On Recognition of Replicated And-Or
Series-Parallel Digraphs

Jichiang Tsai and De-Ron Liang

Institute of Information Science
Academia Sinica
Taipei, Taiwan

Address of Correspondent:
Jichiang Tsai
Institute of Information Science 20
Academia Sinica
Taipei 115, Taiwan

TEL: (886-2)27883799 ext. 2411
FAX: (886-2)27824814
Email: jctsai@iis.sinica.edu.tw

Abstract- The computation task of a distributed processing system usually can be
partitioned into a set of modules and then modeled as a directed graph, called the task
digraph. In the task digraph, vertices represent modules and arcs represent message
passing links between two modules. Particularly, according to the logical structures
and precedence relationships among modules, a large class of task digraphs can be
modeled as And-Or Series-Parallel (AOSP) digraphs. For this type of digraph, we
can calculate its task reliability and task response time in linear time; whereas these
problems are known to be NP-hard for general digraphs. Hence, it becomes a useful work
for evaluating computation tasks to examine if a task digraph is an AOSP digraph. A
polynomial time algorithm of recognizing AOSP digraphs has been proposed in [1] earlier.
In this paper, we consider the fault-tolerant variants of AOSP digraphs, named Replicated
And-Or Series-Parallel (RAOSP) digraphs, which are obtained from AOSP digraphs by
adding replications to each vertex and adding proper arcs between two vertices. For
RAOSP digraphs, we can also calculate its task reliability and task response time in
linear time with the similar methods of AOSP digraphs. So it is another important
work to recognize RAOSP digraphs. The existing polynomial time recognition algorithm
for AOSP digraphs does not apply here since it can be shown that RAOSP digraphs
are not AOSP digraphs. To make up this deficiency, we will propose a polynomial
time algorithm for recognizing RAOSP digraphs in the context. Moreover, it will be
first described how to recognize a special subclass of RAOSP digraphs, Replicated Edge
Series-Parallel (RESP) digraphs, in polynomial time as a preliminary step.

Keywords: Task digraphs, AOSP digraphs, graph recognition, fault tolerance,
distributed processing systems.

1. Introduction

In the past decade, distributed processing systems have become increasingly popular
because they provide cost-effective means for resource sharing and extensibility, and
obtain potential increases in performance, reliability, fault tolerance and resource uti-
lization [2] - [4]. Usually, the computation task of a distributed processing system can
be partitioned into a set of software modules (or simply, modules) and then modeled as
a directed graph, called the task digraph. In such a digraph, vertices represent modules
and arcs represent message passing links between two modules.

Since job decomposition and mergence are two major operators in distributed pro-
gramming, a large class of task digraphs can be expressed by the combination of three
common types of subgraphs based on the logical structures and precedence relation-
ships among modules [5, 6]: sequential, And-Fork to And-Join (AFAJ) and Or-Fork to
Or-Join (OFOJ), where AFAJ and OFOJ subgraphs may consist of several sequential
subgraphs in a parallel structure. These three types of subgraphs are depicted in Fig-
ure 1. The sequential subgraph contains a sequence of modules executed in series. Each
module except the last has a single successor. As for the AFAJ subgraph, it begins
from a module which simultaneously enables several succeeding modules and ends at a
module which is enabled only when all of its preceding modules have completed their
executions. On the contrary, the beginning module of the OFOJ subgraph enables one
of its succeeding modules, and the ending module can be enabled by any one of its
preceding modules. In [7], this large class of task digraphs has been modeled as And-
Or Series-Parallel (AOSP) digraphs. Such a graph model is acyclic. If a computation
contains a loop, it can be unrolled and different instances of the loop body can be repre-
sented by different modules. The same technique can also apply to recursive structures
by first determining the mean number of recursive calls. Using this technique together
with others in [8], we can convert cyclic graphs to acyclic graphs.

There is a certain probability, called the task reliability, associated with the event
that a task completes successfully. This measure accurately models the reliability of a
task running in the system. The task reliability problem is known to be NP-hard for
general digraphs. But for AOSP digraphs, task reliability can be found in linear time

G and

(%)

(a) (b) (©)

Figure 1: (a)Sequential subgraph; (b)And-Fork to And-Join subgraph; (c)Or-Fork to
Or-Join subgraph.

using the technique proposed in [7]. Moreover, task response time is an important design
criterion for real-time computer systems. It is the time from an invocation of the appli-
cation task to the completion of its execution. A new analytic model developed in [5] is
able to precisely estimate task response time of AOSP digraphs in linear time, instead
of time-consuming simulation methods. Hence, it becomes a useful work for evaluat-
ing computation tasks to examine if a task digraph is an AOSP digraph. Previously,
the recognition for Edge Series-Parallel (ESP) digraphs, which arise in the analysis of
electrical networks [9] - [11], was proposed in [12]. The ESP digraph is a special case
of the AOSP digrpah, and contains only two types of subgraphs: sequential and Fork
to Join. Namely, ESP digraphs do not take the logic structures among modules into
consideration. Obviously, ESP digraphs can not satisfy modern varieties of distributed
computation tasks. To make up this deficiency, a polynomial time algorithm to recognize
AOSP digraphs has been already proposed in [1].

Modules and communication links may fail due to two main factors: software fail-
ures and hardware failures. In order to increase the survival rate of the task, a straight
forward method is to replicate the complete task several times, and execute them inde-
pendently on distinct computers. Primary site approach [13] is one such example. The
disadvantage of this approach is that the system cannot tolerate more than one fault in

each replicated task. Recently, replication of software modules has been proposed and

Figure 3: Operational examples of the replicated task digraph in Figure 2(b).

implemented, such as in Maruti [14] and Delta-4 [15]. The idea behind this approach
can be illustrated in the following example. Consider a simple application modeled by
an AFAJ digraph as shown in Figure 2(a). Suppose the application is implemented with
an extra replication. In this approach, each module receives messages not only from
its predecessors in the original task digraph, but also from the corresponding replicas
of its predecessors. Figure 2(b) shows one such implementation. Thus a task finishes
successfully only if there is a set of modules which forms this application, and their as-
sociated communication links are operational. Obviously, this application may tolerate
more than one fault in each task replication, depending on the fault patterns. Figure 3
shows a few examples where the task in Figure 2(b) is operational.

In this paper, we consider the fault-tolerant variants of AOSP digraphs, named Repli-

cated And-Or Series-Parallel (RAOSP) digraphs. RAOSP digraphs are obtained from
AOSP digraphs by applying the approach used in Maruti and Delta-4, i.e. by adding
replications to each vertex and adding proper arcs between two vertices. For RAOSP
digraphs, it is interesting that we can also calculate its task reliability and task response
time in linear time with the similar methods of AOSP digraphs. Therefore, it is another
crucial work to recognize RAOSP digraphs. The existing polynomial time recognition
algorithm for AOSP digraphs does not apply here since it can be shown that RAOSP
digraphs are not AOSP digraphs. The main contribution of this paper is the design of
a polynomial time algorithm for RAOSP digraph recognition .

