
Region Encoding Diagram for Fully Symbolic

Veri�cation of Real�Time Systems�

Farn Wang

Institute of Information Science� Academia Sinica

Taipei� Taiwan ���� Republic of China

�����	�	
���
�� ext
 �
�
� FAX �����	�	
�	����� farn�iis�sinica�edu�tw

Tools available at� http���www�iis�sinica�edu�tw��farn�red

Abstract

RED �Region Encoding Diagram�� �rst reported in ���	� is a BDD
like data
structure for fully symbolic
veri�cation of symmetric real
time systems with single clock per process� We propose to extend RED for
asymmetric real
time systems with unrestricted number of global or local clocks� Unlike in DBM which
records di�erences between pairs of clock readings� we records the ordering among fractional parts of clock
readings into integer sequences encoded in RED
s� Like BDD� the new RED is also a minimal canonical form
for its target system state
space representations� The number of variables used in RED is O�jXj log jXj� when
X is the clock set in the input system description� Experiment has been carried out to show the possible
veri�cation e�ciency through the intense data
sharing nature of RED�

� Introduction

Fully symbolic veri�cation technologies� like BDD��� ��� can be e�cient in both space and time complexities
with its intense data	sharing in the manipulation of state space representations
 Recently� Wang has proposed
a new BDD	like data	structure called Region�Encoding Diagram �RED� for symbolic veri�cation of symmetric
systems with single local clock per process����
 In this manuscript� we extend RED to asymmetric systems which
may have unrestricted number of local or global clocks
 The ordering among fractional parts of clock readings is
explicitly recorded as an integer sequence encoded in RED
 To keep record of such sequences� we add one auxiliary
O�log jX j
	bit variable per clock with X as the set of clocks� global or local� in the systems
 Like BDD���� RED
is also a minimum canonical form with respect to a given variable ordering
 It is also e�cient for representing
unions of zones
 Experiments have been carried out to investigate its potential for veri�cation e�ciency

Compared to the classic DBM ��� ��� ��� ��� ��� ���� RED provides data	sharing capability of fully symbolic
manipulation
 In a DBM	based model	checker� since matrices and BDD are two di�erent types of data	structure�
we are forced to use a pair of BDD and matrix to represent a region
 As a result� identical interaction pattern
between BDD and matrix may replicate in di�erent nodes of the region graph representation
 Such replication
not only increases space complexity but also incurs duplicate e�ort in region processing
 Moreover� to get region
canonical representations� DBM	technology usually resorts to the processing of convex hulls which are equivalent
to conjunctions of clock inequalities
 Thus it may be necessary to break a big disjunction down to exponentially
many conjunctions
 Such breaking	down can be a source of ine�ciency
 But since the present RED algorithms
derive time step next	state RED�s at very tiny steps� DBM may have better veri�cation performance with systems
with big timing constants

Newer technologies of NDD��� and CDD��� use binary inequalities of the form x � y � c
 NDD uses binary
encoding for the possible values of c while CDD uses multiple value	ranges to record them
 However� the number
of variables in their decision diagram is likely to be quadratic to the number of clocks used in the systems
 The
number of variables used in our RED technology� on the other hand� is O�jX j log jX j
 with X as the clock set

�The work is partially supported by NSC� Taiwan� ROC under grant NSC ��������E�		��		�

A previous version of RED was reported in ���� which takes advantage of symmetry of multiprocess systems
to use only O�jX j
 binary variables in RED
 But its restriction in ���� is that no global clocks can be used and
for each process� only one local clock is allowed
 Although it is more restricted� the technique reported in ����
indeed can prevail in performance in its target systems
 In the future� we are looking forward to incorporating
that technique���� in our future RED tools

Here is our presentation plan
 Section � brie�y de�nes timed automata as our model for discussion
 Section �
formally presents our data	structure scheme
 Section � shows how to derive next	state RED�s with symbolic
manipulations on RED�s
 Section � experiments with Fischer�s protocol���� CSMA�CD����� and FDDI��� ���
protocols to examine the potential of RED

� Timed automata

We use the widely accepted model of timed automata��� to explain idea
 We assume familiarity with this model
and will not go into much detail due to the page	limit

