
 1

Geometric Interpretation and Comparisons of Enhancements

of GJK Algorithm for Computing Euclidean Distance

Between Convex Polyhedra

Jing-Sin Liu*, Yuh-ren Chien, Shen-Po Shiang and Wan-Chi Lee

Institute of Information Science 20
Academia Sinica

Nankang, Taipei 115, Taiwan
R.O.C.

Email: liu@iis.sinica.edu.tw
(*correspondence address)

Abstract
 The computation of Euclidean distance between two convex polyhedra is an important
problem in robotics, computer graphics and real-time animation. An efficient and
reliable distance computation procedure for a pair of convex sets is developed by Gilbert,
Johnson and Keerthi (GJK) in 1988. GJK’s convex set-theoretic approach is general and
suitable for iterative numerical computation, however the GJK algorithm has the
drawback of lack geometric intuition, especially in pairwise distance computation of
convex polyhedra defined by the convex hull of its vertices in Euclidean 2D and 3D
space. This paper investigates the steps of GJK algorithm from a geometric but intuitive
point of view. By geometric reasoning, we present an improvement of the Euclidean
distance computation algorithm made by GJK. Some comparative simulations for
both the static and tracking cases, in particular, collision-free motion planning of
redundant robots, are shown to verify the algorithmic improvement in the process of
distance computation. In addition, our work provides a simple and efficient algorithm
for finding out the information where the closest point of a convex polyhedron to a
reference point is: on the face, the edge, or on one vertex of the polyhedron.

Keywords. Distance computation, convex polyhedron, GJK algorithm, Euclidean
 distance, minimum distance.

 2

ⅠIntroduction
 In robotics, computer graphics and animation, the Euclidean distance between a detected
object and the obstacles around is an indispensable information when moving the object by
manipulation robots or for realistic, 3D environment modeling. It lies at the base of many
applications, such as CAD/CAM, intersection detection7, collision avoidance5, 18, 19, path
planning3, 20, and path modification4, where knowledge of the distance measures between the
robot and its environment (or in general two moving objects) is crucial. Polyhedral objects are
often used in graphical simulation of robot systems due to their simple and reduced
computation in simulation. There are considerable interests in developing efficient minimum
distance computation algorithms, especially for convex polyhedra. In computational geometry,
several asymptotically efficient algorithms are developed for 2D convex polygons22, 24 or 3D
convex polyhedra23. For applications to collision-free robot motion planning and graphical
simulations involving collision detection, there are works on minimum distance computation,
e.g. 1, 7, 9, 10, 13, 17, 19. In general, the problem of finding the distance between convex bodies1, 13,

17 can be equivalent to the direct minimization of distance function, or the procedure of
computing the closest point of a body to the reference point in a translated space. For example,
Rimon and Boyd10 used the L-J ellipsoid to enclose the convex or non-convex objects to
formulate a convex optimization problem for estimated distance computation. The
computation of the distance estimate (within a user’s specified error) is shown to be an
eigenvalue problem. Lin and Canny6 provided an incremental algorithm of almost-constant
time complexity for tracking a pair of closest points of convex bodies, one on each body, in
three dimensional space. The framework presented by Johnson and Cohen11 for minimum
distance computation also gives an efficient solution for objects described by different surface
representations. Among these works, of special concern in this paper is the computation
procedure developed by Gilbert, Johnson, and Keerthi1 (GJK) in 1988. Gilbert, Johnson, and
Keerthi (GJK), based on their prior work18, presented an efficient distance computation
algorithm1 in which an object is defined by the convex hull of its vertices and the convex set
is represented in terms of their support properties. For polytopes that is defined as the convex
hull of a finite set of vertices, in particular, the properties can be easily obtained from their
vertices. Using GJK, it is possible to eliminate a large number of pairwise distance
computation between faces of two convex polyhedron, thus the efficiency is competitive.
Attempts on improvements on GJK algorithm were made in last years. The GJK algorithm
has been further extended 6, 7, 16 and organized2, 8. With some modification of support function
computation by Cameron2, this method can also provide constant time updates for slowly
moving polyhedra. Chung Tat Leung 7 presented an efficient means of updating the
Minkowski difference to create a collision detection method for convex polyhedra.

 3

 The paper is organized as follows. Section 2 is a summary of GJK algorithm. GJK
algorithm, which involves the computationally intensive step of computing the supporting
function of the set of vertices, is a set-theoretic approach in essence. Since in applications the
distance between two objects needs to be updated from time to time, every possible
enhancement of distance computation procedure can speed up the repetitive process as the
time goes on. In Section 3, we present some modifications after carefully examining the steps
of GJK algorithm by geometric reasoning. The changes we made would give more geometric
meaning and thus readability of the output of the algorithm, while keep the results that
confirm an almost-linear time complexity. In Section 4, a recent enhancement of GJK
algorithm made by Cameron2 in the computation of support function is introduced for
comparisons study. Efficiency comparisons for distance computation between two static
bodies, and two moving bodies are made. Also application to collision-free motion planning
of redundant robots is shown to illustrate the long-time efficiency of the modified distance
computation, which is important in on-line applications. A convenient method is developed to
find out the neighbor points, so-called vicinity matrix, which is the information required in
the “hill climbing”8, 9 of Cameron’s enhancement. The verification of neighbor points of a
vertex is the key to achieve the constant time complexity. In other words, if the adjacency
information of vertices is available before computing the distance, the computation will be
much more efficient. Because the body is assumed rigid, the neighboring points in a body
won’t change during motion and the verification can be viewed as a preprocessing procedure.
The preprocessing, however, can consume a lot of time even more than the distance algorithm
itself, as shown in Section 4. Section 5 is the conclusion.

Ⅱ The GJK Algorithm
 To find out the distance of two convex polyhedra named K1 and K2, suppose the vertices
of K1 are s1, s2, …, sn (n points), and the vertices of K2 are t1, t2, …, tp (p points),

respectively. From K1 and K2 , the set K = { si-tj, si ∈K1, tj∈K2} (also a convex
polyhedron) ,called the Minkowski difference of the two polyhedra, can be constructed,
where the elements are the relative translations of K1 and K2, in translational configuration
(TC) space2. There should be n*p vertices in K. The separation between the original two
polyhedra is equal to the distance between the origin of TC space and the convex obstacle
formed by the points of K is called TCSO (translational C-space obstacle)1, 2, 8.