The rest of the paper is organized as follows. In Section 2, some logical definitions and
notations employed in the context are described, and we will also define fully factorable
formulas and fully factorable trees which can characterize the logic structures among
modules of AOSP digraphs. Then the formal definitions of AOSP digraphs and RAOSP
digraphs will be given in the next section. In Section 4, we will describe how to recognize
the fault-tolerant variants of ESP digraphs, RESP digraphs, as a basis for the recognition
of RAOSP digraphs. In Section 5, the recognition algorithm for RAOSP digraphs will

be proposed. Finally, we will conclude the paper in Section 6.

2. Preliminaries

Our logical terminology follows [16]. A Boolean variable is denoted by x; to represent
a Boolean value true or false but not both. Variables and negations of variables will
be spoken of collectively as literals. The conjunction of x1 and xs, x1 A x4, is true only
when both z; and x5 are true. Symmetrically, the disjunction of x; and xs, 21 V To,
is false only when both z; and x5 are false. A Boolean formula is made up of literals,
conjunctions and disjunctions. A formula is said to be trivial if it is made up of only
one single literal, opposite to a nontrivial formula. A positive formula is a formula
without negative variables. Two formulas F} and F; are said to be equivalent provided
that the formula Fj is true (false) if and only if the formula F; is true (false). A
disjunction of literals in that no variable appears twice is called a fundamental disjunctive

formula. Any conjunction of fundamental disjunctive formulas is called a Conjunctive

Normal Formula (abbreviated CNF') or a formula in the conjunctive normal form. The
fundamental disjunctive formulas in a CNF F' are called the clauses of F. A conjunctive
normal formula with minimum number of literals and minimum number of clauses is
called erreducible.

For a Boolean formula F', the literal set L(F') = {l | [is a literal in F'}. The number
of literals in F' is thus denoted as |L(F')|. If two clauses C; and Cy with L(C}) = L(Cy),
we say C and Cy are isomorphic. Two CNFs F; and F; are isomorphic if and only if
each clause in Fj is isomorphic to some clause in F, and vice versa. Furthermore, two
CNFs F; and F5 are said to be similar if and only if there exists a one-to-one mapping
between literals of F} and those of F, such that F; and F), are isomorphic. For example,
(1 V x2) A x3) is similar to ((z4 V 25) A 26) with the mapping of (z1 <> x4), (22 <> x5)
and (x3 <> 26). Finally, for any two Boolean formulas F; and Fy, if L(F}) N L(Fy) = 0,
we say F) and F, are disjoint.

In order to formulate the logical structures among modules of a computation task,
each arc of the corresponding task digraph is assigned with a distinct Boolean variable.
So without loss of generality, all variables can be assumed to be positive. Moreover,
for the sake of simplicity, every formula associated with the module is assumed to be
given as a positive formula. Thus, we assume that all literals and formulas are positive
throughout the remainder of the context.

Next, we will describe the definition of fully factorable formulas. If a Boolean formula
F can be expressed as I} @ Fy where F; and F; are two disjoint Boolean formulas,
called the subformulas of F', and @ is a Boolean operation, i.e. A or V, F' is said to be
factorable. The previous operation on F' to find the conjunctive or disjunctive expression
of subformulas is called factoring on F. If the Boolean operation is A, the factoring is
called and-factoring. On the other hand, if the Boolean operation is V, the factoring is

called or-factoring. Formally, the class of fully factorable formulas is defined as below.

Definition 1 The class of fully factorable formulas includes
1. A literal is an elementary fully factorable formula;
2. If Fy and F5, are two disjoint fully factorable formulas, so are the formulas con-

structed by each of the following operations:

€Y

Figure 4: The factoring tree corresponding to the Boolean formula (z1 Vo) A(x3VrsVas).

(a) Conjunctive composition: Fy = F} A Fy;
(b) Disjunctive composition: F\, = Fy V Fy;

3. It Fis a fully factorable formula, so is the Boolean formula equivalent to F'.

In order to record the factoring process on a Boolean formula F', we construct a
binary tree Ty, named the factoring tree corresponding to F'. The external leaf in T}
has a sort of Boolean formula F; which cannot be factored further, and the internal
node has a sort in {A, V} to represent the conjunction or disjunction of the subformulas
corresponding to the subtrees rooted at the children of this node. If a factoring tree
with all external leaves containing one single literal, it is named a fully factoring tree.
One example fully factoring tree is depicted in Figure 4. Obviously, every two distinct
external leaves of a fully factoring tree contain distinct literals according to the definition
of factoring operations.

Remark that a factoring tree may not be unique since we may construct different fac-
toring trees corresponding to a given Boolean formula by different factoring algorithms.
Moreover, a formula F' can be obtained by traversing a factoring tree T according to

the inorder sequence. We then call that F' is ezpanded from T}.

3. AOSP Digraphs and RASOP Digraphs

AOSP digraphs are the extensions of ESP digraphs. For an AOSP digraph, each vertex

containing entering arcs is assigned with a formula to represent the logical structures

among modules. We denote an AOSP digraph as H = (V(v), E, F(v)), where V(v) is a
finite set of vertices, E is a finite set of arcs and F'(v) is a finite set of formulas attached

to vertices. Specifically, the class of AOSP digraphs is defined recursively as below [7].

Definition 2 The class of AOSP (And-Or Series-Parallel) digraphs includes

1. A single arc e = (s,t) with the source s and the sink ¢, and the Boolean formula
F; attached to the sink, which equals to a single literal z, is an elementary AOSP
digraph;

2. If Hy and H, are AOSP digraphs with sources s; and s, and sinks t#; and t,,
and the corresponding Boolean formulas attached to the sinks are F; and F},
respectively, so are the digraphs constructed by each of the following operations:

(a) Series composition (S): The digraph Hg is an AOSP digraph with terminals
s and t, where Hg is the disjoint union of H; and H,, with t; identified with
523

(b) Parallel-and composition (P4): The digraph Hp, is an AOSP digraph with
terminals s and ¢, where Hp, is the disjoint union of H; and H,, with s;
identified with sy and t; identified with ¢, and the Boolean formula F} attached
to tis Iy, A Fi,;

(c) Parallel-or composition (Pp): The digraph Hp, is an AOSP digraph with
terminals s and ¢, where Hp, is the disjoint union of H; and H,, with s,
identified with s, and t; identified with ¢, and the Boolean formula F; attached
totis Fy, V Fy,.

Similar to a Boolean formula, an AOSP digraph can be represented in a natural
way by a binary tree T, called the parsing tree. Each external leaf of T}, represents an
elementary AOSP subdigraph in the AOSP digraph, denoted as its corresponding arc;
whereas each internal node is labeled S, P, or Py to represent the series, parallel-and or
parallel-or composition of the AOSP digraphs corresponding to the subtrees rooted at
the children of this node. A parsing tree provides a concise description of the structure
of an AOSP digraph and facilitates the calculation of task reliability and task response
time. Moreover, according to Definition 2, we know that a Boolean formula attached to

a vertex of AOSP digraphs must be able to be fully factored. Besides, if we ignore the

7

Figure 5: (a) An example AOSP digraph; (b) Its corresponding parsing tree.

