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Abstract -- In this paper, we describe a hierarchical architecture that
can potentially scale peer-to-peer (P2P) networks to large numbers of
peer nodes and contents. Two principles are followed: network routing
reflects content clustering, and content placement reflects usage local-
ity. We reason how these principles can lead to scalable P2P networks,
and show techniques of implementing them.

I. INTRODUCTION

P2P networks are network where peer nodes communicate and
transport information directly with each other. Unlike the conven-
tional client-server model over the Internet, a peer node of P2P net-
works may act as both a client and a server simultaneously to share
files or computing powers. It can request, serve, or relay services as
needed.

A P2P system can aggregate a dynamic set of hosts in providing
services. Resulting from rapid advances in hardware technologies,
many machines today, especially user machines, have substantial free
storage spaces and idle computing cycles. Thousands or millions of
these machines working together could form a very powerful P2P-
based virtual machine. A P2P system is then aimed to utilize these
resources in a managed manner.

For examples, a file-sharing P2P application like Napster [1] can
reduce the retrieval latency of contents and increase their availability
with mechanisms to store and replicate contents. A cycle-sharing P2P
application like SETI@home [3] can solve computationally demand-
ing problems with mechanisms to distribute jobs to idle computers
and collect results from them. Other P2P applications include those
which have additional goals such as achieving access and service ano-
nymity [4][6].

A major concern about P2P networks is their scalability. Because a
peer node in conventional P2P networks has no knowledge about the
global network topology nor content locations, it is difficult to find the
target peers or desired contents efficiently. Existing P2P systems rely
on either centralized directory servers, or message flooding or depth-
first search [2][5][7].

This paper addresses this issue of achieving scalability for P2P net-
working. We use a hierarchical approach that will allow a P2P net-
work to scale to large numbers of nodes and contents.

The paper is organized as follows. In Section II, we briefly over-
view current P2P network architectures and their scalability issue.
Section III depicts our approach of scaling P2P networks, based on
hierarchical content routing and adaptive content placement. In Sec-
tion IV, we describe a method of constructing the required content
hierarchy using content clustering techniques. Section V shows adap-
tive schemes that place nodes of a content tree onto a physical net-
work based on content access patterns. Three optimization techniques
are used: shortcut, replication and migration. In Section VI, we con-
clude that the approach of this paper can scale up P2P networks.

II. CURRENT P2P ARCHITECTURES

In this paper, we focus on the networking part of file-sharing P2P
systems. In a P2P network, both the set of nodes and connections
between them may change dynamically. In addition, a service request

from a source node may invoke multiple intermediate nodes as relays
to reach a destination node. A service reply may also work in a similar
manner. Thus a node may play multiple roles in serving a request or
reply, and may participate simultaneously in the service of multiple
requests and replies. This has complex implications in system design
in areas such as search queries, message routing, and replication man-
agement.

Based on discovery mechanisms of finding the best node containing
a requested file and retrieval mechanisms of bringing the file to the
requestor, we may classify current file-sharing P2P systems into three
basic architectures. First, the Napster system builds a centralized
server for search and supports direct file transfer among peer nodes.
Second, the Gnutella system supports distributed search by message
broadcast and transfers files using HTTP. Finally, the Freenet system
supports distributed depth-first search and store-and-forward file
transfer. All of these architectures incurred kinds of scalability prob-
lem that limit their popularity and usability. We examine each system
in detail as follows.

A. Napster

The Napster P2P system, announced in January 1999 by Shawn
Fanning, was aimed to share MP3 music files among Internet users
[1]. The proprietary client-server protocol and client-client protocol
were developed for communication in Napster [2]. The peer nodes
(clients) download and serve files, while the centralized servers keep a
list of the locations of available files and handle search requests from
the clients.

Disk space for files in Napster is provided by the clients. One file
may be stored in multiple locations. To download an MP3 music file,
a client node first obtains a list of possible locations with the desired
file from an index server. Then the client user selects the location for
the file he or she would like to download, using the supplementary
information provided by the index server. The client node then tries to
retrieve the desired file directly from the peer node of the selected
location. Since the user can select the nearest location with the desired
file, they can download files fast.

The Napster network is a centralized file-sharing P2P system,
where the index servers maintain a master list of all the clients, with
their IP addresses and MP3 files. In addition, the servers serve every
file search request. This kind of centralized P2P architectures have
serious scalability problems.

B. Freenet

The Freenet network [4] provides a distributed service for storing
and retrieving content. Each piece of content stored by Freenet is
identified by a unique “file key,” which is a hash of the content.

Each Freenet node maintains a “content routing table” and a local
data store. The content routing table maps file keys to node addresses
at which the files are thought to reside. The local data store is used to
hold the actual contents.