Let d(x,y) be the Euclidean distance between two points x and y, and K1 , K2 be two
convex polyhedra. The minimum distance between K1 and K2 is defined as d (K1,
K2)=min{d (x,y): x is on the boundary of K1, y is on the boundary of K2} =d (x*,y*) for x*

∈K1 and y* ∈K2. x*, y* are called the pair of closest points of K1 , K2 . The GJK algorithm
for computing the distance between two convex polyhedra is shown in Fig.1.

 4

 It is essential to describe the GJK algorithm first before we introduce the algorithmic
modifications that we make. Essentially, the GJK algorithm iteratively searches a subset of
the original set of vertices that contains the global minimum of distance functions. Essentially,
the GJK algorithm iteratively searches a subset of TCSO which contains near point closer to
origin than near point of the subset last step. The process of subset modification proceeds by
eliminating the vertices unnecessary to determine the nearest point and adding a closer vertex
found from supporting property.

2.1 Definitions
 The main advantage of GJK algorithm is the specification of the convex sets in terms of

their support properties. Recall the definition of the support function1 HX : R m → R for a
polyhedron X is the evaluation of inner products of a fixed vector with all vertices of
polyhedron and looking for the maximum:

HX (η)= max{x·η：x∈X}

where η ∈R m is a given vector, · is the inner product. Define the support mapping SX :

R m → X to be any mapping that, given a direction η, is the solution of the support function,
i.e. one of the points in X which is farthest in the direction η:

HX (η)=SX(η)·η
The (nonunique) points SX(η) of X is called the supporting vertex of X in the direction η. It
has the property that the hyperplane passing through it with normal η is a supporting
hyperplane of X. For two polyhedra K1 and K2, we have

 HK(η) = HK1(η) + HK2(-η); SK(η) = SK1(η) - SK2(-η).
i.e. find supporting vertex SK1(η) on K1 and SK2(-η) on K2 in the direction η and - η,

GJK Algorithm:
V0 ← initial set ;
i ← 0 ;

Repeat{

Ys ← find_affinely independent_set(Vi) ;

νi ← nu_compute(Vi) ;
Ys ← refine_set(Vi)
(Si, Hi) ← support_functions(-νi) ;
Vi+1 ← Ys∪{Si} ;
i ← i + 1 ;
} until (νi˙νi + Hi = 0)

Fig. 1 The GJK algorithm

 5

respectively.

 The GJK algorithm shown in Fig. 1 finds the closer vertex for each polyhedron by using
the support function which makes the updated point Si of set Vi remain on the TCSO. The set
will satisfy the goal,νi˙νi + Hi = 0, by dropping the affinely independent set vertices

irrelevant in determining local near point and taking a new point Si into consideration. The
goal is achieved by checking if the points A, B in Fig. 2 satisfy

HK1(A-B) = A·(A-B) and HK2(A-B) = B· (-(A-B))
Or whether K1 lies to the left of the line through A and orthogonal to (A-B), and similarly for
K2 and B.
 Note that the goal ν i ˙ ν i + Hi = 0 can be replaced by the more robust

condition ”reoccurrence of supporting vertices” in the iterations of GJK algorithm to avoid
numerical imprecision due to roundoff error of the floating point addition7.

 { }1:max Kii ∈• ννη { }2:max Kii ∈• ννη

Fig. 2. Illustration of support function evaluation.

Definition12. A set of m + 1 points {b 0 , b 1 , ... , b m } is said to be affinely independent if

 { } { }








=++∈= ∑
=

1... ,,...,, :,...,, 110
1

10 lmi

l

i
iim bbbxxbbbaff λλλ (1)

is m-dimensional.
 From the above definition,
 aff{b 0 , b1 , ... , b m } = L + b 0 ,

where
 L = aff{0, b1 - b 0 , ..., b m - b 0 }.
L is the same as the smallest subspace containing b 1 - b 0 , ..., b m - b 0 . Its dimension is m if

and only if these vectors are linearly independent.
Thus b 0 , b1 , ... , b m are affinely independent if and only if b 1 - b 0 , ..., b m - b 0 are linearly
independent. Furthermore, the coefficients iλ in such an expression (1) of a point in aff{b 0 ,

1K
2K

BA −=η

A
B

 6

b 1 , ... , b m } are unique if and only if b0 ,b1,…..,bm are affinely independent.

2.2 GJK algorithm (Fig. 1)
 The algorithm is more conveniently described by using the pictures in TC space, although
the algorithm itself never needs to explicitly construct the TCSO. The key element of the
approach is the algorithm for computing the distance between origin and convex sets in
m-dimensional space. m = 3 is a special case of this algorithm, and the convex sets are
polytopes defined by their vertices. The sets defined in the approach, without loss of
generality, always contain not larger than four elements because of the Caratheodory
theorem12. Arbitrary set of one to four points, each is the difference of two vertices (one from
K1 and one from K2), can be chosen as the initial set in GJK algorithm. One better choice1, 9 is
to find the direction of the vector defined by the difference of the centers of two objects, and
then compute a most appropriate point on the TCSO by the use of support function. It is
because the closest points of two convex polyhedra are usually in the direction we just
mentioned.

 In GJK algorithm, the step of determining affinely independent set Ys = { yi ∈ K: i ∈ Is }
from Vi and the minimum distance pointνi of the polyhedron formed by Ys is the Distance
Subalgorithm. the step of finding the minimum distance pointνi of the polyhedron formed by

Vi and determining affinely independent set Ys = { yi ∈ K: i ∈ Is } which contains νi from Vi

is the Distance Subalgorithm. The Distance Subalgorithm in its mathematical form is
presented in the following:

Take a subset Ys from Vi . Define the real numberΔi(Ys), Δ(Ys) by

 Δi({yi}) = 1, i∈ Is (Is = The numbers of elements in Ys)
 Δj(Ys∪{yj}) = ΣΔi(Ys)(yi•yk - yi•yj) for all i∈Is, k∈Is , j∈Is’

(Is’ = The complement of Is)
 Δ(Ys) = ΣiΔi(Ys) for all i∈ Is.