A timed automaton is a �nite	state automaton equipped with a �nite set of clocks which can hold nonnegative
real	values
 It is structured as a directed graph whose nodes are modes �control locations� and whose arcs are
transitions
 The modes are labeled with invariance conditions while the transitions are labeled with triggering
conditions and a set of clocks to be reset during the transitions
 The invariance conditions and triggering conditions
are Boolean combinations of inequalities comparing a clock with an integer
 At any moment� the timed automaton
can stay in only one mode
 In its operation� one of the transitions can be triggered when the corresponding
triggering condition is satis�ed
 Upon being triggered� the automaton instantaneously transits from one mode to
another and resets clocks in the corresponding transition clock set label to zero
 In between transitions� all clocks
increase their readings at a uniform rate

For convenience� given a set X of clocks� we use B�X
 as the set of all Boolean combinations of inequalities of
the form x � c or x� y � c where x� y � X � ��� is one of �� ���� ���� and c is an integer constant

De�nition � automata The formal syntax of a timed automaton A is given as a tuple hX�Q� �� I� E� �� �i with
the following restrictions
 X is the set of clocks
 Q is the set of modes
 � � Q �� B�X
 de�nes the invariance
condition of each mode
 I � B�X
 is the initial condition on clocks
 E 	 Q
 Q is the set of transitions

� � E �� B�X
 and � � E �� �X respectively de�nes the triggering condition and the clock set to reset of each
transition
 k

A valuation of a set is a mapping from the set to a number set
 Given an � � B�X
 and a valuation 	 of X �
we say 	 satis�es �� in symbols 	 j� �� i� it is the case that when the variables in � is interpreted according to 	�
� will be evaluated true

De�nition � statesGiven a timed automatonA � hX�Q� �� I� E� �� �i� A state 	 of A is a valuation ofX�fmodeg
such that

� 	�mode
 � Q is the mode of A in 	 with mode as a special auxiliary variable� and
� for each x � X � 	�x
 � R� such that R� is the set of nonnegative real numbers and 	 j� ��	�mode

 k

For any t � R�� 	 � t is a state identical to 	 except that for every clock x � X � 	�x
 � t � �	 � t
�x

 Given
�X 	 X � 	 �X is a new state identical to 	 except that for every x � �X� 	 �X�x
 � �

De�nition � runs Given a timed automaton A � hX�Q� �� I� E� �� �i� a 		run is an in�nite sequence of state	
time pair �	�� t�
�	�� t�

 �	k� tk

 such that 	 � 	� and t�t�

 tk

 is a monotonically increasing
real	number �time
 divergent sequence� and for all k � ��

� for all t � ��� tk�� � tk�� 	k � t j� ��	k�mode

� and
� either 	k�mode
 � 	k���mode
 and 	k � �tk�� � tk
 � 	k��� or

� �	k�mode
� 	k���mode

 � E and
� 	k � �tk�� � tk
 j� ��	k�mode
� 	k���mode

 and
� �	k � �tk�� � tk

��	k�mode
� 	k���mode

 � 	k��
 k

A safety requirement on timed automaton A can be written as a Boolean combination of clock constraints in
B�X
 and mode restrictions in the form of mode � q meaning that A is currently in mode q � Q
 A run

�

� � �	�� t�
�	�� t�

 �	k � tk

 of A satis�es safety requirement �� in symbols � j� �� i� for all k � � and
tk � t � tk��� 	k � t j� �
 We say A j� � i� for all 		runs �� 	 j� I implies � j� �
 The safety analysis problem of
A and � is to answer whether A j� �

� Region�Encoding Diagram

Notationally we let CA be the biggest integer constant used to compare with clocks in the invariance conditions�
initial condition� triggering conditions� and safety requirement of a safety analysis problem instance regarding
timed automaton A
 According to Alur et al�s region graph construction ���� the state	equivalence relation for
timed automaton model	checking ��� is determined by the following three factors�

� the discrete information of each state�
� the integer parts of clock readings � CA� and
� the ordering among the fractional parts of clock readings � CA

Here we shall use an integer sequence to record the ordering among the fractional parts of clock readings in a
state
 Given an automaton A with clock set X � the variable set in the RED�s is

VARSA � fmodeg �X � f�hxi j x � Xg

The integer sequence is kept record in the special auxiliary variables �hi�s for all clocks
 Given a state 	� its
region encoding� in symbols �	�� is a partial mapping from VARSA such that �	��mode
 � 	�mode
 and for each
clock x � X � the following restrictions are satis�ed

