Region Encoding Diagram for Fully Symbolic
Verification of Real-Time Systems*

Farn Wang
Institute of Information Science, Academia Sinica
Taipei, Taiwan 115, Republic of China
+886-2-27883799 ext. 1717; FAX +886-2-27824814; farn@iis.sinica.edu.tw
Tools available at: http://www.iis.sinica.edu.tw/ farn/red

Abstract

RED (Region Encoding Diagram), first reported in [14], is a BDD-like data-structure for fully symbolic
verification of symmetric real-time systems with single clock per process. We propose to extend RED for
asymmetric real-time systems with unrestricted number of global or local clocks. Unlike in DBM which
records differences between pairs of clock readings, we records the ordering among fractional parts of clock
readings into integer sequences encoded in RED’s. Like BDD, the new RED is also a minimal canonical form
for its target system state-space representations. The number of variables used in RED is O(|X|log | X|) when
X is the clock set in the input system description. Experiment has been carried out to show the possible
verification efficiency through the intense data-sharing nature of RED.

1 Introduction

Fully symbolic verification technologies, like BDD[4, 8], can be efficient in both space and time complexities
with its intense data-sharing in the manipulation of state space representations. Recently, Wang has proposed
a new BDD-like data-structure called Region-Encoding Diagram (RED) for symbolic verification of symmetric
systems with single local clock per process[14]. In this manuscript, we extend RED to asymmetric systems which
may have unrestricted number of local or global clocks. The ordering among fractional parts of clock readings is
explicitly recorded as an integer sequence encoded in RED. To keep record of such sequences, we add one auxiliary
O(log | X |)-bit variable per clock with X as the set of clocks, global or local, in the systems. Like BDD[8], RED
is also a minimum canonical form with respect to a given variable ordering. It is also efficient for representing
unions of zones. Experiments have been carried out to investigate its potential for verification efficiency.

Compared to the classic DBM [6, 10, 11, 12, 13, 15], RED provides data-sharing capability of fully symbolic
manipulation. In a DBM-based model-checker, since matrices and BDD are two different types of data-structure,
we are forced to use a pair of BDD and matrix to represent a region. As a result, identical interaction pattern
between BDD and matrix may replicate in different nodes of the region graph representation. Such replication
not only increases space complexity but also incurs duplicate effort in region processing. Moreover, to get region
canonical representations, DBM-technology usually resorts to the processing of convex hulls which are equivalent
to conjunctions of clock inequalities. Thus it may be necessary to break a big disjunction down to exponentially
many conjunctions. Such breaking-down can be a source of inefficiency. But since the present RED algorithms
derive time step next-state RED’s at very tiny steps, DBM may have better verification performance with systems
with big timing constants.

Newer technologies of NDD[1] and CDDJ7] use binary inequalities of the form x — y < ¢. NDD uses binary
encoding for the possible values of ¢ while CDD uses multiple value-ranges to record them. However, the number
of variables in their decision diagram is likely to be quadratic to the number of clocks used in the systems. The
number of variables used in our RED technology, on the other hand, is O(| X |log|X|) with X as the clock set.

*The work is partially supported by NSC, Taiwan, ROC under grant NSC 89-2213-E-001-002.

A previous version of RED was reported in [14] which takes advantage of symmetry of multiprocess systems
to use only O(|X]|) binary variables in RED. But its restriction in [14] is that no global clocks can be used and
for each process, only one local clock is allowed. Although it is more restricted, the technique reported in [14]
indeed can prevail in performance in its target systems. In the future, we are looking forward to incorporating
that technique[14] in our future RED tools.

Here is our presentation plan. Section 2 briefly defines timed automata as our model for discussion. Section 3
formally presents our data-structure scheme. Section 4 shows how to derive next-state RED’s with symbolic
manipulations on RED’s. Section 5 experiments with Fischer’s protocol[3], CSMA/CD[16], and FDDI[5, 11]
protocols to examine the potential of RED.

2 Timed automata

We use the widely accepted model of timed automatal2] to explain idea. We assume familiarity with this model
and will not go into much detail due to the page-limit.