Boolean formulas and just consider the topology of an AOSP digraph, it is exactly an
ESP digraph. Figure 5 gives an example AOSP digraph and its corresponding parsing
tree.

Figure 6(b) shows a digraph H' which is constructed from an elementary AOSP
digraph H (shown in Figure 6(a)) by replicating the source vertex m times and sink
vertex n times. And the arcs in H' are established in such a way that each vertex is not
only descendant to its original predecessors, but is also descendant to the corresponding
replicas of its predecessors. This digraph is called an elementary m x n RAOSP digraph.
Particularly, Figure 6(c) depicts an elementary 2 x 2 RAOSP digraph. Imagine that
each arc in H represents a thread of execution, then a replicated edge in H' represents
a replica thread of the corresponding thread in H. (Such as (s;,¢;), for 1 <i < m and
1 < j < n, are replicas of (s,t) in Figure 6(a).) Therefore, it is an or-relation among all
entering arcs corresponding to ¢;, for 1 < j <n.

Now we are ready to formally define the m x n RAOSP digraph [7]. We denote an
RAOSP digraph as H™*" = (V(v), E, F(v)), where V (v) is a finite set of vertices, E is

a finite set of arcs and F(v) is a finite set of formulas attached to vertices.

Definition 3 The class of RAOSP (Replicated And-Or Series-Parallel) digraphs in-
cludes

1. A digraph with a set of m source terminals, S = {s,...,s,}, a set of n sink

s $; 5,
t 1 2
(@) (b) (©

Figure 6: (a) An elementary AOSP digraph; (b) An elementary m x n RAOSP digraph;
(c) An elementary 2 x 2 RAOSP digraph.

terminals, 7' = {t,...,t,}, m x n arcs, (s;,t;) Vi, j, and Vj the Boolean formula
F;, attached to the sink ¢;, which equals to the disjunction of m distinct literals,
x1; V T2 V - -V Tpyj, is an elementary m x n RAOSP digraph;

2. If H™" and HJ""™ are m x n RAOSP digraphs with sources S; and Sy and
sinks 77 and 7%, and Vj the corresponding Boolean formulas attached to the sinks
t1; € Th and ty; € T5 are Fi,; and Fi,, respectively, so are the digraphs constructed
by each of the following operations:

(a) Parallel-and composition (P4): The digraph Hp ™ is an m x n RAOSP di-
graph with terminals S and T, where Hp*" is the disjoint union of Hy"*"
and HJ*" with S; identified with Sy and 77 identified with T, and Vj the
Boolean formula Fi, attached to t; € T is Fy; A Fy, ;

(b) Parallel-or composition (Po): The digraph Hp " is an m x n RAOSP digraph
with terminals S and T, where Hp " is the disjoint union of H{"*" and Hj"*",
with S; identified with Sy and 77 identified with 75 and Vj the Boolean
formula F}; attached to t; € T'is Fy,; V Fi,;

(c) Series composition (S): Suppose H"* and HE*™ are m x k and k xn RAOSP
digraphs, respectively. The digraph Hg™*" is an m x n RAOSP digraph with
terminals S and 7', where HI™" is the disjoint union of H"** and H*"

with 7} identified with Ss.

(a) (b)

Figure 7: (a) An example 2-AOSP digraph; (b) Its corresponding parsing tree.

Likewise, we can also concisely represent the structure of RAOSP digraphs by parsing
trees. Remark that in this case every external leaf of parsing trees contains an elementary
RAOSP digraph instead. Moreover, if every vertex is replicated k£ times in an RAOSP
digraph, we name such a digraph as k-replicated AOSP (k-AOSP) digraph, and denote
it by H*. Figure 7 shows the corresponding 2-AOSP digraph of the AFAJ digraph and

its corresponding parsing tree.

4. Algorithms for Recognizing RESP Digraphs

In this section, we will describe how to recognize the fault-tolerant variants of ESP
digraphs, named Replicated ESP (RESP) digraphs, as a basis for the recognition of
RAOSP digraphs. RESP digraphs are constructed from ESP digraphs by exploiting
the same replication approach of RAOSP digraphs, i.e. by adding replications to each
vertex and adding proper arcs between two vertices. We denote an RESP digraph as
G™*™. Since the ESP digraph is a special case of the AOSP digrpah, which does not
take the logic structures among modules into consideration, the RESP digraph is thus
the special case of the RAOSP digraph without considering the logic structures among

modules similarly.

10

mu mu ull wil
O O O SO
wil

RN

Tl}El TQD

(a)d

ull Vi
PO
n 7N

m[l Tgﬂ

(b

Figure 8: Rules to perform reductions and to construct the parsing tree: (a) Series

reduction; (b) Parallel reduction.

4.1 ESP Digraph Recogniton Algorithms

Prior to designing algorithms needed for recognizing RESP digraphs, the ESP digraph
recognition algorithm in [12] will be briefly described first. For more details, please refer
to the paper mentioned previously. Note that we slightly adapt the original recognition
algorithm to meet the needs for recognizing AOSP digraphs in the next section.

The input of the algorithm is a task digraph, and the algorithm comprises the series
reduction and the parallel reduction. By applying series and parallel reductions until no
more is applicable, an ESP digraph will be reduced to a digraph with only one single arc,
but other digraphs will not. Moreover, during the reduction process, the corresponding
parsing tree can be constructed by using the rules of Figure 8.

To perform series and parallel reductions on the digraph, it is necessary to iden-
tify two specific types of vertices: relay vertices and confluent vertices. For a vertex
containing only one entering arc and only one leaving arc, like the vertex v shown in
Figure 8(a), this type of vertex is called a relay vertex and is performed by the series
reduction. For a vertex containing more than one entering arcs but only one predecessor,
like the vertex v shown in Figure 8(b), this type of vertex is called a confluent vertex
and is performed by the parallel reduction. We maintain a list of vertices called the

unsatisfied list, represented as UL. UL contains the vertices on which reductions still

11

need to be tried. Hence UL initially contains all vertices except the source. The ESP

recognition algorithm ESP_RECOG is described as below.

ESP RECOG(G(V, FE))
Begin
1 Add all vertices in V' except the source into UL.
2 Remove some vertex v from UL and carry out the following steps until no
vertex remains in UL.

2.1 If v is a confluent vertex, i.e. having more than one entering arcs but
only one predecessor u, apply a parallel reduction. If u is not the source
and not in UL either, add it to UL.

2.2 If v is (or becomes) a relay vertex, i.e. only one arc (u,v) entering v and
only one arc leaving (v, w), apply a series reduction and replace (u,v)
and (v, w) by a new arc (u,w). If w is not in UL, add it to UL.

