote the largest neighbor of a node i by h(i). Sort the children of each node of T according to the as-

cending order of their labels. At each iteration i, we consider the embedding of the back edges from the de-

scendants to i and revise the tree accordingly. Denote the revised tree at the end of iteration i by T i.

To facilitate the description of notations used in this paper, we divide our discussion into two parts as in

the original S&H paper. In the first part, we consider the iteration in which a biconnected component is

formed “for the first time” in Section 3. The general case will be left to Section 5.

3 The Simple Case

Let i be the first iteration in which there is a back edge from a descendant i' to node i. Then (i', i) together

with the unique path from i to i' in T form a cycle. Thus, this is the first iteration a 2-connected component is

formed. We shall describe which vertices should be embedded inside such a component and which should be

located on its boundary. It suffices to describe the embedding of i with each child subtree independently.

Hence, consider a child subtree Tr of i (with root r) that has a back edge to i. Note that there will be at most

one biconnected component formed from this subtree at the end of this iteration. The following definitions

will be useful for the description of the algorithm.

Definition 3.1. Classify the nodes in Tr into four types: A node is type 1 if it has no back edge; it is type 2 if it

has a back edge to i and no other back edge; it is type 3 if it has a back edge to i and a back edge to a node >

i; and it is type 4 if all of its back edges are to nodes > i.

 2

Note that a leaf in Tr cannot be type 1, otherwise the parent of this leaf would be an articulation vertex.

Definition 3.2. A leaf in Tr is full if it is type 2; it is partial if it is type 3; it is empty if it is type 4. A subtree Tv

is full if it contains only type 1 and type 2 nodes; Tv is partial if it either contains a type 3 node, or contains

both a type 2 node and a type 4 node; Tv is empty if it contains only type 1 and type 4 nodes. A node v is full

(respectively, partial, empty) if Tv is full (respectively, partial, empty). Define a terminal node in Tr to be a

partial node whose children are either full or empty.

Assume the graph is planar. We have the following important properties from [11]:

(a) The parent of a partial node is partial.

(b) A partial node must contain a terminal node as a descendant.

(c) There are at most two terminal nodes in Tr .

(d) Any node v with two descendant terminal nodes satisfies h(v) ≤ i.

We use a tree traversal algorithm in Figure 1 to identify all full nodes and partial nodes. During this proc-

ess, a node could first receive a label as partial and then a label as full. Note that empty nodes are not trav-

ersed at all so they do not receive a mark or a label.
Labeling-Algorithm

1. Label all type 2 leaves full; label all type 3 leaves partial

2. Process type 2 nodes in the ascending order starting from the lowest-indexed full leaf

3. When a node is labeled as a full node, label its parent (if still unlabeled) partial

4. If all children of a node v become full and h(v) ≤ i, label v full.

5. If the next type 2 node to be processed has an index larger than a node v that is labeled partial, label the parent of v partial.

6. Repeat steps 3, 4, 5 until all type 2 nodes have been processed. Label all ancestors of partial nodes in Tr partial.

Figure 1. The Labeling-Algorithm

When the above labeling algorithm terminates, we get all full nodes and partial nodes labeled correctly.

Because of the postorder of the indices, the first partial node u encountered by the algorithm must be the low-

est indexed partial node, and hence a terminal node. Let Pu be the unique path from u to root r. Let Qi be the

set of partial nodes. If node u is the only terminal node, then Qi = Pu and we obtain all partial nodes by

tracing path Pu. Otherwise, let u′ be the lowest indexed node in Qi – Pu, then u′ is another terminal node.

Nodes on the unique path Pu′ from u′ to root r are partial, and Qi = Pu ∪ Pu′. Hence, we obtain all partial nodes

by tracing both Pu and Pu′. An illustration of these properties in the case of two terminal nodes is shown in

Figure 2.

 3

u m u'

i full subtrees

empty subtrees

Figure 2. The full subtrees and empty subtrees

Another important feature of the S&H algorithm is its characterization of the boundary of the resultant

biconnected component. In Case 1, let u′ be the last node along Pu from u to r that has an empty child. In

Case 2, let u′ be the second terminal node. In either case, let P be the unique path in Tr from u to u'. Then

Path P must be on the boundary of any 2-connected components formed by node i and nodes in the subtree Tr.