Two basic operations are used in the Freenet system: the “Data
Request” and the “Data Insert” operations. These operations allow
retrieval and storage of content, respectively. Both operations work on



file keys.
Content with an unique file key enters the Freenet using a Data

Insert operation. The data is placed onto nodes along the same path as
the one taken by an initial “Data Request” message that determined
uniqueness of the file key.

Content replies for a Data Request are cached in the local data
stores along the reply path to the requestor. If the request recipient
does not have the requested content, it initiates a depth-first search of
the network in the following way. First, it looks up the file key in its
content routing table. It iteratively finds the lexicographically closest
match, and passes the request to the matched node. It returns a
“Request Failure” message to the sender when a TTL value reaches
zero.

C. Gnutella

Instead of the centralized index servers in Napster, the Gnutella net-
work uses a “serverless” protocol for distributed search; peer nodes
(called servents) broadcast query messages to neighboring servents to
find out requested files [7].

When joining a Gnutella network, each new node establishes TCP
connections to arbitrary sets of peer nodes. These connections are
used to relay Gnutella protocol messages. Existing nodes leave the
network by disconnecting them from all their peers. So the Gnutella
topology may change at any time.

The two most important message types in the Gnutella protocol are
search queries and replies. Search queries are distributed using a
scoped flood mechanism. Only new queries are flooded to peers, as
identified by query IDs. A time-to-live value limits the propagation
distance of queries; a node can reach all nodes that are within a con-
stant number of hops. If the recipients of the query have the requested
content, they return search replies. The replies travel only along the
reverse path toward the source of the query. Once the source node
receives one or more search replies, the user can initiate transfer of the
content. The transfer takes place outside of the Gnutella topology,
through a direct connection between the source of the query and a
node with the content.

Although the Gnutella network can support decentralized P2P que-
ries, many studies have reported that it does not scale well due to
broadcast queries [8][9][10]. An analysis [11] has also found that 70%
of Gnutella users share no files, and 90% of the users answer no que-
ries.

III. AN APPROACH TO SCALE P2P NETWORKS

We use two general principles in scaling P2P networks to large
numbers of contents and peer nodes. First, we use content hierarchies
to guide the routing of content request and reply messages (see Sec-
tion IV). This routing method based on content hierarchies eliminates
the need of message flooding or exhaustive search over P2P networks.
Second, we use adaptive content placement schemes, which can repli-
cate and migrate contents based on usage load and locality (see Sec-
tion V). As described in the rest of the paper, these two principles will
work simultaneously.

IV. HIERARCHICAL CONTENT ROUTING

In this section we describe the framework of hierarchical content
routing. We develop the required key concepts on content vectors,
content clustering trees, content search trees, physical networks and
content placement.

A. Content Vectors

We assume that contents are associated with content vectors, which

can indicate their similarity or dissimilarity. The content vector of a
web page can, for example, be related to frequencies of certain key-
words in the page. This process is similar to term weighting in the
vector space model for conventional information retrieval systems
[12]. Refer to [13] for typical methods of assigning content vectors to
given contents.

There are two major categories of similarity metrics for content
vectors [14]. These are angle-based metrics using, e.g., the cosine
function, and distance-based metrics using, e.g., the inner-product
function.

Consider the eight pieces of contents in Figure 1: LA, NY, NCA,
PGA, Mozart, Bach, Jack and Helen. Suppose that content vectors are
2-dimensional. Then, as illustrated in Figure 1, the locations of these
content vectors on a 2-dimensional space are expected to reflect simi-
larity of contents, i.e., contents of similar nature such as LA and NY
are close to each other.

B. Content Clustering Tree

Based on their content vectors, we can cluster a set of given content
to produce a content clustering tree, by using a number of clustering
methods [15][16]. Figure 1 depicts the content clustering tree result-
ing from such a method.

The method works as follows. It finds the pair of points, P1 and P2,
which are the closest among all pairs of points, and then replaces these
two points with a new point P12, which is the midpoint of the segment
(P1, P2). The method repeats this process until all points are con-
nected. The position of each midpoint reflects the “weights” of the
two endpoints, i.e., the numbers of contents under them. For example,
midpoint P123 is closer to P12 than P3 by a factor of two, since the tree
rooted at P12 has twice as many content source nodes as that rooted at
P3.

C. Content Search Tree

Given a content clustering tree, we can form a content search tree
that supports content search. For example, Figure 2 (b) depicts the
content search tree derived from the content clustering tree of Figure 2
(a). The internal nodes of a content search trees, denoted by circles
and Hs, are called content nodes or content hubs. The leaves of a con-
tent search tree, denoted by dots, are called content sources. Contents
are stored in content sources. A content node may have one or more
children, which are either content nodes or content sources.