3 If G is reduced to a single arc, reply “G is an ESP digraph” and the parsing
tree T}; else reply “G is not an ESP digraph”.
End

The time complexity of the ESP recognition algorithm is O(|V| + |E]).

4.2 k-ESP Digraph Recogniton Algorithms

As a preliminary step, we will propose the recognition algorithm for a subclass of RESP
digraphs, k-replicated ESP (k-ESP) digraphs, in which every vertex is replicated & times.
A k-ESP digraphs is denoted by G*. Since a k-ESP digraph is constructed from an ESP
digraph by adding k replications to each vertex and adding proper arcs between two
vertices, the first step of recognizing such a digraph is to find all the &k replicas of each
vertex and then group them as a super verter. Besides, all the k2 arcs between two super
vertices are also grouped as a super arc. This step is illustrated in Figure 9. After so,
we will get a super digraph which should exactly have the same structure with an ESP
digraph. Therefore, we can use the ESP recognition algorithm stated in the previous
subsection to examine it subsequently. By these foregoing steps, we can recognize if a

task digraph is a k-ESP digraph or not.

12

Super vertex U

Grouping
B Super arc E

Super vertex V

Figure 9: The scenario of grouping replicas of vertices and arcs in k-ESP digraphs.

Because all the & replicas of each vertex have the same predecessor and successor sets,
we will group vertices with the same predecessor and successor sets in a k-ESP digraph
together first. In the following, we give a formal definition for this relation between two

vertices.

Definition 4 Let P(v) = {p | p is a predecessor of v}, i.e. the predecessor set of v, and
S(v) = {s | s is a successor of v}, i.e. the successor set of v. Two vertices v; and v, are

said to be equivalent, denoted as v = vy, if and only if P(v;) = P(ve) and S(v1) = S(vg).

So the super vertex U in Figure 9 denotes the vertex set {uy,us,...,ux} with u; =
uy = --- = ug, and the super vertex V' denotes the vertex set {vy,vs,..., v} with
V] = vy = -+ = vg. The super arc E denotes the arc set {(u;,v;) | 1 <1, < k}.

Note that if two vertices in an ESP digraph have the equivalent predecessor and
successor sets, their replicas in the corresponding k-ESP digraph also have the equivalent
predecessor and successor sets. Thus these 2k replicas will be grouped together. But we
can divide this group of vertices arbitrarily into two super vertices due to the symmetry
of the two original vertices in the ESP digraph. Moreover, since every vertex in a

super vertex has the same predecessors and successors, we can easily have the following

property.

Property 1 For two super vertices U and V/, there is an arc between u; € U and v; € V

if and only if there is a super arc between U and V.

According to the previous discussions, the grouping procedure for k-ESP digraphs

is designed as follows. Here the parameter k is assumed to be given for the sake of

13

neatness, but in fact we can get its value from the number of sources or sinks.

k-ESP_GROUP(G*(V, E))
Begin

1 If |V]| mod k # 0, reply “G* is not a k-ESP digraph” and stop.

2 For every vertex v in V, get its corresponding P(v) and S(v), and if | P(v)| mod
k # 0 or |S(v)| mod k # 0, reply “G* is not a k-ESP digraph” and stop.

3 Add all vertices in V' to a list VL.

4 Remove a vertex v from VI, and remove every vertex v with v' = v in VL.
Then make them as a group Q. If |Q| mod k # 0, reply “G* is not a k-ESP
digraph” and stop; else suppose |Q| = nk, divide @ into n super vertices with
k vertices each and add these n super vertices to the super vertex set Vs.
Repeat this step until no vertex remains in VL.

5 For every super vertex V; in Vg, find all super arcs connected to it and add
these super arcs to the super arc set F.

6 Return the super digraph Gg(Vs, Fs).

End

Subsequently, we will use the the ESP recognition algorithm to examine if the super
digraph Gg is an ESP digraph. If so, then G* is a k-ESP digraph. The following
argument shows that this algorithm for recognizing k-ESP digraphs is correct. If G* is
a k-ESP digraph, after the grouping procedure, the resultant super digraph Gs has the
same structure with an ESP digraph by definition. Hence our algorithm can recognize it.
On the other hand, if G¥ is not a k-ESP digraph, it is either the digraph constructed from
a non-ESP digraph with k replications or a digraph which is not constructed from any
digraph with k& replications. The former will be found by the ESP recognition algorithm,
and the latter will be found during the grouping procedure.

The time complexity of the proposed algorithm for recognizing k-ESP digraphs is
evaluated as follows. The dominant step of the grouping procedure is Step 4, which
has the time complexity O(|V'|?), because we have to compare every two vertices of the
|V'| vertices with at most (|V| — 1) predecessors and successors each. In addition, the

time complexity of the ESP digraph recognition algorithm is O(|V| + |E|) as stated

14

previously, and can be considered as O(|V|?). Since k is not large and can be considered

as a constant, we can conclude that the time complexity of this algorithm is O(|V[?).

4.3 RESP Digraph Recogniton Algorithms

Now we proceed to introduce the recognition algorithm for RESP digraphs. The same
with the recognition of k-ESP digraphs, the first step is also to find all the replicas of
each vertex and then group them as a super vertex. Moreover, all the arcs between two
super vertices are also grouped as a super arc. This step is shown in Figure 10. The super
vertex U in Figure 10 denotes the vertex set {uq, us, ..., up} with uy = uy = -+ = uy,
and the super vertex V' denotes the vertex set {vy,vs,...,v,} with v; = vy = --+ = v,.
The super arc E denotes the arc set {(u;,v;) | 1 <i<m,1 < j <n}. By doing so, we
will also get a super digraph which should exactly have the same structure with an ESP
digraph, and then we can use the ESP recognition algorithm to examine it in the next

step. Specifically, the grouping procedure for RESP digraphs is designed as follows.

RESP _ GROUP(G™*"™(V, E))
Begin

1 For every vertex v in V/, get its corresponding P(v) and S(v).

2 Add all vertices in V' to a list VL.

3 Remove a vertex v from VL, and remove every vertex v with v' = v in VL.
Then group them as a super vertex U, and add U to the super vertex set V.
Repeat this step until no vertex remains in VL.

4 For every super vertex V; in Vg, find all super arcs connected to it and add
these super arcs to the super arc set Eg.

5 Return the super digraph Gg(Vs, Es).

End

Likewise, we will then use the the ESP recognition algorithm to examine if the super
digraph G is an ESP digraph. If so, G™*" is a RESP digraph. With the similar
argument for the correctness of the k-ESP digraph recognition algorithm, we can also
prove the correctness of the proposed algorithm for recognizing RESP digraphs. Besides,
it can be easily shown that the time complexity of this algorithm is also O(|V]?).

15

Super vertex U

Grouping
D —— Super arc E

Super vertex V
Figure 10: The scenario of grouping replicas of vertices and arcs in RESP digraphs.