Then the output of the Distance Subalgorithm consists of positive real numbersλi and set

Ys :
 λi =Δi(Ys)/Δ(Ys); Σiλi = 1, λi > 0 (2)

The closest pointνi computed can be expressed as

 νi = Σi (λi yi) for all i∈Is (3)

 This completes the GJK algorithm for computing the closest point to the origin in
TC-space. By finding the initial set of next loop, theνis computed by a recursive formula for
finding out each Δi(Ys) and is used in later application of support function. We can calculate
νi in the form of (3) if we know the affinely independent set Ys andλi in (2) is the solution

of (3). The approach used in GJK algorithm (Theorem 3 in Gilbert, Johnson, and Keerthi1)

 7

is to check all the subsets of every initial set in each loop of the algorithm whether the
following three conditions are satisfied:
(a) Δ(Ys) > 0, (b)Δi(Ys) >0 for each i∈ Is , (c)Δj(Ys∪{yi}) ≤ 0 for each j∈Is’. (4)

Usually, Ys is uniquely determined.

Ⅲ.Geometric Interpretation and The Modification

of GJK Algorithm

 The algorithm in our improvement is based on three functions nu_compute(),
support_functions(), and refine_set(), which make the concept more obvious and the
implementation easier. In addition, the feature of the closest point (i.e. vertex, edge or face)
can be found.
 The modification is applicable to two- or three-dimensional space. However, the
situations are more complicated in three-dimensional space. In what follows, we will discuss
two-dimensional space first, then the situations in three- dimensional space follows.

3.1 Two-dimensional case
(a) Description of the algorithm (Fig. 3):
In the 2D TC-space, our modification in an iteration is: choose a triangle, discard a vertex of
it, and then add another vertex to construct a new triangle.

 First, take two vertices Z1 and Z2 on the TCSO as the initial set V0. Then compute the
nearest point ν i using the function nu_compute(). It is known that ν i is the nearest point

on the object formed by the points of set Vi to the origin of the TC-space and is an
approximation to the nearest point at ith iteration1, 14, 16. Afterν i is determined, the algorithm

then obtains a new point in K from support_functions(). In the algorithm, the new point is
named Si = S K (-ν i), which is farthest toward the origin away from ν i . The new point thus

found will give us the optimized path to the final answer1. Si and two other initial points
form next set Vi+1.
 Geometrically clear, the ν i of this set is on one edge of the triangle which is made by Si

and the initial points. Thus, the function of refine_set() is to refine the new initial set Vi of
next iteration with the two points that compose this edge. The procedure continues until
the termination condition νi˙νi + Hi = 0 is satisfied. In other words, the iteration in Fig. 3

will terminate when the points of Vi can form the nearest edge of the TCSO to the origin. The
νi we get at this time is what we look for. Fig. 4 shows an illustration of basic cycle of the

process.

 8

 Fig.3 GJK algorithm with our modification in 2D case.

Fig. 5. The choice of initial point.

Support
vertex

Support plane

K

η

O

Fig5. The choice of initial point

(b). The choice of initial points:
 One of the most important ways to reduce the computation time is to make a good choice
of initial points1, 13, 17. Because the available points are on the boundary of the TCSO, we must
take advantage of the feature of support function. One is chosen to be the supporting vertex

The Algorithm in 2D:
V0 ← initial_set(Z1, Z2) ;
 i ← 0 ;

Repeat{
 νi ← nu_compute(Vi) ;

 (Si, Hi) ← support_functions(-νi) ;
 Vi+1 ← refine_set(Vi, Si) ;
 i ← i + 1 ;
} until (νi˙νi + Hi = 0)

 Z1 ν0 Z2
 ν1
 ν2

 S1
 S0 ν3

 S2 (also S3) o

Fig.4. An illustration of GJK.

 9

with respect to the vector pointing from the centroid to the origin in the TC space, i.e. SK(η)
where η is centroid of K 1 minus centroid of K 2 , as illustrated in Fig. 5. In order not to

initialize the algorithm in some particular points, the other initial point is distinct but arbitrary
so that it can effectively produce two new points far apart after the calculation of support
function. This is a good initial choice for efficient computation.
 (c). The computation of ν(about nu_compute()) :
 Each ν is computed by the function nu_compute. It represents the nearest point on the

TCSO in the polytope in each step to the origin of the TC-space1, 2. It is also a vector that
gives us the direction from the origin to the nearest point on the TCSO in the polytope. The
idea of this function is mainly the same as that used in Gilbert, Johnson, and Keerthi1, but the
sets we use are sometimes different. As will be seen later, λ might be negative in the

computations. Because we won’t consider the affinely independent set, there are always two
points (say X1, X2) contained in the original set Vi. The nearest point of the original triangle
edge can be calculated as follows. Given two points X1, X2, let

 ,XXXX 1222XX1, 21
⋅−⋅=∆

 ,XXXX 1211XX2, 21
⋅−⋅=∆

212121 ,2,1 XXXXXX ∆+∆=∆

21

21

21

,
,

XX

XXi
XXi ∆

∆
=λ .

Then express the nearest point by a convex combination of X1and X2

 (5)
 In (5), the meaning ofνis the nearest point on the line segments connecting X1, X2.
Because the correct pointνis between X1 and X2, νshould be the point X1 (or X2) ifλ1(or
λ2) is negative. λ1 andλ2 cannot be negative at the same time, so there are only three
variations of sign ofλi in two-dimensional space.