In Section 5, we demonstrate how to maintain a tree-like structure by replacing each biconnected component

with a C-node.

4. Identifying Kuratowski Subgraphs Homeomorphic to K3, 3

We illustrate how to obtain Kuratowski subgraphs in case the given graph is not planar. There are many

situations in which our program can detect non-planarity. A detailed case analysis can be found in our pro-

gram. As an example, let us consider the following situation.

In Section 3, condition (c) dictates that there can be at most two terminal nodes. Suppose this condition is

violated and there are three terminal nodes, say, i1, i2 and i3 (none of them can be a descendant of the other).

Then each has a descendant (could be itself) with a neighbor larger than i. For example, consider i1. If i1 has a

neighbor > i, then let this neighbor be t1. Otherwise, i1 has an empty child. Every leaf of this child must have

label > i. Choose a leaf and a back edge from this leaf to a neighbor t1 > i. We can similarly choose t2 and t3

for i2 and i3, respectively. Note that t1, t2 and t3 must lie on the unique path from i to the root n. Let the me-

dium of these three (not necessarily distinct) neighbors be t.

We can choose three node-disjoint paths Ptm from t to tm and through the unique tree path from tm to im for

m = 1, 2 and 3 respectively.

Let the smallest of the three least common ancestors of {i1, i2}, {i1, i3} and {i2, i3} be w. Let Pwm be the

three unique tree paths from w to im for m = 1, 2 and 3, respectively.

For each im, m = 1, 2, 3, let sm be a leaf (could be itself) in one of its full child; let Pim be the path from i

to sm and through the unique tree path to im.

 4

It is not difficult to verify that these nine paths, Ptm, Pwm and Pim, m = 1, 2, 3 are internal node-disjoint.

Therefore, a subgraph homeomorphic to K3,3 can be found as shown in Figure 3, where the dotted lines de-

note these paths.

K3,3

w i t
t

i

w

i1 i2 i3

i1 i2 i3

Figure 3. A forbidden subgraph K3,3

5. PC-Trees

To facilitate the implementation of the general case, in particular, the representation of biconnected compo-

nents, the notion of PC-trees was introduced in [11]: a tree is a PC-tree if its nodes can be divided into two

types: P-nodes and C-nodes, where the neighbors of a P-node (denoted by a circle) can be permuted arbitrar-

ily and the neighbors of a C-node (denoted by a double circle) must observe a cyclic order, which can only

be reversed. We use a PC-tree to represent the partial embedding of the planar graph in which a P-node de-

notes a regular vertex of the graph and a C-node denotes its corresponding biconnected component with its

representative vertices (to be defined in Section 5.1) as children.

5.1 Creation of C-Nodes

In Section 3 we described how to identify full nodes and partial nodes as well as the boundary path of the

biconnected component. We will embed all full nodes inside the component and leave the empty nodes out-

side. For each node j on the unique path P, define its new set of children as children that are empty nodes.

Note that empty nodes must be embedded outside the biconnected component. Define the essential nodes on

the boundary cycle to be those that have a back edge to a node greater than i or has at least one empty child.

Since these nodes must be in P, they are independent of the selection of the exact boundary cycle (there

could be many choices) of the component. The essential nodes are the only ones relevant to future embed-

ding.

Define the representative boundary cycle (RBC) of such a 2-connected component to be a cycle iPi,

formed by node i, and those essential nodes whose cyclic order follows their original order in path P. Define

 5

node i to be the head of this RBC. The RBC will be stored as a circular doubly linked list. To distinguish it

from the original edges of the graph, we refer to the connections on the RBC as links.

The internal embedding will be discussed in Section 6.4. To maintain a tree-like structure for the current

embedding, we represent the 2-connected component by a C-node, say, w, whose parent is i and whose chil-

dren are the essential nodes as shown in Figure 4. Define the two end nodes of w to be the two neighbors of i

in its RBC; define head(w) = i. Since w has no back edge, h(w) = i.