Remark that a super vertex with m vertices can also be viewed as n super vertices
with that the total number of vertices in these n super vertices is m, where n > 1.
However, due to the following characteristic of ESP digraphs, we can conclude that any
two vertices in ESP digraphs have at most one same predecessor and at most one same
successor. So it is better to consider any super vertex as a whole one except that there

is other information showing that it has to be divided.

Theorem 1 No ESP digraph contains the subgraph of a 2x2 complete bipartite digraph
(such as the digraph shown in Figure 6(c)).

Proof: Suppose there exists an ESP digraph G containing the subgraph of a 2 x 2
complete bipartite digraph. By a sequence of series and parallel reductions, we can
reduce G as the digraph depicted in Figure 11. (The arcs with dashed lines in Figure 11
are optional.) An ESP digraph can be reduced to the one-arc ESP digraph by a sequence
of series and parallel reductions [12]. However, it can be easily verified that the reduced
digraph of G’ cannot be series or parallel reduced further. Thus G is not an ESP digraph.

This leads to a contradiction. O

5. Algorithms for Recognizing RAOSP Digraphs

We will propose algorithms for the recognition of RAOSP digraphs in this section. First,
we will briefly describe the AOSP digraph recognition algorithm proposed in [1]. For

more details, please refer to the previous paper.

16

Figure 11: The resultant digraph reduced from G.

5.1 AOSP Digraph Recogniton Algorithms

For the AOSP digraph recogniton algorithm, the input is a task digraph with a set of
Boolean formulas attached to vertices. This algorithm is similar with the recognition
algorithm for ESP digraphs, ESP_RECOG, described in Subsection 4.1 except that
the parallel reduction algorithm was revised such that it can also recognize fully fac-
torable formulas. During the reduction process, the corresponding parsing tree can be
constructed by using the rules of Figure 12.

We continue to introduce the revised parallel reduction mentioned above. The input
for the corresponding algorithm REV_PAR_REDUC is a Boolean formula and a bunch
of arcs. If the input formula is fully factorable, its corresponding factoring tree will be
constructed. For the sake of neatness, the input Boolean formula is assumed to be in its

conjunctive normal form.

REV_PAR_REDUC(E', F)
Begin
1 Recognize whether F' is a fully factorable formula by the factoring algorithm
FACTOR. If not, reply “Parallel reduction fails” and return.
2 Examine if the number of external leaves in the corresponding factoring tree

Ty equals to the number of arcs in E’. If not, reply “Parallel reduction fails”

17

B T, - T, - i o wil
i pri wil / \
T, T,
(a)
Ty

0 O O

e ull i
an >
ull i P

m /N

(b)o

T,

@O ul il
o >
ull Vi P%ﬂ

m 7N\

B!

i T,

(c)o

Figure 12: Rules to perform reductions and to construct the parsing tree: (a) Series
reduction; (b) Parallel reduction for the and-factoring case; (c) Parallel reduction for

the or-factoring case.

and return.

3 Keep only one arc in E' and delete all other arcs. Moreover, return 7.

End

Subsequently, we will begin to describe the factoring algorithm exploited in the pre-
vious algorithm. This algorithm can fully factor a CNF and construct the corresponding
factoring tree. The first step is to reduce the input formula to be irreducible. The irre-
ducible form of a positive CNF can be obtained by a polynomial time algorithm which
applies the idempotent law and the absorption law of Boolean algebra to eliminate re-
dundant literals and clauses. The next step is to fully factor the irreducible CNF. We will
factor the input formula into a set of subformulas by the and-factoring or or-factoring
algorithm and repeatedly apply the same process to each subformula until no subformula

can be factored any more. If one subformula is not trivial, such a formula is not fully

18

factorable.

The factoring algorithm is shown in the following. The formula reduction process
of the first step is implemented as the algorithm, REDUCE, and the corresponding
and-factoring algorithm (or-factoing algorithm), AND-FACTOR (OR-FACTOR),
can and-factor (or-factor) a formula as many subformulas as possible. Besides, this
factoring algorithm maintains two lists of Boolean formulas called the AND list and OR
list, represented as AL and OL respectively. AL contains the Boolean formulas needed to
be applied by the algorithm AND-FACTOR,; while OL contains the Boolean formulas
needed to be applied by the algorithm OR-FACTOR. Each formula F' is thus attached
with two Boolean tags, A-tag and O-tag, to indicate if F' can be factored by AND-
FACTOR or OR-FACTOR. Initially A-tag and O-tag are set to be true. If F' cannot
be factored by AND-FACTOR (OR-FACTOR), A-tag (O-tage) is consequently set
to be false. The input of this algorithm is a positive CNF. Note that during the factoring

process, all subformulas will be irreducible CNFs.

FACTOR(F)
Begin
1 F'= REDUCE(F).
2 If F' is a single literal, reply “F is fully factorable” and return the corre-
sponding factoring tree T of a single leaf.
3 Set F' — A-tag and F' — O-tag to be true and add F' into AL.
4 Repeat removing a formula P from AL to perform the following procedures
until AL is empty.
4.1 Call AND-FACTOR(P) to factor P into a set of subformulas S, and
construct the corresponding subtree for the factoring tree 7%.
4.2 If |S| =1 and P is not a single literal
4.2.1 Set P — A-tag to be false.
4.2.2 If P — A-tag and P — O-tag are both false, reply “F is not fully
factorable” and return.
4.2.3 If P — O-tag is true, add the only one element in S to OL.
4.3 If |S| > 1, for each subformula P; in S

19

4.3.1 Set P; — O-tag to be true and P; — A-tag to be false.
4.3.2 Add P; to OL.
5 Repeat removing a formula) from OL to perform the following procedures
until OL is empty.
5.1 Call OR-FACTOR(Q®) to factor @ into a set of subformulas 7', and
construct the corresponding subtree for the factoring tree T.
5.2 If |T'] = 1 and @ is not a single literal
5.2.1 Set () — O-tag to be false.
5.2.2 If Q — A-tag and Q — O-tag are both false, reply “F is not fully
factorable” and return.
5.2.3 If Q — A-tag is true, add the only one element in 7" to AL.
5.3 If |T'| > 1, for each subformula Q; in T
5.3.1 Set Q; — A-tag to be true and); — O-tag to be false.
5.3.2 Add Q; to AL.
6 Repeat Step 5 and 6 until AL and OL are empty.
7 Reply “F is factorable” and return T7%.
End

If the input formula FF = C; A Cy A --- A C),, where C; is the clause of F' Vi, the time
complexity of the algorithm FACTOR is O(I*) where [= X' ||L(C})], i.e. the number
of total literals in F'. Since the time complexity of the ESP recognition algorithm is
O(|V]+|E|) and the AOSP recognition algortihm needs at most (|V|—1) fully factoring
operation, the time complexity of the latter is then O(|V|L* + |E|), where L is the

maximum value of [among all attached Boolean formulas.