We consider the content search tree of Figure 2 (b) to illustrate the
working of content search. Suppose that the target content for the
search is at the location indicated by the star in Figure 2 (a). The
search will start at the root H0.

To determine the search direction at a content node, we make use of
the Voronoi diagram [17] determined by geographic locations of its

Figure 1: The content clustering tree constructed from eight content
vectors.
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children. (The Voronoi diagram is weighted reflecting the “weights”
of the children, as described in the end of the preceding section.) That
is, the search will go to the child whose site, defined by the weighted
Voronoi diagram, contains the search target. Figure 2 (a) shows por-
tions of those dividing hyperplanes which bound the sites defined by
Voronoi diagrams. Thus, as depicted in Figure 2 (b), the search for
content at the star location will go to H2 from H0, to H4 from H2, and
finally to NBA from H4.

D. Physical Networks

In this paper, physical networks refer to P2P networks. Nodes of a
physical network, called physical nodes, are peer nodes of the associ-
ated P2P network. By the same token, links of a physical network,
called physical links, are peer links of the associated P2P network. We
assumes that physical links are bi-directional.

There are three points worth of mentioning about physical net-
works. First, physical links are actually not “physical”, since these
links in P2P networks are TCP/IP connections over IP networks
[2][5][7]. Thus, unlike T1 or OC-3 circuits, physical links in our con-
text can be easily established and terminated as needed. We will use
this feature in shortcut and replication optimizations described below.

Second, nodes of physical networks may physically reside in differ-
ent regions of the globe, and served by different ISPs. It is therefore
desirable that contents frequently requested from a given physical
node be in the same region or served by the same ISP. This motivates
content replication and migration optimizations discussed below.

Third, the physical address of a physical node is its network
address. Since our physical networks are P2P networks over IP net-
works, physical addresses in our context refer to IP addresses.

Figure 3 depicts a physical network with its physical nodes parti-
tioned into two regions. These regions could correspond to, for exam-
ple, Europe and North America.

As depicted in Figure 3, there are two types of physical nodes in a
region. The first type is border physical nodes, which have physical

links connecting to border physical nodes of other regions. The sec-
ond type is interior physical nodes, which are the rest of physical
nodes. Note that for the content migration optimization described
below we will make explicit use of the notion of border physical
nodes.

E. Placing a Content Search Tree on a Physical Network

At any given time, a content search tree is placed on a physical net-
work. That is, each content node (and its content sources) reside at one
or more physical nodes. Figure 4 (b) illustrates such a placement.
Content nodes H0 and H1 are placed at interior physical node IN3 in
region B, whereas H2 and H4 are at IN4 and IN5, respectively. Con-
tent node H3 is placed at IN2 in region A. Figure 8 (b) depicts an
example where a content node (H0) resides in multiple physical nodes
(IN3 and IN6).

A content node keeps track of physical addresses of its children.
Thus, when a search needs to be directed to a child, the search can be
correctly sent to the current physical address of the child. In addition,
a content node keeps track of the physical address of its parent. In
Section V, we discuss methods for optimizing the placement of con-
tent search trees on physical networks

F. Hierarchical Content Routing

Having developed the required concepts and terminologies, we now
describe hierarchical content routing (HCR). HCR means routing
messages on a physical network according to a content search tree and
its current placement on the physical network. Consider, for example,
the content search tree and its current placement on a physical net-
work, shown in Figure 4. Figure 5 (a) illustrates the routing path under
HCR for a message originated at IN2 and destined at a content target
near NBA. Figure 5 (b) shows the corresponding search path on the
content search tree.

More precisely, under HCR, a request message searching for a tar-
get content will first be routed to the root of a content search tree, such
as H0 in Figure 5 (a), that is likely to have contents similar to the tar-
get content. (Physical nodes may cache the physical addresses of the
roots of a number of content search trees of interest, or use directories
or search engines to obtain these physical addresses.) After the request
message reaches the root of the content search tree, its future routing
decisions will be based on those on the content search tree, as depicted
by Figure 5 (b). The actual message routing will be carried out on the
physical network, as shown in Figure 5 (a), using the current place-
ment of the content search tree on the physical network.

The reply message, which contains the requested content, will fol-
low the path that the request message took, in the reserve direction.
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Figure 2: (a) Content clustering tree with dividing hyperplanes of
Voronoi diagrams; and (b) content search tree derived from the con-
tent clustering tree.
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That is, the reply message from a content source will first be routed to
the root of the content tree using the content source’s tree path to the
root. Then the reply message will be sent from the root of the content
tree to the content requestor using its physical address.