A C-node can only be adjacent to P-nodes. It can be easily verified that this property holds throughout

the algorithm.

i
essential nodes

i

w

Figure 4. The representation of a C-node

5.2 Difference between the PQ-Tree and the PC-Tree Approaches

The way we adopt PC-trees in our planarity test is entirely different from B&L’s application of PQ-trees in

Lempel, Even and Cederbaum’s planarity test [6]. B&L used PQ-trees to test the consecutive ones property

of all nodes adjacent to the incoming node in their vertex addition algorithm. The leaves of their PQ-trees are

exactly those nodes adjacent to the incoming node. Internal nodes of the PQ-trees are not the original nodes

of the graph. They are there only to keep track of feasible permutations. Whereas in our approach, every P-

node is an original node of the graph, every C-node represents a biconnected component in the partial em-

bedding, and nodes adjacent to the incoming node can be scattered anywhere, both as internal nodes and as

leaves in our PC-tree. Thus, in our approach, a PC-tree faithfully represents a partial planar embedding of the

given graph and is a more natural representation. Another difference is that in order to apply PQ-trees in

B&L’s approach, there has to be a preprocessing step of computing the s-t numbering besides the depth-first

search tree. This step could create a problem when one tries to apply PQ-trees to find maximal planar sub-

graphs of a general graph.

Although PC-trees provide a tree-like representation and is easy to handle conceptually, we must avoid

the frequent change of parent pointers in a linear time implementation. Therefore, similar to B&L’s treatment

of Q-nodes [1], we adopt the strategy of borrowing parent pointers through the siblings in its boundary cycle

 6

and keep parent pointers only for the two endmost nodes, namely, siblings of the head node. But, this is

equivalent to traversing along the RBC to identify the parent.

This concludes our discussion on the algorithm in the first iteration in which some back edges emerge. At

the end of this iteration, we have C-nodes in the revised tree T i.

6. The General Case

In this section we discuss the case where there are C-nodes in the current tree. Again, assume the graph is

planar. We denote the current iteration by j and the child subtree by Tr. In many ways a C-node can be

treated just like a P-node. Properties (a) through (d) and most of the arguments in Section 3 will stand with-

out much change as long as the tree paths are interpreted correctly: a tree path through a C-node w in Tr

should be interpreted as a path using a boundary path from v to v' in its original 2-connected component,

where v and v' are the neighbors of w in the path; two paths merge into one at a C-node w should be inter-

preted as two paths merge along the boundary into another path emanating from the boundary path. These are

illustrated in Figure 5.

v'

v

w

v'

v

w

v'

v

w

(i) Interpreting a path through w from v to v'

w w

(ii) Two paths into v, v” and out from v’

v'
v

v"

v'
v

v"

Figure 5. The interpretation of tree paths through a C-node w

Denote the current iteration by j and the child subtree by Tr. The definition of a terminal node remains the

same; however, the computation of full nodes now has to involve C-nodes, which is discussed in Section 6.1.

The discussion regarding the two cases in Section 3 needs to be modified. We will follow the notations in

Section 3. Let j be the current iteration. Let u be the first terminal node identified. Let Qj be the set of partial

nodes. If node u is the only terminal node, then Qj = Pu and we obtain all partial nodes by tracing path Pu.

Besides satisfying properties (a), (b), (c), (d), we have the following property that all C-nodes can be flipped

correctly to one side:

(e) If u is a C-node, then the set of full children plus head(u) are consecutive in its RBC. Consider two

cases:

 7

1. If only one neighbor of head(u) in the RBC is full, then for each internal C-node v of Pu, let v1 and

head(v) be its two neighbors in Pu, then the full children of v are consecutive in the RBC and each of v1

and head(v) has exactly one full neighbor in the RBC.

2. If both neighbors of head(u) in the RBC are full, then every ancestor v of u in Pu satisfies that h(v) ≤ i

and its children not on Pu are full.

On the other hand, if Qj – Pu ≠ ∅, let u′ be the lowest indexed node in Qj – Pu. Then u′ is another terminal

node. Nodes on the unique path Pu′ from u′ to root r are partial and Qj = Pu ∪ Pu′ and we can obtain all partial

nodes by tracing both Pu and Pu′. In addition, property (e) must hold to ensure all partial C-nodes can be

flipped correctly to one side.