5.2 k-AOSP Digraph Recognition Algorithms

Prior to designing the algorithm for recognizing RAOSP digraphs, we will introduce how
to recognize k-AOSP digraphs as a preliminary step. First, similar with the recognition
algorithm for £-ESP digraphs stated in the previous section, we will group vertices with
the same predecessor and successor sets for the input digraph. Secondly, we have to

examine the similarity of the Boolean formulas attached to vertices in a group. According

20

(a)d (b)o

Figure 13: Two scenarios of literal mapping, where (a) F' = (z; V zo) A (2} V z,) and

F'' = (xpVa)A(a, Vah); (b) Fy =2 Vay, F] =2V, Fy = xyVay and F) = xl, V.

to the definition of k-AOSP digraphs, we know that the irreducible forms of the formulas
attached to the k replicas of a vertex must be similar pairwise. So if all the vertices in
a group are the replicas of the same vertex, the formulas attached to them have to be
similar pairwise. In addition, the k literals corresponding to the arcs from a vertex v of a
preceding group to the k vertices of this group should be mapped pairwise because they
all play the role that the module corresponding to v enables one replica of its succeeding
module to execute. One example of this scenario is shown in Figure 13(a). Figure 13(a)
depicts a part of a 2-AOSP digraph, and vertices in an ellipse with dashed lines belong to
the same group. The two attached formulas F' and F” must be similar with the mapping
of (x1 <> xy), (&) <> 2), (x2 <> xy) and (2}, <> x})).

Next we consider the case that a group contains the replicas of two or more vertices.
From Theorem 1, we can also have that every two vertices in an AOSP digraph have at
most one same predecessor and at most one same successor. Hence if two vertices in an
AOSP digraph are equivalent, they have only one predecessor. The formulas attached to
them contain only one single literal. This leads to that if a group contains the replicas
of two or more vertices, the irreducible forms of the formulas attached to these vertices
are of the disjunction of distinct k literals. Moreover, if the literals corresponding to
the arcs from a vertex of a preceding group to all the vertices of this group are mapped
pairwise, the irreducible forms of the attached formulas of these vertices are also similar

pairwise. Figure 13(b) illustrates an example of this scenario. Also, a part of a 2-AOSP

21

digraph is shown in Figure 13(b). The four formulas Fy, F], F, and F}j are similar with
the mapping of (z1 <> | <> 2o <> x}) and (21 <> 2}, > z9 <> z4). Therefore, we can
conclude that the formulas attached to vertices in a group have to be similar pairwise
with the mapping that the literals corresponding to the arcs from a vertex of a preceding
group to all the vertices of this group are mapped pairwise.

For k-ESP digraphs, we can arbitrarily divide a group with nk vertices into n groups
with k vertices each. But in the case of k-AOSP digraphs, we have to divide such a
group according to the logic structures attached to vertices of the succeeding group.
Note that for a group with nk vertices where n > 1, its succeeding group is a group
only containing k replicas of the same vertex since any two equivalent vertices in AOSP
digraphs can only have one successor by Theorem 1. Moreover, the irreducible forms
of the formulas attached to vertices in the succeeding group must be similar pairwise,
so we can use the factoring result of any attached formula of the succeeding group to
divide this group into n groups with k vertices each.

From the discussions on factoring Boolean formulas in [1], we can have that the
factoring process of a positive irreducible CNF can be considered as unique. Namely,
the selection of factoring operation is and-factoring and or-factoring alternatively, and a
formula is factored as many subformulas as possible in each factoring operation. Hence,
the factoring tree of a positive irreducible CNF can also be considered as unique. By the
definition of k-AOSP digraphs, the irreducible forms of their attached formulas can be
expanded from factoring trees with leaves of the disjunction of distinct k literals. So we
can consider that the corresponding factoring trees of k-AOSP digraphs have leaves of
the disjunction of distinct £ literals. For example, the factoring tree corresponding to the
formula F' in Figure 13(a) is shown in Figure 14. It can be seen that the corresponding
literals x; and xy of arc e; and ey are in the same leaf. Thus we know that vertex u and
u’ are the replicas of each other since e; and ey eject from these two vertices respectively.
Similarly, we can also have that vertex v and v" are the replicas of each other.

During the factoring process of a formula, we may encounter subformulas with the
form of the disjunction of distinct mk literals where m > 1. For this scenario, we embed

these mk literals into a leaf temporarily. After the factoring process, we will begin to

22

Figure 14: The factoring tree corresponding to F' = (z1 V xy) A (2] V 24).

divide the preceding group with nk vertices where n > 1. If there exist k vertices of
the preceding group with that the corresponding literals of the arcs ejecting from them
are in the same leaf, these k vertices will be grouped as a new group. If there exist
[k vertices with that their corresponding literals are contained in the same leaf where
[> 1, we will arbitrarily divide these [k vertices into [new groups due to the symmetry
of theses vertices both in the graph structure and in the logic structure. After this step,
every group has exactly k vertices. Then a leaf with mk literals is divided into m leaves,
where a leaf has k literals whose corresponding vertices are in the same group. The
factoring tree is also performed with the corresponding revision, as an example depicted
in Figure 15. In addition, we also have to check if all the corresponding literals are in the
same leaf for a group that is not divided in the step of dividing groups. Subsequently,
we will make a group of k vertices as a super vertex. And the k% arcs between two
super vertices will be grouped as a super arc. Their corresponding k? literals will also be
grouped as a super literal. The resultant super digraph should have the same structure
with an AOSP digraph. Hence, we can use the AOSP recognition algorithm to examine
it. Specifically, the grouping procedure for k-AOSP digraphs is designed as follows. The
parameter k is also assumed to be given for the sake of neatness, but in fact we can get

its value from the number of sources or sinks.

k-AOSP_GROUP (H¥(V (v), E, F(v)))
Begin
1 If |[V| mod k # 0, reply “H* is not a k-AOSP digraph” and stop.
2 For every vertex v in V, get its corresponding P(v) and S(v), and if | P(v)| mod

23

o w@

Figure 15: A leaf with 2k literals is divided into two leaves with £ literals each.

k # 0 or |S(v)| mod k # 0, reply “H* is not a k-AOSP digraph” and stop.

3 Add all vertices in V' to a list VL.

4 Remove a vertex v from VI, and remove every vertex v with v = v in VL.
Then make them as a group Q. If |Q] mod k # 0, reply “HF is not a k-AOSP
digraph” and stop; else add @) to a group set VG. Repeat this step until no
vertex remains in VL.

5 For each group @ in VG,

5.1 For every formula F' attached to the vertices in , REDUCE(F).

5.2 Check if all these irreducible formulas are similar pairwise with the map-
ping that the literals corresponding to the arcs from a vertex of a preced-
ing group in the digraph to all the vertices of () are mapped pairwise.

5.3 Get the irreducible formula F’ attached to a vertex in () and FAC-
TOR k(F’). If F' is not fully factorable, reply “H* is not a k-AOSP
digraph” and stop; else associate its factoring tree Tt with Q).