� If 	�x
 � CA� then �	��x
 �

� If 	�x
 � CA� then �	��x
 � b	�x
c
 Furthermore� the following restrictions are satis�ed on �	���hxi

 For
convenience� let frac�d
 � d� bdc be a notation for the fractional part of any d � R�

� If 	�x
 is an integer� then �	���hxi
 � �

� If 	�x
 is fractional and �	���hxi
 � d � f��

 � jX jg� then frac�	�x

 is the d�th smallest among all frac	

tional parts of such clocks
 Formally speaking� if the set ffrac�	�y

 j y � X � 	�y
 � CA� frac�	�y

 �� �g
is equal to fr�� r��

 � rkg with r� � r� �

 � rk and frac�	�x

 � rh with � � h � k� then
�	���hxi
 � h

For example� we may have X � fx�� x�� x�� x�� x�� x�� x	� x
g in a state 	� with 	�x�
 � �
���� 	�x�
 � �� 	�x�
 �
��� 	�x�
 � �
�� 	�x�
 � �
���� 	�x�
 � ��
�� 	�x	
 � �� 	�x

 � ��� while CA � ��
 The readings of clocks and
values of �hxii�s are shown in the following

i � � � � � � � �
	�xi
 �
��� � �� �
� �
��� ��
� � ���
�	��xi
 �
��� �
 �
� �
���
 �

�	���hxii
 � � � � � � � �

Note that �	���hx�i
 � �	���hx�i
 � � while �	���hx�i
 � �	���hx	i
 � �	���hx
i
 � �
 ��� means �don�t care� or
�no restriction
� Given any 	� �	� keeps the minimal information necessary for model	checking timed automata

RED�s can be viewed as decision diagrams for the �	��s instead of 	�s
 In the implementation aspect� it resembles
CDD��� and each node in RED has the structure shown in �gure ��a

 Such a node is used to evaluate the truth
value of a formulus from variable v � VARSA
 The outgoing arcs are labeled with lower and upper bounds of
integer parts �note� only integer parts
 of values of variable v and direct to the RED�s for the subformulae true
in the corresponding ranges of v�s values
 In �gure ��b
� we have depicted the RED with X � fx�� x�g for

�mode � � � x� � � � � � x� � �
 � �mode � � � � � x� � x� � x� � x� � �

Given a timed automaton� each of the �hi variables needs log�jX j � �
 bits
 Thus the variables in our RED
together may need O�log�jQj
 � jX j�log�jX j� �
 � log�jCAj� �

 bits

�

����������
�����������������������������

������������������������������
�����������������������������

�����������������������������
���

��
�
��
��
�
��
��
�
���
��
���
���
���
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
���
�
�
��
�
��
�
�
��
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�

��

���������������
��
�
��
��
��
��
��

v

v�v�

vn

� � �

� � �

�u� � �� u�

�u� � �� u�

�	� u�
 �un�� � �� un

v�

�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
�
��
��
�
��
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
��
��
�
��
��
�
��
���������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
��
�
�
�
��
�
��
�
�
��
�
��
��
��
�
��
���
��
���
���
���
����
���������
���

�������
�����
����
����
����
���
���
���
��
���
��
���
���
��
��
�

rrrrr
rrrrr
rrrrr
rrrrr
rrrrrr
rrrrrrr
rrrrrrrrrrrrrrr

rrr
rrrrrrrr
rrrrrr
rrrrr
rrrrr
rrrr
rrrrr
rrrrrr

rrrrr
rrrrr
rrrrr
rrrrrr
rrrrrrr
rrrrrrrrrrrrrr

rrr
rrrrrrr
rrrrrr
rrrrr
rrrrr
rrrrr
rrrr
r

��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
��
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
���
��
��
��
��
��
��

��
�
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
�
��
�
�
��
�

���
����
����
����
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�

��
��
��
���
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
�

���������������
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�����
����
����
�����
����
����
����
�����
����
����
�����
����
����
����
�����
����
����
����
�����
����
����
�����
����
����
����
�����
����
����
����
�����
����
����
�����
����
����
����
�����
����
����
����
�����
����
����
�����
����
����
����
�����
����
����
�����
����
����
����
����

���������������
��
�
�
��
�
�
��
�
�
�

��

����������������������
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�

���

���������������
��
��
��
��
��
��
�

�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�

falsetrue

x�

x� x�

�	� 	
 ����
����
�	� 	

�	� 	

��� �

����

�	� 	

�	� 	
 ��� �

��� �

��� �

�	� 	

��� �

�	� �

�hx�i

�hx�i

�hx�i

mode

�a
 �b

Figure �� Data structure implementation of a node in RED

� Manipulations on RED

��� Boolean operations

The Boolean operations on RED�s follow the same style in Bryant�s BDD manipulations ��� �� ��
 We present
procedure RedOp�OP� D�� D�
 in table � to illustrate the idea in the implementation of such operations
 For con	
venience� we use �l� u�D to denote an outgoing arc whose lower bound is l� upper bound is u� and the subformulus
RED is D
 Also� D
v denotes the index of D�s variable in the variable	ordering of RED�s

We should point out that the algorithm shown in table � is for simplicity and clarity of presentation and is
not for e�ciency
 Our implementation is more e�cient in that it records which pairs of D�� D� have already been
processed
 If a pair of D�� D� has already been processed with procedure RedOp�
 before� then we simply return
the result recorded in the �rst time when such a pair was processed

��� Manipulations for state�transitions

We use Boolean operations on RED�s to derive next	state RED�s with time steps and discrete transitions
 The
details of manipulations vary according to properties of the regions
 The technique we developed is called precise
slicing and slice processing
 Conceptually� with precise slicing� we use various Boolean conjunctions to slice a
target Boolean formulus into many slices each with di�erent properties suitable for simple RED processing
 After
the individual slice processing� we then disjunct the processed slices together to form the next	state RED

Due to page	limit� we shall only discuss the manipulations to derive time	step next	state RED�s
 There are
two kind of time steps for a state 	 in a region graph
 We make a case analysis in the following
 Suppose the
next state is 	�

�
 If 	�x
 � CA �i
e
� �	��x
 �

 for all clocks x� then �	�� � �	�

�
 If there is a clock x such that 	�x
 is an integer � CA �i
e
� �	��x
 � ��� CA� � �	���hxi
 � �
� then the next
time step will advance all such clocks to become fractional according to the following rules

�a
 In case there are some clocks x with integer reading 	�x
 � CA �i
e
� �	��x
 � ��� CA�����	���hxi
 � �
�
such clocks will have their �hxi advance from zero to one and push every other clocks� �hi value to
increment by one in 	�

�

RedOp�OP� D�� D�
f
if OP� AND�

if D� is true� return D��
else if D� is true� return D��
else if either D� or D� is false� return false�

else if OP� OR�
if either D� or D� is true� return true�
else if D� is false� return D��
else if D� is false� return D��

else f
Construct a new RED node D with D
v � min�D�
v�D�
v
�
if D�
v � D�
v� then for each outgoing arc �l� u�D�

� of D��
add an outgoing arc �l� u�RedOp�OP� D�

�� D�
 to D

else if D�
v � D�
v� then for each outgoing arc �l� u�D�

� of D��
add an outgoing arc �l� u�RedOp�OP� D�� D

�

�
 to D

else for each outgoing arc �l�� u��D

�

� of D� and outgoing arc �l�� u��D
�

� of
D��

if �max�l�� l�
�min�u�� u�
� is nonempty� add an outgoing arc
�max�l�� l�
�min�u�� u�
�RedOp�OP� D

�

�� D
�

�
 to D

Merge any two outgoing arcs �l� u�D�� �u� �� u��D� of D into one �l� u��D�

until no more merge can be done

if D has more than one outgoing arcs� return D�

else return the sole subformulus of D�
g

g � RedOp�� �

Table �� Algorithm for computing D�OP D�

i
 All clocks x with �	��x
 � CA will have �	���x
 �
 with �	����hxi
 unrestricted

ii
 All clocks x with �	��x
 � CA will have �	���x
 � �	��x
 and �	����hxi
 � �	���hxi
 � �

�b
 In case that all clocks x with integer readings � CA also satisfy �	��x
 � CA� then

i
 �	���x
 �
 for all such clocks x and

ii
 the valuations regarding all other clocks and their �hi values in �	�� remain identical to the ones
in �	�

�
 Suppose there is no clock with integer reading � CA
 For all those clocks x such that �	��x
 � CA and
�	���hxi
 � maxf�	���hyi
 j �	��y
 � CAg� �	

���x
 � �	��x
 � � and �	����hxi
 � �
 For all other clocks x� the
valuations regarding x and their �hi�s in �	�� remain identical to those in �	�

In table �� we show the pseudo code for our procedure to derive the RED by advancing regions with inte	
ger clock readings � CA according to case �
 Here FILTER EXISTS SMALLER THAN CA� FILTER ONLY CA� and
RED INVARIANCE are the RED�s we constructed in the initialization phase of the program which are used to slice
out the proper RED�s for the corresponding region subsets
 Due to page	limit� we can only elaborate on how
procedure NextFracExistsSmallerThanCA�
 properly processes RED slices in table �
 But other procedures are
constructed on similar techniques
 As can be seen in table �� we iteratively process for each clock x � X
 For each
clock x� we break it down to three cases
 For each case� we then make necessary �lter for precise slicing of RED�s
and then use proper slice processing procedures
 Here we use shorthands like RedOp�AND� D� x � CA
 to repre	
sent the RED obtained by conjuncting RED D and the RED of x � CA together
 RedVariableEliminate�D� x

is an RED	slice processing procedure which remove every recording about variable x from D

�

ToFrac�D
 f
� case ��a
� precisely slice out the RED with integer reading clocks � CA

 �
S �� RedOp�AND� D� FILTER EXISTS SMALLER THAN CA
�

� process the slice to advance the �hxi�s of all clocks x with reading � CA

 �

� process the slice to advance all clocks x� with readings � CA� to OA
 �
R �� NextFracExistsSmallerThanCA�S
�

� case ��b
� precisely slice out the RED with all integer clocks � CA �
S �� RedOp�AND� D� FILTER ONLY CA
�

� process the slice to advance all clocks x� with readings � CA� to OA
 �
S �� NextFracOnlyCA�S
�

� union both processed slices
 �
R �� RedOp�OR� R� S
�

� only the slice satisfying invariance condition is needed
 �
R �� RedOp�AND� RED INVARIANCE� R
�

return R�
g � ToFrac�
 �

Table �� procedures for calculating the RED after time step from integer clock reading regions

� Implementation and experiments

We have implemented the idea in a software called red which supports the veri�cation of real	time systems with
multiprocesses� pointer data	structures� and synchronizations �synchronous send and receive
 from one process
to another
 The tools will soon be available at�

http���www�iis�sinica�edu�tw�!farn�red

after the submission
 The current version of red tool was modi�ed from our previous veri�cation tool announced
in ����
 Each process can use global and local variables of type clock� discrete� and pointer
 Pointer variables either
contain value NULL or the identi�ers of processes
 Thus in our representation� we allow complicate dynamic
networks to be constructed with pointers

We have tested RED with three previously published benchmarks� CSMA�CD ����� FDDI ���� ��� and Fischer�s
timed mutual exclusion protocol���
 The performance is listed in the following table

� processes � � � � � 	
 � �� �� ��
CSMA
CD time ���� ���� ���� ��� ��� ���� ���� ���� ����	 ����� N
A

space �� ���
�� ��	
 ���
 ���� ��
�� ����� �
��
 �
���
FDDI time
�	� 	� ��� ���� ��
� ����� ���	� ������ N
A N
A N
A

space ��
 �
� ���� ���� ����� ��	
� ����� 	����
Fischer�s time ��
 	��� 	��� �
� ���� ����
 N
A N
A N
A N
A N
A

space �� ��� �
� �	�� ���
� �
���
Fischer�s time ��	� ���� ����
��	 �
� 		� ���� ���� ���� �

�	 �����
�w� symm�� space ��
� ��� ��� ���� �	�� �
�	 	��� ��	�� ��	�� �����

The CSMA�CD and FDDI benchmarks are executed on a Pentium II ��� MHz IBM notebook with ��� MB
memory �real plus swap
 running Linux while the Fischer�s protocol is executed on a ��� MHz Sun Ultrasparc	II
with � GB memory running Sun OS with single	thread
 The CPU time is measured in seconds
 The space is
measured in kilobytes and only includes those for RED�s and �	� trees
 The running time can be reduced to about
half for smaller concurrencies if we disable some of the garbage	collection function implemented in our tool