(d). How to refine the set Vi (about refine_set()) :
 The refinement method used by Gilbert, Johnson, and Keerthi1 is to investigate every
subsets of Vi , or the set Vi∪{Si} in our modified algorithm Fig.3, and then verify them with

the three conditions in (5). Eventually, the unique affinely independent subset will be found.
However, the process is very complicated. Instead, our modification presented below is a
simpler and geometrically clear discard-and-add process.
 Firstly, the process starts from two initial points and adds a third point Si in the way that
can speed up computation. Then keep the two points that form the proper edge to refine the

2,21,1 2121
XX XXXX λλυ +=

 10

set Vi+1. In brief, we regularly choose a triangle and then discard a vertex of the triangle and
add another point to construct a new triangle.
 Now, which point is to be discarded? The point that has maximum distance is not the
correct one. The method used here is quite similar to that of determining an affinely
independent set. Refer to Fig. 5 for illustration. Select two points from the set Vi∪{Si} which
contains three points. Its three subsets are three edges of the triangle formed by the set Vi∪

{Si}. A line-by-line testing can decide which line of edge can separate the origin of the

TC-space and the remaining point, then discard the remainder. The separating edge is
precisely the edge of the triangle formed by Vi which contains (or represents) iν .

There might be more than one subset corresponding to the separation condition we just
mentioned. The simplest way is to discard the farthest point once the non-unique situation
happens.

Remark: The reason why three points suffice in our modification is obviously revealed by
the Caratheodory theorem1. Suppose X belongs to the translate of a linear space . Without
loss of generality, assume X contains no more than (dimX +1) points. Thus, the set Vi in our
algorithm will contain two points.

3.2 Three-dimensional case (Fig. 7)
(a). Main ideas:
 The main idea for three-dimensional case is the same as two-dimensional case, but there
are some important changes should be made. From Caratheodory theorem, the triangles we
update in two-dimensional space now change as tetrahedrons in 3D space. For a tetrahedron,
three faces (triangles) intersect at one vertex, and a face has three vertices. Thus, there should
be three points in the initial set. The way to findνin function nu_compute() is changed from

 P1

 P2

 P3

0

Incorrect

 P1

 P2

 P3

0

Correct

 P1

 P2

 P3

0

Incorrect

Fig. 6 Decide the vertex to be discarded.

 11

seeking an edge of a triangle to finding a face of a tetrahedron. Moreover, whereνis either on
a face, an edge, or a vertex is examined after we determine the subsets of Vi∪{Si }.

(b). refine_set() in three-dimensional space:
 The equation used to refine the set Vi should be replaced by one representing a plane in
three-dimensional space. Four non-coplanar points form a tetrahedron. Three points

Fig.7 GJK algorithm with our modification in 3D case.

determine a face of the tetrahedron. In 3D case, we compute the normal vector of the plane
formed by the three points, then find out which plane can separate the origin and the
remaining (the fourth) point.
 Let the four vertices of the tetrahedron be P1, P2, P3, P4. A plane that separates the origin and
the vertex, say P4 , can be found by the following way. The plane formed by the three points
P1, P2, P3, is given by the equation

 f(x, y, z)=Ax+By+Cz+K=0

where the normal vector (A, B, C) = (P2 – P1) × (P3 – P1),

 K= - (A P11 + B P12 + C P13).

The Algorithm in 3D:
V0 ← initial_set(Z1, Z2, Z3) ;
i ← 0 ;

Repeat{
 νi ← nu_compute(Vi) ;

 (Si, Hi) ← support_functions(-νi) ;
 Vi+1 ← refine_set(Vi, Si) ;
 i ← i + 1 ;
} until (νi˙νi + Hi = 0)

 12

Define
 N = (A P41 + BP42 + C P43) + K, (3)

where Pi = (Pi1, Pi2, Pi3).
Then the plane offers quick testing of separation if Z˙N < 0. Discard the subsets

containing the farthest point when more than one subset satisfying the separation condition.
(c). nu_compute() in three-dimensional space:
 The goal of the function is to find out the nearest pointνon the plane, which is

determined by the three points in Vi , to the origin of the TC-space. From (2) (or Theorem 3 in
Gilbert, Johnson, and Keerthi1), we have:

)()(1323,21222,1,1 3232321
PPPPPPPP PPPPPPP ⋅−⋅⋅∆+⋅−⋅⋅∆=∆ ,

)()(2313,21211,1,2 3131321
PPPPPPPP PPPPPPP ⋅−⋅⋅∆+⋅−⋅⋅∆=∆ ,

)()(2312,23111,1,3 2121321
PPPPPPPP PPPPPPP ⋅−⋅⋅∆+⋅−⋅⋅∆=∆ ,

321321321321 ,3,2,1 PPPPPPPPPPPP ∆+∆+∆=∆ ,

321

321

321

,
,

PPP

PPPi
PPPi ∆

∆
=λ (4)

321, PPPiλ will be negative if νis on the edge of the tetrahedron. There are seven kinds of
variations in the sign of

321, PPPiλ which affect the geometric location of νin the plane

P1P2P3 . This is shown in Table 1.

(A) Allλare positive 1 case ν On Face
(B) One of λ is negative, the others are positive 3 cases νOn Edge or Vertex
(C) One of λ is positive, the others are negative 3 cases νOn Edge or Vertex
(D) Allλare negative None Not Exist

Table 1

In Situation (A), no more modification is needed.
Situation (B) is shown in Fig. 8(a). Each case may have three sub-cases in this situation.

Assuming
321,3 PPPλ <0 with respect to the vertices P1, P2, and P3, there are three cases:

(i)Origin in region(i):
21,2 PPλ < 0. Then

(
321,1 PPPλ ,

321,2 PPPλ ,
321,3 PPPλ) ← (1, 0, 0)

 13

(ii)Origin in region(ii):
21,1 PPλ <0. Then

(
321,1 PPPλ ,

321,2 PPPλ ,
321,3 PPPλ) ← (0, 1, 0)

(iii)Origin in region (iii):

(
321,1 PPPλ ,

321,2 PPPλ ,
321,3 PPPλ) ← (

21,1 PPλ ,
21,2 PPλ , 0)

If ∠P3P1P2 > 90°, region (i) doesn’t exist.
If ∠P3P2P1 > 90°, region (ii) doesn’t exist.