A timed automaton is a finite-state automaton equipped with a finite set of clocks which can hold nonnegative
real-values. It is structured as a directed graph whose nodes are modes (control locations) and whose arcs are
transitions. The modes are labeled with invariance conditions while the transitions are labeled with triggering
conditions and a set of clocks to be reset during the transitions. The invariance conditions and triggering conditions
are Boolean combinations of inequalities comparing a clock with an integer. At any moment, the timed automaton
can stay in only one mode. In its operation, one of the transitions can be triggered when the corresponding
triggering condition is satisfied. Upon being triggered, the automaton instantaneously transits from one mode to
another and resets clocks in the corresponding transition clock set label to zero. In between transitions, all clocks
increase their readings at a uniform rate.

For convenience, given a set X of clocks, we use B(X) as the set of all Boolean combinations of inequalities of
the form z ~ c or x — y ~ ¢ where z,y € X, “~” is one of <,<,=,>,>, and c is an integer constant.

Definition 1 automata The formal syntax of a timed automaton A is given as a tuple (X, Q,u, I, E, 7, 7) with
the following restrictions. X is the set of clocks. @ is the set of modes. p : @Q — B(X) defines the invariance
condition of each mode. I € B(X) is the initial condition on clocks. E C @ x @ is the set of transitions.
T7:E+ B(X)and 7 : E — 2% respectively defines the triggering condition and the clock set to reset of each
transition. [

A waluation of a set is a mapping from the set to a number set. Given an n € B(X) and a valuation v of X,
we say v satisfies 17, in symbols v |= n, iff it is the case that when the variables in 7 is interpreted according to v,
1 will be evaluated true.

Definition 2 states Given a timed automaton A = (X, Q, u, I, E, 7,7), A state v of A is a valuation of XU{mode}
such that

e v(mode) € () is the mode of A in v with mode as a special auxiliary variable; and

e for each z € X, v(x) € RT such that RT is the set of nonnegative real numbers and v |= pu(v(mode)). ||

For any t € R*, v +1 is a state identical to v except that for every clock z € X, v(z) +t = (v +t)(x). Given
X C X, vX is a new state identical to v except that for every z € X, vX(z) = 0.

Definition 3 runs Given a timed automaton A = (X,Q,u, I, E,7,7), a v-run is an infinite sequence of state-
time pair (vo,to)(v1,t1) .- (W, tg) v - .. such that v = v and tot1 ... tg...... is a monotonically increasing
real-number (time) divergent sequence, and for all & > 0,
o for all t € [0,t541 — tk], vk + ¢ E p(vi(mode)); and
e cither vi(mode) = vy41(mode) and vy, + (tr41 — tg) = Viy1; OF
— (v (mode), vjy1(mode)) € E and
— v + (tg+1 — tr) | 7(vi(mode), V41 (mode)) and
— (Vg + (tg41 — tr))7(vi (mode), Vi41 (mode)) = vpyg. [

A safety requirement on timed automaton A can be written as a Boolean combination of clock constraints in
B(X) and mode restrictions in the form of mode = ¢ meaning that A is currently in mode ¢ € . A run

p = (vo,to)(vi,t1) .. (Viyt) o oen .. of A satisfies safety requirement 7, in symbols p |= 7, iff for all £ > 0 and
ty <t <tpy1, Ve +tEn. Wesay A = niff for all v-runs p, v |= I implies p = n. The safety analysis problem of
A and n is to answer whether A =17

3 Region-Encoding Diagram

Notationally we let C'4 be the biggest integer constant used to compare with clocks in the invariance conditions,
initial condition, triggering conditions, and safety requirement of a safety analysis problem instance regarding
timed automaton A. According to Alur et al’s region graph construction [2], the state-equivalence relation for
timed automaton model-checking [9] is determined by the following three factors:

e the discrete information of each state,

o the integer parts of clock readings < C4, and

e the ordering among the fractional parts of clock readings < Cy4.
Here we shall use an integer sequence to record the ordering among the fractional parts of clock readings in a
state. Given an automaton A with clock set X, the variable set in the RED’s is