6 For each group @ in VG,

6.1 If |Q| =k,

6.1.1 Get all the corresponding factoring trees of its succeeding groups
in the digraph.

6.1.2 Check if the k£ corresponding literals of vertices in () are in the
same leaf for every factoring tree. If not, reply “H* is not a k-AOSP
digraph” and stop.

6.1.3 Add @ to the super vertex set V.

6.1.4 For every factoring tree T}, if the corresponding literals are con-

24

tained in a leaf of T} with more than % literals, remove these corre-
sponding literals from this leaf to make them as a new leaf, and then
do the corresponding revision for T7.

6.2 If || = nk where n > 1,

6.2.1 If the number of its succeeding groups in the digraph is more than
one, reply “H¥ is not a k-AOSP digraph” and stop; else get the
corresponding factoring tree T of its only one succeeding group.

6.2.2 Divide @ into subgroups, where a subgroup contains vertices whose
corresponding literals are in the same leaf of 7. If there exists a
vertex in () whose corresponding literal is not in any leaf of T, reply
“H* is not a k-AOSP digraph” and stop.

6.2.3 Pick a subgroup P. If |P| mod k # 0, reply “H* is not a k-AOSP
digraph” and stop.

6.2.4 Suppose |P| = lk, arbitrarily divide P into [super vertices with k
vertices each and add these super vertices to V5. Moreover, associate
the factoring tree corresponding to () with these super vertices.

6.2.5 If the corresponding literals are in a leaf of T} with exactly (&
literals, divide this leaf into [new leaves, where a leaf has k literals
whose corresponding vertices are in the same super vertex, and then
do the corresponding revision for 7%.

6.2.6 If the corresponding literals are contained in a leaf of 7 with more
than [k literals, remove these corresponding literals from this leaf to
make them as [new leaves, where a leaf has k literals whose cor-
responding vertices are in the same super vertex, and then do the
corresponding revision for T%.

6.2.7 Repeat Step 6.2.3 to Step 6.2.6 for other subgroups.

7 For each super vertex V; in Vg,
7.1 Get its corresponding factoring tree 7', and check if the number of literals
in every leaf of T} equals to k. If not, reply “H* is not a k-AOSP digraph”

and stop; else replace the k literals of every leaf with a super literal.

25

7.2 Find all super arcs connected to it and add these super arcs to the super
arc set Fg.
8 Return the super digraph Hg(Vs(V;), Es, Fs(V;))
End

Note that the algorithm FACTOR _k exploited above is generalized from the factor-
ing algorithm FACTOR such that a formula of the disjunction of distinct nk literals,
where n > 1, will not be or-factored further into nk subformulas containing only one
single literal each. It can be easily verified that we only need to slightly revise the al-
gorithm FACTOR and the two corresponding algorithms, AND-FACTOR and OR-
FACTOR, to achieve this goal. After the previous grouping procedure, we will use the
AOSP digraph recognition algorithm to examine if the super digraph Hg is an AOSP di-
graph except that we do not need the first step in the algorithm REV_PAR_REDUCE
since all attached formulas have been factored in the grouping procedure.

The following argument shows that this algorithm for recognizing k-AOSP digraphs
is correct. If H* is a k-AOSP digraph, after the grouping procedure, the resultant
super digraph Hg has the same structure with an AOSP digraph by definition. So our
algorithm can recognize it. On the contrary, if H* is not a k-AOSP digraph, there are
two cases. The first case is that the digraph is constructed from a non-AOSP digraph
with k replications, either of incorrect graph structures or of incorrect logic structures.
The other case is that the digraph is a digraph which is not constructed from any digraph
with k replications. The former will be found by the grouping procedure or the AOSP
recognition algorithm; whereas the latter will be found during the grouping procedure.

Here we begin to evaluate the time complexity of the algorithm k-AOSP_GROUP.
The same with the grouping procedure for £-ESP digraph recognition, from Step 1 to
Step 4 has the time complexity O(|V']?). As for Step 5, the time complexity of reducing
and factoring formulas attached to (|V| — 1) vertices is O(|V|L*), and the similarity
checking step needs the time complexity O(|E| + |V|L?) since there are |E| literals to
be mapped and the time complexity for checking the isomorphism of two formulas is
O(L?). So the time complexity of Step 5 is O(|E| + |V|L*). Another dominant step,
Step 6, has the time complexity O(|V||E|) since the corresponding literal of every vertex

26

needs to compare with at most |E| literals to see which leaves it is in. Hence, the total
time complexity for the grouping procedure is O(|V > + |V|L*) because |E| is bounded
by O(|]V|?). Moreover, the time complexity of the series and parallel reductions is the
same as the ESP recognition algorithm, and thus is O(|V| + |E|). So we can conclude

that the k-AOSP recognition algortihm needs the time complexity O(|V]* + [V'|L*).

5.3 RAOSP Digraph Recogniton Algorithms

Now the recognition algorithm for RAOSP digraphs will be proposed. The same with
the recognition of k-AOSP digraphs, the first step is to group vertices with the same
predecessor and successor sets for the input digraph. Secondly, we have to examine
the similarity of the Boolean formulas attached to vertices in a group. Likewise, the
formulas attached to vertices in a group have to be similar pairwise with the mapping
rule that the literals corresponding to the arcs from a vertex of a preceding group to all
the vertices of this group are mapped pairwise. In the next step, we have to divide a
group according to the logic structures attached to the vertices of the succeeding group,
by exploiting the factoring result of any attached formula of the succeeding group. By
the definition of RAOSP digraphs, the irreducible forms of their attached formulas can
be expanded from factoring trees with leaves of the disjunction of distinct literals. So
we can consider that the corresponding factoring trees of RAOSP digraphs have leaves
of the disjunction of distinct literals. If there exist [vertices in a group with that their
corresponding literals are in a leaf of the factoring tree corresponding to its succeeding
group, these [vertices will be grouped as a new group. After dividing groups, a leaf is
divided into several leaves, where a leaf contains literals whose corresponding vertices
are in the same group. In addition, we also have to check if the corresponding literals
are in the same leaf for the vertices in a group that is not divided in the step of dividing
groups. Subsequently, we will make a group of vertices as a super vertex. And the arcs
between two super vertices will be grouped as a super arc. Their corresponding literals
will also be grouped as a super literal. The resultant super digraph should have the
same structure with an AOSP digraph. Therefore, we can use the AOSP recognition

algorithm to examine it. Specifically, the grouping procedure for RAOSP digraphs is

27

designed as follows.

RAOSP_GROUP(H™"™(V(v), E, F(v)))
Begin

1 For every vertex v in V/, get its corresponding P(v) and S(v).

3 Add all vertices in V to a list VL.

4 Remove a vertex v from VL, and remove every vertex v with v' = v in VL.
Then make them as a group). Add @ to a group set VG. Repeat this step
until no vertex remains in VL.

5 For each group @ in VG,

5.1 For every formula F' attached to the vertices in (), REDUCE(F).

5.2 Check if all these irreducible formulas are similar pairwise with the map-
ping that the literals corresponding to the arcs from a vertex of a preced-
ing group in the digraph to all the vertices of () are mapped pairwise.