�

NextFracExistsSmallerThanCA�D
 f
� iteratively process d for each clock x �
for every x � X � do f

� Case one� x � CA
 �
R �� RedOp�AND� D� x � CA
�
R �� RedVariableEliminate�RedVariableEliminate�R� x
� �hxi
�

� Case two� clock x is an integer � CA or a frac � CA
 �
� Process with iterating for each possible value of �hxi �
for every � � i � jX j� do f
S �� RedOp�AND� D� � � x � CA � �hxi � i
�
S �� RedOp�AND� RedVariableEliminate�S� �hxi
� �hxi � i� �
�
S �� RedOp�OR� R� S
�

g

� Case three� clock x is overbound
 �
S �� RedOp�OR� D� x � CA
�

D �� RedOp�OR� R� S
�
g
return D�

g � tt NextFracExistsSmallerThanCA�
 �

Table �� Algorithm to derive time	step next state RED when there is some integer clock readings � CA

CSMA�CD���� is a mutual	exclusion protocol used in broadcast network based on collision	detection capability
of processes
 Each process uses only one local clock and there is no global variables of any types
 There are a
network process and many sender processes
 Processes talk to the network process through synchronizers
 All
processes have three modes
 The input �le for CSMA�CD with two sender processes is given in Appendix A

The property to be veri�ed is that at any moment� no two processes can both be in transmission mode with local
clock reading � � �meaning passing the collision	detection period

FDDI ���� �� is the token	passing protocol in a ring network
 We need one process to model the network and
the other processes to model the stations
 The input for FDDI with two station processes is given in appendix B

The number of modes of the network process is two times the number of station processes
 The number of modes
of each station process is three
 For each station process� two local clocks are needed
 Thus FDDI is not possible
to be naturally veri�ed by our previous version of RED tool ����
 Each station process can use the token to
transmit message in mandatory synchronous mode and optional asynchronous mode
 The asynchronous mode is
optional because a station process can do it only when �rst� it has �nished with synchronous mode transmission�
and second� it detects that in the last cycle of token	passing� all processes together have not used much network
time
 The second local clock y is used to accumulate the time used by all processes in one token	passing cycle of
the network

We choose to run the Balarin�s version of Fischer�s timed mutual exclusion protocol benchmark ��� ��� ��� ���

The input of two processes to red is in appendix C
 The protocol relies on a global lock to control access to the
critical section
 The property to be safety analyzed is at any moment� no more than two processes are in the
critical section
 We collected two sets of data
 One is with plain RED technology �the �rd congregate row
 while
the other is with a simple symmetry technique which sorts processes in a region according to clock readings and
their �hi values �the �th congregate row

 As can be seen from the table� the symmetry technique very much
alleviate the factorial explosion in the many di�erent ordering among the �hi values
 Actually with the vast
memory space of � GB� we expect that red passes the benchmark with concurrency size beyond ��
 However�
the version of the symmetry technique is still not applicable to protocols with synchronizers

For all the benchmarks� we observe that the exponential base for the growing rate of both time and space
complexities with respect to concurrency sizes decreases
 For example� for the CSMA�CD benchmark� when

�

we go from �ve senders to six senders� the space complexity increases to �
�� times
 But when we go from ten
processes to eleven processes� the complexities only increases to �
�� times
 Together with the experiments in �����
we believe such pattern is typical in BDD	style fully symbolic manipulation and may imply that RED technology
is very suitable for high	concurrency veri�cation task

� Conclusion

We propose to extend the RED technology reported in ���� to verify systems with global clocks and multiple local
clocks
 Preliminary experiment data shows promise with the intense data	sharing capability of RED technology

We see much work can be done to enhance the performance of RED
 Some possibilities follow

� The way to encode the ordering among clock reading fractional parts in ���� is not possible in the version
of red in this manuscript
 As can be seen� the total number of bits of variables in ���� is O�jX j
 while it
is O�jX j log jX j
 with in the RED version in this paper
 Thus for single local clock systems� the technique
reported in ���� should prevail in performance
 In the future� we hope to combine both result in the same
tool