VARS4 = {mode} U X U {x(z) | z € X}

The integer sequence is kept record in the special auxiliary variables x()’s for all clocks. Given a state v, its
region encoding, in symbols [v], is a partial mapping from VARS4 such that [v](mode) = v(mode) and for each
clock x € X, the following restrictions are satisfied.
o If v(z) > Cy, then [v](x) = cc.
e If v(z) < C4, then [v](z) = |v(x)]. Furthermore, the following restrictions are satisfied on [v](k{x)). For
convenience, let frac(d) = d — |d| be a notation for the fractional part of any d € R™T.
— If v(z) is an integer, then [v](k(z)) = 0.
— If v(z) is fractional and [v](k(z)) =d € {1,...,|X|}, then frac(v(z)) is the d’th smallest among all frac-
tional parts of such clocks. Formally speaking, if the set {frac(v(y)) | y € X;v(y) < Ca; frac(v(y)) # 0}
is equal to {ri,re,...,rp} with r1 < ro < ... < r and frac(v(z)) = rp with 1 < h < k, then
[v](5(z)) = h.
For example, we may have X = {xy, x2, 3, %4, 5, %6, 27,23} in a state v, with v(z) = 1.456, v(x2) = 3,v(z3) =
38,v(z4) = 1.3,v(x5) = 9.456,v(z6) = 20.7,v(z7) = 0,v(xg) = 107 while C4 = 13. The readings of clocks and
values of k(z;)’s are shown in the following.

i || 1 2 | 3 | 4 | 5 | 6 | 7 | 8

1. 456 3 38 1.3 | 9.456 20.7 0 107

1/] :L’l 1. 456 3 00 1.3 | 9.456 00 0 00

0 — 1 2 — 0 —
Note that [v](x (a:l = 2 while [v](k(z2)) = [V](k{z7)) = [V](k{xs)) = 0. “—” means “don’t care” or
“no restriction.” leen any v, [] keeps the minimal information necessary for model-checking timed automata.

RED’s can be viewed as decision diagrams for the [v]’s instead of ’s. In the implementation aspect, it resembles
CDD|[7] and each node in RED has the structure shown in figure 1(a). Such a node is used to evaluate the truth
value of a formulus from variable v € VARS4. The outgoing arcs are labeled with lower and upper bounds of
integer parts (note, only integer parts) of values of variable v and direct to the RED’s for the subformulae true
in the corresponding ranges of v’s values. In figure 1(b), we have depicted the RED with X = {z;, 22} for

(mode =0Az; =0A0<z2<1)V(mode =1A0<z2Azy <21 ATy <1)

Given a timed automaton, each of the () variables needs log(|X| + 1) bits. Thus the variables in our RED
together may need O(log(|Q]) + | X|(log(|]X | + 1) + log(|Ca| + 2)) bits.

<

[0, uo]

wo + 1, 741]
[w1 4 1,u2]

vo

U1 v2

(a)

Figure 1: Data structure implementation of a node in RED

4 Manipulations on RED

4.1 Boolean operations

The Boolean operations on RED’s follow the same style in Bryant’s BDD manipulations [4, 7, 8]. We present
procedure Red0p(OP, D1, D) in table 1 to illustrate the idea in the implementation of such operations. For con-
venience, we use [[,u]D to denote an outgoing arc whose lower bound is [, upper bound is u, and the subformulus
RED is D. Also, D.v denotes the index of D’s variable in the variable-ordering of RED’s.

We should point out that the algorithm shown in table 1 is for simplicity and clarity of presentation and is
not for efficiency. Our implementation is more efficient in that it records which pairs of Dy, D5 have already been
processed. If a pair of Dy, Dy has already been processed with procedure Red0p() before, then we simply return
the result recorded in the first time when such a pair was processed.

4.2 Manipulations for state-transitions

We use Boolean operations on RED’s to derive next-state RED’s with time steps and discrete transitions. The
details of manipulations vary according to properties of the regions. The technique we developed is called precise
slicing and slice processing. Conceptually, with precise slicing, we use various Boolean conjunctions to slice a
target Boolean formulus into many slices each with different properties suitable for simple RED processing. After
the individual slice processing, we then disjunct the processed slices together to form the next-state RED.

Due to page-limit, we shall only discuss the manipulations to derive time-step next-state RED’s. There are
two kind of time steps for a state v in a region graph. We make a case analysis in the following. Suppose the
next state is v'.

1. If v(z) > Ca (ie., [V](z) = c0) for all clocks z, then [v'] = [v].

2. If there is a clock z such that v(z) is an integer < C4 (i.e., [V](z) € [0,Ca] A [v](k(x)) = 0), then the next
time step will advance all such clocks to become fractional according to the following rules.

(a) In case there are some clocks with integer reading v(z) < C4 (i.e., [v](z) € [0,Ca —1]A[v](k(z)) = 0),
such clocks will have their k(z) advance from zero to one and push every other clocks’ k() value to
increment by one in v/'.