5.3 Get the irreducible formula F” attached to a vertex in () and FAC-
TOR REV(F’). If F’ is not fully factorable, reply “H™*™ is not an
RAOSP digraph” and stop; else associate its factoring tree Tr with ().

6 For each group @ in VG,

6.1 If the number of its succeeding groups in the digraph is more than one,
6.1.1 Get all the corresponding factoring trees of its succeeding groups.
6.1.2 Check if the corresponding literals of the vertices in () are in the

same leaf for every factoring tree. If not, reply “H™*" is not an
RAOSP digraph” and stop.

6.1.3 Add @ to the super vertex set V.

6.1.4 For every factoring tree 7%, if the corresponding literals are con-
tained in a leaf of T with more than |Q)| literals, remove these corre-
sponding literals from this leaf to make them as a new leaf, and then
do the corresponding revision for T7.

6.2 If the number of its succeeding groups in the digraph is only one,

6.2.1 Get the corresponding factoring tree T of its only one succeeding

group.

28

6.2.2 Divide @) into subgroups, where a subgroup contains vertices whose
corresponding literals are in the same leaf of 7. If there exists a
vertex in () whose corresponding literal is not in any leaf of T, reply
“H™*™ is not an RAOSP digraph” and stop.

6.2.3 Pick a subgroup P. Add P to the super vertex set Vg, and associate
the factoring tree corresponding to) with P.

6.2.4 If the corresponding literals are contained in a leaf of 7 with more
than |P| literals, remove these corresponding literals from this leaf to
make them as a new leaf, and then do the corresponding revision for
T}.

6.2.5 Repeat Step 6.2.3 and Step 6.2.4 for other subgroups.

7 For each super vertex V; in Vg,
7.1 Get its corresponding factoring tree T, and replace the literals of every
leaf with a super literal.
7.2 Find all super arcs connected to it and add these super arcs to the super
arc set Fg.
8 Return the super digraph Hg(Vs(V;), Es, Fs(V;))
End

Similarly, the algorithm FACTOR_REYV exploited above is generalized from the factor-
ing algorithm FACTORING such that a formula of the disjunction of distinct literals,
will not be or-factored further into subformulas containing only one single literal each.
Finally, we will also use the AOSP recognition algorithm to examine if the super digraph
G is an AOSP digraph. If so, then H™*" is an RAOSP digraph. With the similar ar-
gument for the correctness of the k-AOSP digraph recognition algorithm, we can also
prove the correctness of this algorithm for recognizing RAOSP digraphs. Besides, the
time complexity of the propose algortihm is also O(|V|* + |[V|L*).

Remark that the same with RESP digraphs, a super vertex with m vertices can also
be viewed as n super vertices with that the total number of vertices in these n super
vertices is m, where n > 1. However, due to Theorem 1, it is better to consider any

super vertex as a whole one except that there is other information showing that it has

29

to be divided.

6. Conclusions

Many modern varieties of task digraphs belong to the class of AOSP digraphs. For
this type of digraph, we can calculate the task reliability in linear time; whereas this
problem is known to be NP-hard for general digraphs [7]. In addition, the task response
time of AOSP digraphs can also be precisely estimated in linear time by a new analytic
model developed in [5], instead of time-consuming simulation methods. Therefore, it
is crucial to recognize AOSP digraphs for evaluating computation tasks. A polynomial
time algorithm has been proposed for recognizing AOSP digraphs in [1]. In this paper,
we considered the fault-tolerant variants of AOSP digraphs, RAOSP digraphs, which are
obtained from AOSP digraphs by adding replications to each vertex and adding proper
arcs between two vertices. For RAOSP digraphs, we can also calculate its task reliability
and task response time in linear time with the similar methods of AOSP digraphs, so it is
another important work to recognize RAOSP digraphs. We have proposed a polynomial
time algorithm for recognizing RAOSP digraphs in the context. Besides, as a basis
for the recognition of RAOSP digraphs, it is first described how to recognize the fault-
tolerant variants of ESP digraphs, RESP digraphs, in polynomial time. RESP digraphs
are constructed from ESP digraphs by the same replication approach of RAOSP digraphs
and thus are a special case of RAOSP digraphs without considering the logic structures

among modules.

References

1] J. Tsai, D. R. Liang and H. H. Chou, ”On Recognition of And-
Or Series-Parallel Digraphs,” Technical Report, TR-IIS-00-005, Institute
of Information Science, Academia Sinica, Apr. 2000. Also available at
http://www.iis.sinica.edu.tw/LIB/threebone0005.html.

[2] J. A. Stankovic, “A perspective on distributed computer systems,” IEEE Trans.
Comput., vol. C-33, pp. 1102-1115, Dec. 1984.

30

3]

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

T. C. K. Chou and J. A. Abraham, “Load redistribution under failure in distributed
systems,” IEFE Trans. Comput., vol. C-32, pp. 799-808, Sep. 1983.

J. Garcia-Molina, “Reliability issues for fully replicated distributed databases,”
IEEE Computer, vol. 16, pp. 34-42, Sep. 1982.

W. W. Chu and K. K. Leung, “Module replication and assignment for real-time
distributed processing systems,” Proceed. IEEE, vol. 75, pp. 547-562, May 1987.

V. W. Mak and S. F. Lundstrom, “Predicting performance of parallel computa-

tions,” IEEE Trans. Parallel and Distributed Systems, no. 1, pp. 257-270, July
1990.

D. R. Liang, R. H. Jan and S. K. Tripathi, “Reliability analysis of replicated and-or
graphs,” Networks, vol. 29, pp. 195-203, 1997.

J. L. Baer, “A survey of some theoretical aspects of multiprocessing,” ACM Comput.
Surveys, vol. 5, pp. 31-80, Mar. 1983.

J. Riordan and C. E. Shannon, “The number of two terminal series parallel net-
works,” J. Math. Physics, vol. 21, pp. 83-93, 1942.

A. Adam, “On graphs in which two vertices are distinguished,” Acta Math., vol.
12, pp. 377-397, 1961.

R. J. Duffin, “Topology of series-parallel networks,” J. Math. Anal. Appl., vol. 10,
pp. 303-318, 1965.

J. Valdes, R. E. Tarjan and E. L. Lawler, “The recognition of series parallel di-
graphs,” Siam J. Comput., vol. 11, pp. 298-313, May 1982.

P. A. Alsberg and J. D. Day, “A principle for resilient sharing of distributed re-
sources,” In Proc. 2nd Intl. Conf. on Software Engineering, pp. 562-570, Oct. 1976.

S. T. Levi, S. Tripathi, S. Carson and A. Agrawala, “The Maruti hard real-time
operating system,” ACM Operating System Review, vol. 23, pp. 90-105, 1989.

D. Powell, Delta-4: Overall system specification, The Delta-4 Project Consortium,
1988.

E. Mendelson, Boolean algebra and switching circuits. McGraw-Hill, 1970.

31