Now we investigate Situation (C) in Table 1. Situation (C) implies that at least one vertex
is irrelevant to the determination of the nearest point. Each case in this situation has five

sub-cases, as indicated by Fig.8(b). Assuming
321,3 PPPλ > 0 with respect to the vertices P1, P2,

and P3:

(i)Origin in region (i):
31,2 PPλ < 0.Then

(
321,1 PPPλ ,

321,2 PPPλ ,
321,3 PPPλ) ← (1, 0, 0)

(ii)Origin in region (ii):
31,1 PPλ > 0 and

31,2 PPλ > 0. Then

(
321,1 PPPλ ,

321,2 PPPλ ,
321,3 PPPλ) ← (

31,1 PPλ , 0,
31,2 PPλ)

(iii)Origin in region (iii):
31,1 PPλ < 0 and

32,1 PPλ < 0. Then

(
321,1 PPPλ ,

321,2 PPPλ ,
321,3 PPPλ) ← (0, 0, 1)

(iv)Origin in region (iv):
32,1 PPλ > 0 and

32,2 PPλ > 0. Then

(
321,1 PPPλ ,

321,2 PPPλ ,
321,3 PPPλ)← (0,

32,1 PPλ ,
32,2 PPλ)

(v)Origin in region (v):
32,2 PPλ < 0.

(
321,1 PPPλ ,

321,2 PPPλ ,
321,3 PPPλ) ← (0, 1, 0)

When ∠P1P3P2 < 90°, only sub-case (iii) is possible.

Finally, in all situations the nearest pointνis computed by the unified equation:

3,32,21,1 321321321
PPP PPPPPPPPP λλλυ ++=

 14

(i) (ii)(iii)

3Ρ

1Ρ
2Ρ

Fig.8(a)

1Ρ
2Ρ

3Ρ

(i)

(ii)
(iii) (iv)

(v)

Fig.8(b)

Fig.8 Possible geometric relations between the origin and triangle P1P2P3 in situations (B) and
(C). The filled regions represent various positions of the projection of the origin on plane
P1P2P3.

IV. Implementation and Comparisons

 In this section, for various shapes of objects simulations are performed to compare the
improvements made by us and by Cameron2, in static and tracking cases. In particular,
efficiency comparisons of collision-free motion planning of redundant robots are also made,
which is important for on-line application of distance computation algorithms. The input data
are the vertices of two polyhedra.

4.1 Cameron’s Enhancement2
From our experience in implementing the GJK algorithm shown in Fig. 1, the computation
simulation of Fig. 9. It shows that the computation of support function consumes a big
percentage of overall computation time. Therefore, the key to faster computation of distances
between two convex bodies is to improve the computation speed of the support function.
Stephen Cameron2 achieved the improvement. The enhancement exploits the adjacency
feature of vertices (two vertices are adjacent if they are connected by an edge) and is now
described as follows. Given a convex polyhedron, an initial vertex of it, and the edge
connection data of its vertices, the goal is to find a “supporting vertex”. The procedure starts
by finding the one with the largest inner product from the initial vertex and its vicinities. If
the search result happens to be the initial one, the search is terminated and the answer is

 15

obtained owing to convexity property. Otherwise, the obtained vertex is set as a new initial
and the process is repeated. In a finite number of iterations, due to convexity, we’ll find the
supporting vertex without the need of evaluating inner product for every vertex of the
polyhedron.
 The supporting vertex searching sequences form a succession of edges of TCSO:

originating from the initial vertex, going along the edge which corresponds to the direction
vector which evaluates the support function, and stopping at the supporting vertex (as Fig. 10
shows). In addition, the vectors with respect to which we evaluate the support function, i.e., -
ν i , roughly point from the polyhedron to the origin. Therefore, all supporting vertices lie on

the sides of the polyhedron closer to the origin. Thus, in most cases, only a few inner product
evaluations are needed and this greatly reduces the computation time by using the previous
evaluation result as the new initial vertex for next search. As a whole, the procedure achieves
the O(1) improvement of GJK algorithm.

4.2 The Edge Connection Data
In implementing Cameron’s improvement, a geometric characterization of a convex
polyhedron by its faces and edges, in addition to vertices, are needed. For this, a method is
developed to find the edge connection data of the vertices for convex polyhedron (see
Appendix), without the use of the so-called edges graph. The edges data are found from the

Fig. 9: The lines 17, 2, and 8 in program evaluate the support function.

 16

faces data, which specify the sets of vertices that form a face (polygon). To obtain the faces
data, we first test all the combinations of three vertices to see which ones determine the

Support vertex

Initial vertex

Fig. 10 Searching path for the supporting vertex

hyperplanes with the property that all the other vertices and the centroid of the polyhedron are
in the same half-space, i.e., support the polyhedron. Then, we consider combinations that
determine the same hyper-planes and integrate them with sets of more than three vertices,
which then uniquely and completely determine the faces of the polyhedron. The edges of a
polyhedron are, by definition, the union set of the edges of each face; therefore, the edges data
can be constructed by tracing along the boundary of every face. As a matter of fact, this
method is quite time-consuming. It is found that to compute the edges data for a polyhedron
with hundreds of vertices on a 400-MHz Pentium II PC, a few hours to half-day of
computation time is required. However, it is quite useful for visualization of a convex
polyhedron, or, as we have seen, for faster distances computation. Though time-consuming,
the computation of edges data from a set of vertices can be taken as a priori information (i.e.
set-up time) for the problem.

4.3 Computing Distances between Objects in Motion
When a pair of objects between which the distance is computed is moving, it is a

tracking problem. As is usually the case, in tracking problems the motion is so slow that the
relative position does not change significantly within one time-step of computation and the
new supporting vertex can be the same as or quite close to the last one. As a result, if the
supporting vertices are cached, the search for the supporting vertex can be finished along few
edges by using the previously cached one as an initial vertex. It makes the speed superiority
of Cameron’s enhancement over the original GJK more remarkable.

For continuous motions of moving objects or for small motions, the Euclidean distance
(or the relative position) and thus the closest features do not vary a lot between two time steps.
The subset of vertices that determined the nearest point of the TCSO in last iteration can be

 17

used to initialize the current distance calculation loop. We store the supporting vertex and its
neighbors that determine the minimum distance in the previous time step and use these
vertices to re-compute the distance of two objects at the new time step. In this way, the
searching of supporting vertices from time to time can speed up by using last supporting
vertices and its neighbors as new initials, in case the objects are moving slowly, without
seeking from scratch.