RedOp(OP, Dl, Dg){
if OP= AND,
if Dy is true, return Ds;
else if D5 is true, return Dy;
else if either Dy or D, is false, return false;
else if OP= OR,
if either Dy or Ds is true, return true;
else if D, is false, return Ds;
else if D5 is false, return Dq;
else {
Construct a new RED node D with D.v = min(D;.v, D3.v);
if D1.v < Dy.v, then for each outgoing arc [I, u]D} of Dy,
add an outgoing arc [l,u]Red0p(OP, D{, D>) to D.
else if D1.v > Ds.v, then for each outgoing arc [I, u]D), of D,
add an outgoing arc [, u]Red0p(OP, Dy, D}) to D.
else for each outgoing arc [l1,u1]D] of Dy and outgoing arc [l3,uz] DY of
D27
if [max(ly,15), min(u;, us)] is nonempty, add an outgoing arc
[max(ly,), min(u;, u2)|Red0p(0P, D}, D)) to D.
Merge any two outgoing arcs [l,u]D’,[u + 1,u'|D’ of D into one [I,u']D’
until no more merge can be done.
if D has more than one outgoing arcs, return D,
else return the sole subformulus of D;
}

} /* RedOp() */
Table 1: Algorithm for computing D;OP Dy

i. All clocks z with [v](z) = C4 will have [V'](z) = oo with [v'](k(x)) unrestricted.
ii. All clocks = with [v](z) < C4 will have [V'](z) = [v](z) and [V'](k{z)) = [v](k(z)) + 1.
(b) In case that all clocks z with integer readings < C4 also satisfy [v](z) = Ca, then

i. [V'](z) = oo for all such clocks z and

ii. the valuations regarding all other clocks and their () values in [¢'] remain identical to the ones
in [v].

3. Suppose there is no clock with integer reading < C4. For all those clocks x such that [v](z) < Cy4 and
[V](k{z)) = max{[V](k(y})) | [V](y) < Ca}, [V'|(z) = [v](z) + 1 and [V'](k(z)) = 0. For all other clocks z, the
valuations regarding = and their x()’s in [¢] remain identical to those in [v].

In table 2, we show the pseudo code for our procedure to derive the RED by advancing regions with inte-
ger clock readings < (C'4 according to case 2. Here FILTER EXISTS_SMALLER_THAN_C4, FILTER.ONLY_C'4, and
RED_INVARIANCE are the RED’s we constructed in the initialization phase of the program which are used to slice
out the proper RED’s for the corresponding region subsets. Due to page-limit, we can only elaborate on how
procedure NextFracExistsSmallerThanC 4() properly processes RED slices in table 3. But other procedures are
constructed on similar techniques. As can be seen in table 3, we iteratively process for each clock x € X. For each
clock z, we break it down to three cases. For each case, we then make necessary filter for precise slicing of RED’s
and then use proper slice processing procedures. Here we use shorthands like RedOp(AND, D,z = C'4) to repre-
sent the RED obtained by conjuncting RED D and the RED of z = C4 together. RedVariableEliminate(D,)
is an RED-slice processing procedure which remove every recording about variable from D.

ToFrac(D) {
/* case 2(a): precisely slice out the RED with integer reading clocks < Cy
*/

S := Red0p(AND, D,FILTER EXISTS_SMALLER_THAN Cy);

/* process the slice to advance the x(x)’s of all clocks with reading < C4.
*/

/* process the slice to advance all clocks z, with readings = Cy4, to O4. */

R := NextFracExistsSmallerThanC4(S);

/* case 2(b): precisely slice out the RED with all integer clocks = C4 */
S := Red0p(AND, D, FILTER_ONLY_C'4);

/* process the slice to advance all clocks z, with readings = C4, to O4. */
S := NextFracOnlyC4(S5);

/* union both processed slices. */
R :=Red0p(OR, R, S);

/* only the slice satisfying invariance condition is needed. */
R := RedOp(AND, RED_INVARIANCE, R);

return R;
} /* ToFrac() */

Table 2: procedures for calculating the RED after time step from integer clock reading regions

5 Implementation and experiments

We have implemented the idea in a software called red which supports the verification of real-time systems with
multiprocesses, pointer data-structures, and synchronizations (synchronous send and receive) from one process
to another. The tools will soon be available at:

http://www.iis.sinica.edu.tw/farn/red

after the submission. The current version of red tool was modified from our previous verification tool announced
in [14]. Each process can use global and local variables of type clock, discrete, and pointer. Pointer variables either
contain value NULL or the identifiers of processes. Thus in our representation, we allow complicate dynamic
networks to be constructed with pointers.