6.1 Computation of Full C-Nodes

Recall that a node v is full at the j-th iteration if Tv contains only type 1 and type 2 nodes. For a C-node w to

be a full node, all of its children must be full. This is checked efficiently as follows. Let the RBC for w be C1

with head(w) = i. Let the two end nodes of C1 that have parent pointers be p and q. When a node v of C1 be-

comes full it will pass this message to its two neighbors in C1. Also, v will check if there is any message

passed from each of its two neighbors. The idea is to form blocks of contiguous full nodes in C1 by merging

smaller blocks so that eventually, if both p and q belong to the same block, we can declare that w is a full

node. The details are described in Figure 6.

For a block of contiguous full children with end nodes b1 and b2 in C1, we define the end-node function

e(⋅) on b1 and b2 as follows: e(b1) = b2, and e(b2) = b1. In case b1 equals b2, the block contains only one node.

We use the Block-Computation-Algorithm in Figure 6 to compute the blocks of full nodes in C1. In case we

have e(p) = q or e(q) = p, then all children of w are full and w is also full.

Block-Computation-Algorithm

A new full node v in C1 is computed. Let v1, v2 be the two neighbors of v in C1. Consider the following cases:

Case 1. v1 is full, v2 is not full

 Let B1 be the block with v1 as an end node and e(v1) as the other end node

Compute a new block B1’ ← B1 ∪ {v}; B1’ now has v and e(v1) as its two end nodes;

Define e(v) ← e(v1) and e(e(v1)) ← v

Case 2. v2 is full, v1 is not (similar to the above with 1 replaced by 2)

Case 3. Both v1 and v2 are full

 Let B2 be the block with v2 as an end node and as the other end node

 Compute the new block Bv ← B1 ∪ {v} ∪ B2; Bv now has e(v1) and e(v2) as its two end nodes;

 Define e(e(v1)) ← e(v2) and e(e(v2)) ← e(v1)

Case 4. Neither v1 nor v2 is full

 8

 Form a new block Bv = {v} containing one node
Figure 6. The Block-Computation-Algorithm

If the graph is planar and a C-node w is partial, then we have either (i) only one block B of contiguous

full children with one end node (p or q) of C1 being the end node of the block B; or (ii) There are two blocks

in which one block B1 has p as an end node, and the other block B2 has q as its end node.

By making use of the full C-node computation above, the General-Labeling-Algorithm in Figure 7, re-

vised from the labeling-algorithm in Section 3, allows us to partition nodes of Tr into full, partial and empty

nodes. Hence, we can compute the unique path P from a terminal node u to u′.

General-Labeling-Algorithm

1. Label all type 2 leaves full; label all type 3 leaves partial.

2. Process type 2 nodes in the ascending order starting from the lowest-index full leaf.

3. When a node v is labeled as a full node, consider two cases:

Case 1. The parent of v is a P-node. Then label its parent (if still unlabeled) partial.

Case 2. The parent of v is a C-node w with RBC C1. Then compute a block of full children containing v using the Block-Computation-

Algorithm in Figure 6. If this block contains all children of w, then label w full. Otherwise, if v is an end node of C1, then label w

(if still unlabeled) partial.

4. If all children of a node v become full and h(v) ≤ i, label v full.

5. If the next type 2 node to be processed has an index larger than a node v that is labeled partial, label the parent of v partial.

6. Repeat steps 3, 4, 5 until all type 2 nodes have been processed. Label all ancestors of partial nodes in Tr partial.

Figure 7. The General-Labeling-Algorithm

In terms of complexity, this section contains the idea for the major saving of our implementation because

it allows us to treat a C-node like a P-node. Even though not every child of a C-node has an explicit parent

pointer, by virtue of the property that full nodes are contiguous in its RBC, the amount of time spent to de-

termine whether this C-node is full or partial is still proportional to the number of full children it has. Thus,

the general case is not more difficult to handle than the simple case.