G. Inserting Contents

Content insertion will first perform a search for the content to be
inserted. Then it will restructure the content clustering tree and the
content search tree in response to the new content, by updating the
content nodes along the insert path in the bottom-up order. This
restructuring may create new content nodes or destroy some useless
old content nodes.

As an example, consider the insertion of the NCAA content into the
tree of Figure 2. As depicted in Figure 6 (a), the search for NCAA will
find content NBA. Since H4 is the nearest content node that knows the
location of NBA, the physical node containing H4 will allocate a
space for the new NCAA content and create a new content node, H5.
Then H4 will update itself as H4’ to reflect the weight change due to
the new content and propagate the result to its parent nodes in an
insert ACK message. While receiving the insert ACK message, each
intermediate node along the insert path such as H2 will update itself.
Finally, the root content node H0 will also update itself as H0’. The
updated content search tree is shown in Figure 6 (b).

In implementation, updating a content node means updating the
corresponding centroid vector. Using the numbers of represented con-
tents as weights, we can simply compute the new centroid vector by
averaging the old centroid vector and the newly inserted content vec-
tor. The updated vector of a child content node can also be reported to
its parent node in the insert ACK message to prevent additional mes-
sage communication. Both of above methods can reduce the content
insertion cost.

Note that, even if we do not restructure the tree immediately, we are

still able to find the new inserted content. This is because the old
search path used the content insertion is still valid. So we can accumu-
late a bunch of update requests and perform the updates in a batch in
order to reduce the update frequency of a content node. For the robust-
ness of the tree, an updated content node may analyze the new sub-
tree and cluster its child contents and nodes if necessary.

To illustrate this, consider this example of inserting NCAA again.
Before inserting NCAA, we have the old search path H0-H2-H4 to
find the location for the new content. After creating H5 and before
updating H4, H2, and H0, we still can find H5 exactly through the
extended old search path H0-H2-H4-H5. The difference between the
extended old search path and the new search path is their capability of
searching similar contents.

V. ADAPTIVE CONTENT PLACEMENT

Hierarchical content routing described above in Section IV supports
a number of performance optimizations. This section describes three
such optimization strategies.

A. Optimization 1: Shortcut

Shortcut links can be created for a content search tree to provide
direct links between content nodes that have heavy traffic between
them. Figure 7 illustrates the use of shortcut links. Using the shortcut
links from H0 to H3 and H4, and the existing link from H0 to H1, the
content node H0 will directly forward a search to one of its children,
H1, H3 and H4, without going through an intermediate content node
H2. The search direction at H0 will be determined by which of the
three sites of Figure 7 (b) that has the target content, rather that the
two sites of Figure 7 (a).

B. Optimization 2: Replication

Under the replication optimization, replicates of a heavily used con-
tent node can be created and placed on multiple physical nodes. As
depicted by Figure 8 (a), when the physical node IN3 recognizes that
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Figure 5: (a) Routing path for request messages under hierarchical
content routing (HCR) on a physical network, and (b) the corre-
sponding search path on the content search tree.
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its load is too high, it acquires another physical node IN6 to share the
load. IN6 will have physical links connecting to IN3’s neighbors, BN1
and IN4. In addition, IN3 will inform its upstream physical node BN1
to split the work between IN3 and IN6. Figure 8 (b) depicts the sce-
nario where search going to H1 and H2 will use IN3 and IN6, respec-
tively.

C. Optimization 3: Migration

Under the migration optimization, content nodes and sources fre-
quently accessed by a region will migrate to the region. Consider for
example the scenario of Figure 9 (a). Suppose that physical node IN1
in region A recognizes that there are a large number of requests going
to H0 at IN3 in region B. Then IN1 will initiate a process of migrating
a copy of H0 from IN3 to IN1, as shown in Figure 9 (b). Similarly,
after IN2 recognizes that it has heavy traffic with H4 in region B, H4
migrates from IN5 to IN2 as shown in Figure 5 (c). After these migra-
tions, access from IN2 to H4 will be local within region A as shown in
Figure 5 (d).

VI. CONCLUSIONS

We have formulated a new approach to making P2P networks scal-
able. The approach is based on two principles: use content hierarchies
to route content request and reply messages, and place content to
reflect usage load and locality. By design, these principles eliminate
costly message flooding or broadcast which has prevented existing
P2P systems from being scalable. We have presented three perfor-
mance optimization techniques: shortcut, replication and migration.
P2P networks, where peer links can be freely established and storage
can be provided at any peer nodes, naturally support these optimiza-
tions.
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