We have tested RED with three previously published benchmarks: CSMA/CD [16], FDDI [11, 5], and Fischer’s
timed mutual exclusion protocol[3]. The performance is listed in the following table.

7 processes 2 3 4 5 6 7 8 9 10 11 12

CSMA/CD time 1.25 11.6 51.9 220 600 1302 2451 4421 11037 16356 N/A
space 55 296 822 2378 5258 9426 14802 22241 38208 58612

FDDI time 8.71 75 446 1903 6683 20249 54675 140101 N/A N/A N/A
space 168 583 1900 5039 11551 23783 44921 79192

Fischer’s time 0.8 | 7.96 70.9 582 4092 | 23338 N/A N/A N/A N/A N/A
space 23 125 689 3733 16985 68306

Fischer’s time 0.73 5.11 24.5 89.7 281 775 1911 4354 9213 18817 36204

(w. symm.) space 21 83 251 643 1401 2716 4837 7994 12730 20731 33152

The CSMA/CD and FDDI benchmarks are executed on a Pentium II 366 MHz IBM notebook with 256 MB
memory (real plus swap) running Linux while the Fischer’s protocol is executed on a 296 MHz Sun Ultrasparc-II
with 1 GB memory running Sun OS with single-thread. The CPU time is measured in seconds. The space is
measured in kilobytes and only includes those for RED’s and 2-3 trees. The running time can be reduced to about
half for smaller concurrencies if we disable some of the garbage-collection function implemented in our tool.

NextFracExistsSmallerThanC4 (D) {
/* iteratively process d for each clock z */
for every z € X, do {
/* Case one, x = Cy. */
R :=Red0p(AND, D,z = C,);
R := RedVariableEliminate(RedVariableEliminate(R,), k(x));

/* Case two, clock z is an integer < Cy4 or a frac < Cy. */

/* Process with iterating for each possible value of k(z) */

for every 0 < i < |X]|, do {
S := RedOp(AND, D,0 < z < Cy A 6{x) = i);
S := RedOp(AND,RedVariableEliminate(S, k(z)), k{(x) =i + 1);
S := Red0p(OR, R, S);

}

/* Case three, clock z is overbound. */
S :=Red0p(OR, D,z > Cy);

D :=Red0p(OR, R, S);
}
return D;
} /* tt NextFracExistsSmallerThanC4() */

Table 3: Algorithm to derive time-step next state RED when there is some integer clock readings < C4

CSMA /CDJ16] is a mutual-exclusion protocol used in broadcast network based on collision-detection capability
of processes. Each process uses only one local clock and there is no global variables of any types. There are a
network process and many sender processes. Processes talk to the network process through synchronizers. All
processes have three modes. The input file for CSMA/CD with two sender processes is given in Appendix A.
The property to be verified is that at any moment, no two processes can both be in transmission mode with local
clock reading > 1 (meaning passing the collision-detection period).

FDDI [11, 5] is the token-passing protocol in a ring network. We need one process to model the network and
the other processes to model the stations. The input for FDDI with two station processes is given in appendix B.
The number of modes of the network process is two times the number of station processes. The number of modes
of each station process is three. For each station process, two local clocks are needed. Thus FDDI is not possible
to be naturally verified by our previous version of RED tool [14]. Each station process can use the token to
transmit message in mandatory synchronous mode and optional asynchronous mode. The asynchronous mode is
optional because a station process can do it only when first, it has finished with synchronous mode transmission,
and second, it detects that in the last cycle of token-passing, all processes together have not used much network
time. The second local clock y is used to accumulate the time used by all processes in one token-passing cycle of
the network.

We choose to run the Balarin’s version of Fischer’s timed mutual exclusion protocol benchmark [3, 13, 14, 15].
The input of two processes to red is in appendix C. The protocol relies on a global lock to control access to the
critical section. The property to be safety analyzed is at any moment, no more than two processes are in the
critical section. We collected two sets of data. One is with plain RED technology (the 3rd congregate row) while
the other is with a simple symmetry technique which sorts processes in a region according to clock readings and
their () values (the 4th congregate row). As can be seen from the table, the symmetry technique very much
alleviate the factorial explosion in the many different ordering among the k() values. Actually with the vast
memory space of 1 GB, we expect that red passes the benchmark with concurrency size beyond 16. However,
the version of the symmetry technique is still not applicable to protocols with synchronizers.