6.2 A Kuratowski Subgraph Homeomorphic to K5

In Section 4 we illustrate how to identify a subgraph homeomorphic to K3,3 in one situation. If there is a vio-

lation to condition (c), it is possible to identify a subgraph homeomorphic to K5 in the following situation

(this happens when the current tree contains C-nodes). We follow the notations in Section 4. Let the three

terminal nodes i1, i2, and i3 be neighbors of the same C-node w of i. Suppose the three neighbors t1, t2, and t3

satisfy that t1 = t2 = t < t3. Then we would obtain the following ten internal node-disjoint paths.

 9

For each im, m = 1, 2, 3, let sm be a leaf (could be itself) in one of its full children; let Pim be the path from

i to sm and through the unique tree path to im.

Let Pwm be the three paths from im to im+1 around the RBC for m = 1, 2, and 3, respectively, where we let

i4 = i1.

Let Ptm be the three node-disjoint paths from t to tm and through the unique tree path from tm to im for m =

1, 2, and 3, respectively.

Finally, let Pit be the unique tree path from i to t. It is not difficult to verify that the above ten paths are

internally node-disjoint paths and we would get a subgraph homeomorphic to K5 as illustrated in Figure 8.

i1

K5

i

t

i2 i3
Figure 8. A forbidden subgraph homeomorphic to K5

6.3 Computation of the RBC

By unwinding the RBC of each C-node in the path P, we are able to determine the “actual” RBC of the par-

tial C-node w of node j. Consider the following two cases:

Case 1. There is only one block B of contiguous full children. One end node, say, p, of C1 is the end node of

the block B. Let t be the other neighbor of e(p) in C1 – B. Then path P will pass through the two partial nodes

t and i. The remaining empty nodes of C1 will form another contiguous block B′. We call the path from t

through nodes in block B to i the inner path of w, and the path from t through nodes in block B′ to i the outer

path of w.

Case 2. There are two blocks in which one block B1 has p as an end node, and the other block B2 has q as an

end node. Let t1 be the other neighbor of e(p) in C1 – B1 and t2 be the other neighbor of e(q) in C1 – B2. Then

both t1 and t2 are partial, and w must be the unique terminal node of Tr. The remaining empty nodes of C1

will form another contiguous block B′. We call the path from t1 through nodes in B1, node i, nodes in B2 to t2

the inner path of w, and the one from t1 through nodes in B′ to t2 the outer path of w.

 10

Define the inner path (respectively, outer path) of the unique path P to be the path containing all P-nodes

in P together with all inner paths (respectively outer paths) of C-nodes in P. Thus, the outer path of P con-

sists of those P-nodes in P plus the outer paths of C-nodes in P. Note that the essential nodes must reside on

the outer path of P.

6.4 The Embedding Problem

We continue with the embedding of the component for the C-node w we began in Section 6.2. Note that this

new component will merge the individual components of C-nodes in path P. The new C-node will take over

the remaining essential nodes of C-nodes in P. By fixing the embedding of C-nodes in path P, we can use the

inner path P′ of P to construct the internal embedding for the remaining part of w. By combining this latter

embedding with the embedding of C-nodes in path P, we would obtain the embedding for w. Now, form a

tree embedding for P′ together with all full subtrees of w by flipping all full subtrees to the “left” of path P′.

Embed the edges from j to all its neighbors in this embedding by connecting j to those P-nodes directly and

to the essential nodes of the C-nodes in the full subtrees.

Using this method, we see that a biconnected component N1 formed in one iteration could be merged into

another biconnected component N2. In this case, part of the boundary (the outer path) of N1 will become part

of the boundary of N2. By retaining the imbedding of N1, we embed the remaining (internal) part, say, N3, of

N2 using the inner path of N1. Thus, the imbedding of N2 can be formed by gluing the embedding of N1 to N3

along that inner path.

Rather than storing the embedding of N2, we store the embeddings of N1 and N3. The embedding of each

biconnected component formed by the algorithm is stored incrementally. This would take linear space in to-

tal since each edge appears in at most two components. The containment relationships of the 2-connected

components created during the algorithm can be recorded by a tree. At the end of the algorithm, when G is

verified to be planar, we can form an embedding of G by backtracking through the iterations and gluing these

embeddings along the respective inner paths.