4.4 Comparisons
For comparison study, consider the following four algorithms for computing the distances
between two static convex bodies approximating the unit balls in 3-D space: the original GJK,
GJK with our modification, GJK with Cameron’s, and GJK with ours plus Cameron’s
modifications. All of them are implemented in MATLAB 5.2 on a 266-MHz Pentium II PC
under Windows98. A pair of polyhedra of varying complexity for distance computation study
is systematically produced,

each vertex of which is generated from a set of random points on a unit ball (see Fig. 11) with
translation. With increasing number of points, the polyhedron approximates the unit ball more
accurately. The experimental results are shown in Table 2 and collectively in Fig. 12. In
Table 2, the most efficient results are marked by a *. It reveals that when the total number of
vertices increases, the combined algorithm (ours plus Cameron’s modification) becomes more
efficient.

Next consider the tracking case where there is relative motion between the two
polyhedra. To describe relative motion, it is sufficient to consider one polyhedron to be static
and the other polyhedron to be moving. The polyhedra are randomly generated as static cases;

the unit balls from which two polyhedra are generated are 35 units of length apart in
simulation. The relative configuration of two polyhedra, which consists of a relative position

Fig. 11. The construction of a polyhedron from a unit ball

 18

and a relative orientation, is as follows. The relative position between two polyhedra varies
slowly along a path composed of 10 randomly generated positions. Specifically, at each
time-step, the translation of the moving body is a translation by fixed short distance (1 unit of
length) along a random direction. The relative orientation is a rotation of a fixed small angle
(10 degrees in simulation) about its center around a random direction (clockwise or
counterclockwise). This is shown in Fig. 13, where the distances are deliberately shortened so
that the incremental change in the relative position can be observed. The comparisons of the
combined algorithm and the original GJK algorithm for tracking case are shown in Table 3. It
can be seen that with the supporting vertex and its neighbors in the last run stored, the
efficiency of distance computation improves significantly.

(Unit: ms)
Number of Vertices (Object1 /Object2) 8/8 10/20 20/30 30/40 40/50

The Original GJK 16* 30* 80 105 210
Our Modification 17 30* 70* 100* 205

Cameron’s Modification 30 55 80 110 175
Ours plus Cameron’s Modification 31 60 75 105 150*

Number of Vertices (Object1 /Object2) 50/60 100/120 150/180 200/240 250/300

The Original GJK 95 445 440 380 480
Our Modification 100 480 430 385 480

Cameron’s Modification 85* 250 145 250* 220*
Ours plus Cameron’s Modification 90 220* 130* 255 220*

Table 2

The above computation results suggest how to compute the distance between the polyhedra
efficiently. Cameron’s enhancement, which doesn’t cause the computation time grow linearly
with the total number of hull points if the adjacency information of vertices is available, is
significant, especially in cases where the total number of vertices is large. The results also
demonstrate our modification provides an alternative and competitive approach to distance
calculation. By examining the performance of the algorithm with and without our
modification for a specific problem, a more efficient combined algorithm can be adopted.
Moreover, clear geometric meaning facilitates the understanding and implementation of the
algorithm.

 19

Fig. 12: The simulation result

 Fig. 13 Small motion is introduced between consecutive time steps.

(Unit: ms)
Number of Vertices (Object1 /Object2) 10/20 20/30 30/40 40/50

The Original GJK 666 1726 946 2096
Ours plus Cameron’s Modification 358 424 462 522

Number of Vertices (Object1 /Object2) 50/60 100/120 150/180 200/240

Ours plus Cameron’s Modification 1250 2650 6074 5250
The Enhanced Version 458 582 668 800

Table 3

 20

4.4 Application to collision-free trajectory planning of redundant robots

Given the trajectory xe(t) of the end-effector of a redundant robot prescribed by the
operator, the trajectory planning problem of the robot is to plan the various joints trajectory

q(t) of robots that achieve the desired end-effector motion and avoids collisions with
obstacles. The inverse kinematics of redundant robots is described by velocity inversion
equation of the following form21:

)H())()((k)()(eeee qqJqJIxqJq ∇−+= ++ t (6),

where q is the vector of joint angles, Je and xe are the Jacobian matrix and the position of the
end-effector, respectively; k is a negative constant, and H is an objective function to be
minimized. For the purpose of collision avoidance, H is chosen to be the sum of all the
artificial potential fields (Uij) built by each obstacles (numbered by i) and each links
(numbered by j)

∑=
ji

ij
,

)(U)H(qq

These fields are assigned non-negatively such that their values remain zero if the links are at a
distance away from the obstacles and approach infinity as the links approach the obstacles5:







>
≤−

=
0

0
2

d
1

)(d
1

2
1

d)(d ,0
d)(d ,)(

)(U 0

q
q

q q

ij

ij
ij

ij

where dij , is the distance between obstacle i and link j, determines the obstacle-link pair’s
contribution to potential field, d0 represents the limit distance of the potential influence.
 The gradient of the artificial potential field H can be derived as21,

∑∇=∇
ji

ij
,

)(U)H(qq ,







>

≤∇−
=∇

0

0d
1

d
1

d
1

d)(d ,0
d)(d ,d)(

)(U
20

q
q

q
ij

ijij
ij

ijij ,

i
k
kk

k
k

ji

ji

k

ij

q
νAAQAA

νν

ννq
]...][][...[

)()(d 1
0

1
2

2
1

0
1

T
−
−

−
−

−

−
=

∂

∂
 (7)

(the kth component of the gradient ijd∇),

where for every pair of obstacle-link, there corresponds a closest pointνi on the obstacle

and a closest point on the linkνj , and the distance dij between those two points;)(1
k

k
k q−A

 21

is the Denavit-Hartenberg homogeneous transformation matrix from link k – 1 to link k, and