For all the benchmarks, we observe that the exponential base for the growing rate of both time and space
complexities with respect to concurrency sizes decreases. For example, for the CSMA/CD benchmark, when

we

go from five senders to six senders, the space complexity increases to 2.21 times. But when we go from ten

processes to eleven processes, the complexities only increases to 1.53 times. Together with the experiments in [14],
we believe such pattern is typical in BDD-style fully symbolic manipulation and may imply that RED technology

is v

6

We

ery suitable for high-concurrency verification task.

Conclusion

propose to extend the RED technology reported in [14] to verify systems with global clocks and multiple local

clocks. Preliminary experiment data shows promise with the intense data-sharing capability of RED technology.

We

see much work can be done to enhance the performance of RED. Some possibilities follow.

e The way to encode the ordering among clock reading fractional parts in [14] is not possible in the version
of red in this manuscript. As can be seen, the total number of bits of variables in [14] is O(]X|) while it
is O(|X |log|X|) with in the RED version in this paper. Thus for single local clock systems, the technique
reported in [14] should prevail in performance. In the future, we hope to combine both result in the same
tool.

e For FDDI benchmarks, we are using smaller timing constants because RED-technology in its current stage
is very sensitive to the magnitude of timing constants in performance. This is due to that our time step
algorithm now advance the regions in very tiny steps. We feel it possible to develop better algorithms to
make red stride in much larger time steps.

References

[1]

[2]
3]
[4]

[5]

[6]

[7]

[10]

[11]

[12]

Asaraain, Bozga, Kerbrat, Maler, Pnueli, Rasse. Data-Structures for the Verification of Timed Automata.
Proceedings, HART’97, LNCS 1201.

R. Alur, C. Courcoubetis, D.L. Dill. Model Checking for Real-Time Systems, IEEE LICS, 1990.
F. Balarin. Approximate Reachability Analysis of Timed Automata. IEEE RTSS, 1996.

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L.Dill, L.J. Hwang. Symbolic Model Checking: 10%° States and
Beyond, IEEE LICS, 1990.

M. Bozga, C. Daws. O. Maler. Kronos: A model-checking tool for real-time systems. 10th CAV, June/July
1998, LNCS 1427, Springer-Verlag.

J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, Wang Yi. UPPAAL - a Tool Suite for Automatic Verifi-
cation of Real-Time Systems. Hybrid Control System Symposium, 1996, LNCS, Springer-Verlag.

G. Behrmann, K.G. Larsen, J. Pearson, C. Weise, Wang Yi. Efficient Timed Reachability Analysis Using
Clock Difference Diagrams. CAV’99, July, Trento, Italy, LNCS 1633, Springer-Verlag,.

R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation, IEEE Trans. Comput., C-35(8),
1986.

E. Clarke and E.A. Emerson. Design and Synthesis of Synchronization Skeletons using Branching-Time
Temporal Logic, Proceedings of Workshop on Logic of Programs, Lecture Notes in Computer Science 131,
Springer-Verlag, 1981.

D.L. Dill. Timing Assumptions and Verification of Finite-state Concurrent Systems. CAV’89, LNCS 407,
Springer-Verlag.

C. Daws, A. Olivero, S. Tripakis, S. Yovine. The tool KRONOS. The 3rd Hybrid Systems, 1996, LNCS 1066,
Springer-Verlag.

T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. Symbolic Model Checking for Real-Time Systems, IEEE
LICS 1992.

[13] P.-A. Hsiung, F. Wang. User-Friendly Verification. Proceedings of 1999 FORTE/PSTV, October, 1999,
Beijing. Formal Methods for Protocol Engineering and Distributed Systems, editors: J. Wu, S.T. Chanson,
Q. Gao; Kluwer Academic Publishers.

[14] F. Wang. Efficient Data-Structure for Fully Symbolic Verification of Real-Time Software Systems. to appear
in the proceedings of TACAS’2000, March, Berlin, Germany. in LNCS, Springer-Verlag.

[15] F. Wang, P.-A. Hsiung. Automatic Verification on the Large. Proceedings of the 3rd IEEE HASE, November
1998.

[16] S. Yovine. Kronos: A Verification Tool for Real-Time Systems. International Journal of Software Tools for
Technology Transfer, Vol. 1, Nr. 1/2, October 1997.

A

process count = 3; /* 1 is for bus, the others for stations.