6.5. Summary of the Recognition Algorithm

In this section, we give a pseudo-code in Figure 9 summarizing the recognition algorithm.

Planarity-Test
1. Find a depth-first-search tree T

2. Obtain a postorder from T for the vertices

3. Order the neighbors of each vertex into ascending order

 11

4. For i = 1 to n do

For each child r of i do

 Form a 2-connected component, if any, for the child subtree Tr

 Compute the full nodes using the General-Labeling-Algorithm

 Let the smallest partial node, u, be the first terminal node

 Identify the unique terminal path P

 Case 1. u is the only terminal node. Let the unique path P be the path from u to r

 If condition (6.1.1) is not satisfied, then identify a Kuratowski subgraph

 Case 2. There is one other terminal node u’.

 Let Pu′ be the path from u′ to r in Tr and label all nodes in Pu′ partial

 Let m be the least common ancestor of u and u′

 Let P be the unique tree path from u to u′; let P′ be the unique tree path from m to r

 If either condition (6.1.2) or (6.1.3) is not satisfied, identify a Kuratowski subgraph

 Case 3. There are more than 2 terminal nodes. Then identify a Kuratowski subgraph.

 Compute the inner path and the outer path of P as in Section 6.3.

 Locate the essential nodes of this biconnected component on the outer path of P

 Form a new C-node w with parent i and the essential nodes as children; keep parent pointer only for its two endmost children;

 form a circular linked list with node i and the above essential nodes according to their order in path P; head(w) ← i; h(w) ← i

 End;

End;

End;

5. Declare the graph planar

Figure 9. The Planarity-Test

7. Acknowledgement

We would also like to thank the National Science Council for their generous support under Grant NSC 91-

2213-E-001-011.

References

1. K. S. Booth and G. S. Lueker [1976], Testing the consecutive ones property, interval graphs, and graph

planarity using PQ-tree algorithms, J. Comput. Syst. Sci. 13, pp. 335-379.

2. J. Boyer and W. Myvold [1999], Stop minding your P’s and Q’s: A simplified O(n) embedding algorithm,

Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 140-149.

3. J. Cai, X. Han and R. E. Tarjan [1993], An O(mlogn)-time algorithm for the maximal planar subgraph

problem, SIAM J. Comput. 22, pp. 1142-1162.

 12

4. N. Chiba, T. Nishizeki and S. Abe and T. Ozawa [1985], A linear algorithm for embedding planar

graphs using PQ-trees, J. Comput. Syst. Sci. 30, pp. 54-76.

5. J. E. Hopcroft and R. E. Tarjan [1974], Efficient planarity testing, J. Assoc. Comput. Mach. 21, pp. 549-

568.

6. Lempel, S. Even and I. Cederbaum [1967], An algorithm for planarity testing of graphs, Theory of

Graphs, ed., P. Rosenstiehl, Gordon and Breach, New York, 215-232.

7. K. Mehlhorn [1984], Graph algorithms and NP-completeness, Data Structure and Algorithms 2, pp.

93-122.

8. K. Mehlhorn and P. Mutzel [1994], On the embedding phase of the Hopcroft and Tarjan planarity testing

algorithm, Algorithmica 16, No. 2 (1996) 233--242.

9. J. Small [1993], A unified approach of testing, embedding and drawing planar graphs, Proc. ALCOM

International Workshop on Graph Drawing, Sevre, France.

10. W. K. Shih and W. L. Hsu, "A simple test for planar graphs," Proceedings of the International Workshop

on Discrete Math. and Algorithms, University of Hong Kong, (1993), 110-122.

11. W. K. Shih and W. L. Hsu, "A new planarity test," Theoretical Computer Science 223, (1999), pp. 179-

191.

12. H. Stamm-Wilbrandt [1993], A simple linear-time algorithm for embedding maximal planar graphs, Proc,

ALCOM International Workshop on Graph Drawing, Sere, France.

13. R. Thomas [1997], Planarity in linear time – Lecture Notes, Georgia Institute of Technology,

http://www.math.gatech.edu/~thomas/.

14. S. G. Williamson [1984], Depth-first search and Kuratowski subgraphs, J. ACM 31, pp. 681-693.

 13