Qk

















 −

=

0000
0000
0001
0010

for robots with rotary joints.
 For computation of the distance and closest points information required in (7), suppose all
links and obstacles can be properly modeled by convex polyhedra. Thus, the distance of
pairwise link and obstacle can be readily calculated with the enhanced GJK algorithm. As for
the nearest points, they can be computed by recording vertex of the TCSO is composed of
which two vertices of the polyhedra. The TC-space nearest point found by GJK algorithm is
a convex combination of TC-space vertices which can be transformed back to the
corresponding vertices (or nearest point) of polyhedra.
 By solving inverse kinematics (6) and plotting the robot and the obstacles at selected
instants with MATLAB 5.3, some collision-free trajectories have been successfully planned
by the distance based planning method to guide the robot to achieve its goal. To know its
efficiency, a typical result is presented as follows. Consider a 3-D workspace contains a
4-dof articulated robot with link lengths 2, 1, 0.6, and 0.4 and all rotary joints; and two
stationary pyramid-shaped obstacles located in the workspace. A hexadecagonal cylinder is
used to model each link and joint. Since the capability of collision avoidance is provided by
redundancy or, mathematically, by the augmentation of the second term in the velocity
equation (6), a larger k magnitude tends to render the collision avoidance ability of robot
more visible. For simulation study, let the initial pose (joint angles: 0, 90, -150, and -30) of
the robot arm, the start position (0, -0.7877, 3.1918) and destination position (0, -0.0804, 2.3)
of the end-effector, d0 (0.5), and the value of k (-1) be properly specified. The velocity of the
end-effector was fixed at 0.1 in magnitude; it remained in the -y direction until t = 6.7, when
it began to move in the z direction instead before the stop at t = 16.7. A simulation with
real-time visualization is performed and several frames of the motion are shown in Fig.14. In
addition, the run-time profile of the simulations (Fig.15) shows that the distance-computing
subroutine is the most time-consuming part (about 70% of total execution time) in planning
a collision-free trajectory. It also shows that combination of Cameron’s enhancement on the
evaluation of support function and our enhancement on the initialization of GJK in the
tracking case achieves the best efficiency of GJK algorithm. The computational cost depends
on the number of obstacles and links and the proximity of obstacles and links. It must be fast
enough to be useful in on-line applications.

 22

Fig. 14. Collision-free motion of 4-link redundant robot

 23

0 50 100 150 200 250 300
Computation time (sec)

The entire path-planning program
The distance-computing subroutine

Using the original GJK

Using GJK with
Cameron's enhancement

Using our modified GJK
with our tracking
enhancement and
Cameron's

Fig. 15. Run-time profile comparisons of path-planning.

Ⅴ. Conclusion
By examining the steps of Distance Subalgorithm in GJK algorithm from a geometric

point of view, we have described possible modifications of the steps in the GJK algorithm that
make the computation of Euclidean distance between convex polyhedra easily realized. The
improvement proceeds by updating the coefficientλ, instead of verifying Δ(Ys) for each

subset in Distance Subalgorithm, and these induce an explicit triangulation of the TCSO
boundary. By the numbers of elements in the final set in our modified algorithm, the nearest
point, together with the information about the feature of the nearest point is on a vertex, an
edge or a face of TCSO can be provided.

A typical simulation (e.g., Fig. 9) indicates that computation of support function is the
most time-consuming part in GJK algorithm2, 9, 15. However, we have demonstrated
experimentally that our modifications still preserve the almost linear time complexity of GJK
algorithm. In combination with Cameron’s modifications for speedup of support function
computation, the favorable comparisons have also been shown. Since in applications the
distance between two objects needs to be updated from time to time, every possible
enhancement of distance computation procedure can speed up the repetitive process as the

 24

time goes on. This is shown more clearly by the involved a couple of pairwise distance
computations in collision-free motion planning of redundant robots in a typical simulation of
4-link robot in 3D space in Sec. 4.4. This means that our contribution to GJK algorithm is not
only on long-time computational efficiency in cases distance computation is repeated but also
on a more clear understanding of its steps by revealing their geometric meanings.

Acknowledgment
This work was supported by National Science Council of R.O.C. under contract NSC
88-2212-E-001-001.

Ⅵ. References
1. E. G. Gilbert, D. W. Johnson, and S.S. Keerthi, “A fast procedure for computing the
distance between complex objects in three-dimensional space,” IEEE Trans. Robot.
Automation, vol. 4, pp. 193-203, Apr.1988.
2. Stephen Cameron, ”A comparison of two fast algorithms for computing the distance
between convex polyhedra,” IEEE Trans. Robot. Automation, vol. 13, no 6, pp. 915-920,
Dec.1997.
3. Bobrow, J.E., “Optimal robot path planning using the minimal-time criterion,” IEEE
Journal of Robotics and Automation, vol.4, no. 4, pp.443-450, Aug.1988.
4. Quinlan, Sean. “The Real-Time Modification of Collision-Free Path,” Ph.D. Thesis,
Stanford University, 1994.
5.Khatib, O., “Real-time obstacle avoidance for manipulators and mobile robots”, The
International Journal of Robotics Research, vol. 5, no.1, pp.90-98, Spring 1986.
6. M. Lin and J. Canny, “A fast algorithm for incremental distance calculation,” in IEEE Int.
Conf. Robot. Automat., Sacramento, CA, pp 1008-1014, April 1991.
7. Chung Tat Leung, Kelvin. “An efficient collision detection algorithm for polytopes in
virtual environments,” M. Phil. Thesis, The University of Hong Kong, 1996.
8. S. Cameron, “Enhancing GJK: computing minimum and penetration distances between
convex polyhedra,” in IEEE Int. Conf. Robot. Automat. , Albuquerque, NM, April. 1997, pp
3112-3117.
9.Y. Sato, M. Hirata, T. Maruyama, and Y. Arita. “Efficient collision detection using fast
distance-calculation algorithms for convex and non-convex objects,” in IEEE Int. Conf. Robot.
Automat, Minneapolis, Minnesota, pp. 771-778, April 1996.
10. Elon Rimon, Stephon P. Boyd, “Obstacle collision detection using best ellipsoid fit,”
Journal of Intelligent and Robotic Systems, vol. 18, pp 105-126, 1997.