CSMA /CD with two sender processes

local clock x;

global synchronizer
beginl, endl, cdl, busyl,
begin2, end2, cd2, busy2;

mode
when
when

3

mode
when
when
when

when
when
when

mode
when

mode
when
when
when
when

mode
when
when

mode
when
when

mode
when
when
when
when

bus_idle true {
?beginl true may
?begin2 true may

»
|

= 0; goto bus_active;
= 0; goto bus_active;

»
|

bus_active true {

?endl true may x:= 0; goto bus_idle;

'busyl x => 1 may ;

?beginl x < 1 may x:= 0; goto bus_collision;

7end2 true may x:= 0; goto bus_idle;
'busy2 x => 1 may ;
?begin2 x < 1 may x:= 0; goto bus_collision;

bus_collision x < 1 {
'cdl 'cd2 x < 1 may x:= 0; goto bus_idle;

sender_waitl true {

'beginl true may x:= 0; goto sender_transml;
?cdl true may x:= O;

?cdl true may x:= O; goto sender_retryl;
?busyl true may x:= 0; goto sender_retryl;

sender_transml x =< 1 {
'endl x=1 may x:= 0; goto sender_waitl;
?7cdl x<1 may x:= 0; goto sender_retryl;

sender_retryl x < 2 {
'beginl x < 2 may x:= 0; goto sender_transml;
?7cdl x < 2 may x:= 0;

sender_wait2 true {

'begin2 true may x:= 0; goto sender_transm2;
?7cd2 true may x:= O;

?7cd2 true may x:= 0; goto sender_retry2;
?busy2 true may x:= 0; goto sender_retry2;

*/

mode sender_transm2 x =< 1 {
when !end2 x=1 may x:= 0; goto sender_wait2;
when 7cd2 x<1 may x:= 0; goto sender_retry2;

mode sender_retry2 x < 2 {
when !begin2 x < 2 may x:= 0; goto sender_transm2;
when 7cd2 x < 2 may x:= 0;

}
initially
bus_idle[1] and x[1] = 0
and sender_waitl1[2] and x[2] = 0
and sender_wait2[3] and x[3] = 0;

risk
sender_transmi[2] and x[2] => 1
and sender_transm2[3] and x[3] => 1;

B FDDI with two station processes

process count = 3; /* 3 is for ring, the others for stations.

local clock x, y;
global synchronizer ttl, tt2, rtl, rt2;

mode ring_to_1 x =< 0 {
when !ttl x = 0 may goto ring_1;
¥

mode ring_ 1 true {
when ?rtl true may x:= 0; goto ring_to_2;

mode ring to_2 x =< 0 {
when !tt2 x = 0 may goto ring_2;

mode ring_2 true {
when ?rt2 true may x:= 0; goto ring_to_1;

mode station_1_idle true {
when 7ttl true may y:= x; x:= 0; goto station_1_sync;

mode station_1_sync x < 1 {
when !rtl x < 1 and y => 1 may goto station_1_idle;
when x < 1 and y < 1 may goto station_1_async;

ii

*/

mode station_1_async y =< 1 {
when !rtl true may goto station_1_idle;

mode station_2_idle true {
when 7tt2 true may y:= x; x:= 0; goto station_2_sync;

mode station_2_sync x < 1 {
when !rt2 x < 1 and y => 1 may goto station_2_idle;
when x < 1 and y < 1 may goto station_2_async;

mode station_2_async y =< 1 {
when !rt2 true may goto station_2_idle;

initially

station_1_idle[1] and x[1] = 0 and y[1] => 1
and station_2_idle[2] and x[2] = O and y[2] => 1
and ring_to_1[3] and x[3] = 0 and y[3] => 1;

risk
(station_1_sync[1] or station_1_sync[1])
and (station_2_sync[2] or station_2_sync[2]);

C Fischer’s timed mutual exclusion protocol

/* Fischer’s protocol with 2 processes */
P p
process count = 2;

global pointer lock;
local clock x;

mode idle true {
when lock = null may x:= 0; goto ready;

3

mode ready true {
when x < 1 may x:= 0; lock:= P; goto waiting;

}

mode waiting true {
when (x > 1 and lock = P) may goto critical;
when lock '= P may goto idle;

}

mode critical true {
when true may lock := null; goto idle;

iii

initially lock = null and idle[1] and x[1] = 0 and idle[2] and x[2] = O;

risk critical[1l] and criticall[2];

iv