 25

11. David E. Johnson, Elaine Cohen, “A framework for efficient minimum distance
computations,” in IEEE Int. Conf. Robot. Automat., pp. 3678-3684, May 1998.
12. R. T. Rockfellar, Convex Analysis. Princeton, NJ: Princeton Univ. Press, 1970.
13. J.E. Bobrow, “A direct minimization approach for obtaining the distance between convex
polyhedra,” The International Journal of Robotics Research, vol.8, pp.65-76, 1989.
14. C. J. Ong and E. G. Gilbert, “Growth Distances: New Measures for Object Separation and
Penetration,” IEEE Trans. Robot. Automat., vol. 12, No 6, pp. 888-903, 1996.
15. C. J. Ong and E. G. Gilbert, “The Gilbert-Johnson-Keerthi distance algorithm: a fast
version for incremental motions,” in IEEE Int. Conf. Robot. Automat., pp. 1183-1189,
Albuquerque, New Mexico, April 1997.
16. E. G. Gilbert and C.-P. Foo, “Computing the distance between general convex objects in
three-dimensional space,” IEEE Trans. Robot. Automat., vol.6, No 1, pp. 53-61, 1990.
17. S. Zeghloul, P. Rambeaud and J.P. Lallemand,” A fast distance calculation between
convex objects by optimization approach,” in IEEE Int. Conf. Robot. Automat., pp. 2520-2525,
Nice, France, May 1992.
18. E. G. Gilbert and D.W. Johnson, “Distance functions and their application to robot path
planning in the presence of obstacles,” IEEE J. Robot. Automat., vol.1, No 1, pp. 21-30, 1985.
19.G. Hurteau and N. F. Stewart, “Distance calculation for imminent collision indication in
robot system simulation,” Robotica, vol. 6, pp. 47-51, 1988.
20. C. J. Ong and E. G. Gilbert, “Robot path planning with penetration growth distance,” J.
Robotic Systems, vol. 15, no. 2, pp.57-74, 1998.
21. C. Y. Chung, B. H. Lee, and J. H. Lee, “Obstacle avoidance for kinematically redundant
robots using distance algorithm,” Proc. IROS’ 97, pp. 1787-1793, 1997.
22. H. Edelsbrunner, “On computing the extreme distances between two convex polygons,” J.
Algorithms, vol.6, pp.515-542, 1985.
23. D.P.Dobkin and D.G. Kirkpatrick, “A linear algorithm for determining the separation of
convex polyhedra,” J. Algorithms, vol.6, pp.381-392, 1985.
24.F.Chin and C.A. Wang, “Optimal algorithms for the intersection and minimum distance
problems between planar polygons,” IEEE Trans. Computer, vol.C-32, pp.1203-1207, 1983.

 26

APPENDIX

A Method to Construct Face and Edge Data from a Vertex Set of
Convex Polyhedron

A face of a polyheron has associated with it a plane in which the face lies and a set of

vertices. In practice, we are given the vertices of a convex polyhedron, the information about
which vertices determine a face is usually required, for example when the polyhedron is
visualized in a computer graphics environment. In this appendix, a method to acquire such
information, which can be implemented in the form of a function block and applied to
individual cases, is developed.

By definition, a face of a convex polyhedron is a polygon located on a unique support

plane 12 of the polyhedron and whose vertices are all those of the polyhedron on the support
plane. Since each support plane contains at least three vertices of the polyhedron, such planes
can be found by enumerating all possible triples of vertices, each triple for one plane, and
discarding those bearing no supporting property. Note that by this enumeration more than one
triples may determine the same support plane, for one face may have more than three vertices.
Thus, identifying each set of triples lying on the same plane and taking the union set of those
triples gives a list of vertices determining each face.

To test whether a triple of three vertices determine a support plane or not, a simple
criterion, which follows from the definition of a support plane, is provided here (Fig. 15). A
plane supports the polyhedron if and only if there is no vertex such that the centroid lies on its
opposite side. Thus, it suffices to check each of the remaining vertices and the centroid of the
polyhedron lie on which side of the plane determined by the three vertices under test.

The edges of a polyhedron are the union set of the edges of all its faces. An edge is
described by two neighboring vertices and connects two adjacent faces, therefore the edge can
be constructed by tracing along the boundary of every face. Of course, finding the edges of a
face or convex polygon is the 2-D equivalent to finding the faces of a convex polyhedron and
can be done using similar procedures to the above; however, due to the geometric simplicity
of this case, a more direct method is provided here. First, obtain the vector uref pointing from
the center of the polygon to an arbitrary vertex. Then, sort in a counterclockwise (or

 27

clockwise) all the vertices according to the angle between uref and each of the vectors pointing
from the center to all the vertices. Finally, two adjacent vertices (in the circular order)
comprise the endpoints of an edge of the polygon. The method is summarized in Fig. 17.

/*
 * An Algorithm for Finding the Sets of Vertices Determining the
 * Faces of a Given Convex Polyhedron
 */

Function prototype(s):
boolean IsFace(a triple of vertices);

Definition of variable(s):
F, the output of algorithm, is the set of the triples, or quads, etc., of vertices determining

the faces.

F = ∅;
for (each triple of vertices)
 if (IsFace(the triple))
 F = F ∪ the triple;
for (each element of F, say, f1)
for (each of the other elements of F, say, f2)
 if (p ∈ the plane determined by f1, ∀ p ∈ f2)
 modify F by changing f1 to f1 ∪ f2 and excluding f2;

boolean IsFace(a triple of vertices) {
 return (whether the centroid of the polyhedron does not lie
 on the plane determined by the triple
 and all the other vertices lie on the same side of
 the plane as the centroid does);
}

 28

 Fig. 16. Pseudo code of the face determination

 Fig. 17. Pseudo code of the edge determination

for (each face){
 x = the vector pointing from the center of the face to a certain vertex,

say, v1;
 for (each of the other vertices, vi)

calculate the angle from x to the vector pointing from the center
of the face to vi;

 sort the vertices, starting from v1, in the ascending
 order of those angles calculated for them;

 for (each of the sorted vertices)
 if (this is the last one)

add the line segment connecting this vertex and the first one
to the list of edges of the polytope;

 else
add the line segment connecting this vertex and the next to
the list of edges of the polytope;

}