� For FDDI benchmarks� we are using smaller timing constants because RED	technology in its current stage
is very sensitive to the magnitude of timing constants in performance
 This is due to that our time step
algorithm now advance the regions in very tiny steps
 We feel it possible to develop better algorithms to
make red stride in much larger time steps

References

��� Asaraain� Bozga� Kerbrat� Maler� Pnueli� Rasse
 Data	Structures for the Veri�cation of Timed Automata

Proceedings� HART���� LNCS ����

��� R
 Alur� C
 Courcoubetis� D
L
 Dill
 Model Checking for Real	Time Systems� IEEE LICS� ����

��� F
 Balarin
 Approximate Reachability Analysis of Timed Automata
 IEEE RTSS� ����

��� J
R
 Burch� E
M
 Clarke� K
L
 McMillan� D
L
Dill� L
J
 Hwang
 Symbolic Model Checking� ���� States and
Beyond� IEEE LICS� ����

��� M
 Bozga� C
 Daws
 O
 Maler
 Kronos� A model	checking tool for real	time systems
 ��th CAV� June�July
����� LNCS ����� Springer	Verlag

��� J
 Bengtsson� K
 Larsen� F
 Larsson� P
 Pettersson� Wang Yi
 UPPAAL 	 a Tool Suite for Automatic Veri�	
cation of Real	Time Systems
 Hybrid Control System Symposium� ����� LNCS� Springer	Verlag

��� G
 Behrmann� K
G
 Larsen� J
 Pearson� C
 Weise� Wang Yi
 E�cient Timed Reachability Analysis Using
Clock Di�erence Diagrams
 CAV���� July� Trento� Italy� LNCS ����� Springer	Verlag

��� R
E
 Bryant
 Graph	based Algorithms for Boolean Function Manipulation� IEEE Trans
 Comput
� C	����
�
����

��� E
 Clarke and E
A
 Emerson
 Design and Synthesis of Synchronization Skeletons using Branching	Time
Temporal Logic� Proceedings of Workshop on Logic of Programs� Lecture Notes in Computer Science ����
Springer	Verlag� ����

���� D
L
 Dill
 Timing Assumptions and Veri�cation of Finite	state Concurrent Systems
 CAV���� LNCS ����
Springer	Verlag

���� C
 Daws� A
 Olivero� S
 Tripakis� S
 Yovine
 The tool KRONOS
 The �rd Hybrid Systems� ����� LNCS �����
Springer	Verlag

���� T
A
 Henzinger� X
 Nicollin� J
 Sifakis� S
 Yovine
 Symbolic Model Checking for Real	Time Systems� IEEE
LICS ����

�

���� P
	A
 Hsiung� F
 Wang
 User	Friendly Veri�cation
 Proceedings of ���� FORTE�PSTV� October� �����
Beijing
 Formal Methods for Protocol Engineering and Distributed Systems� editors� J
 Wu� S
T
 Chanson�
Q
 Gao� Kluwer Academic Publishers

���� F
 Wang
 E�cient Data	Structure for Fully Symbolic Veri�cation of Real	Time Software Systems
 to appear
in the proceedings of TACAS������ March� Berlin� Germany
 in LNCS� Springer	Verlag

���� F
 Wang� P
	A
 Hsiung
 Automatic Veri�cation on the Large
 Proceedings of the �rd IEEE HASE� November
����

���� S
 Yovine
 Kronos� A Veri�cation Tool for Real	Time Systems
 International Journal of Software Tools for
Technology Transfer� Vol
 �� Nr
 ���� October ����

�

A CSMA�CD with two sender processes

process count � �	 �
 � is for bus� the others for stations�
�

local clock x	

global synchronizer

begin�� end�� cd�� busy��

begin
� end
� cd
� busy
	

mode bus�idle true �

when �begin� true may x�� �	 goto bus�active	

when �begin
 true may x�� �	 goto bus�active	

�

mode bus�active true �

when �end� true may x�� �	 goto bus�idle	

when �busy� x �� � may 	

when �begin� x � � may x�� �	 goto bus�collision	

when �end
 true may x�� �	 goto bus�idle	

when �busy
 x �� � may 	

when �begin
 x � � may x�� �	 goto bus�collision	

�

mode bus�collision x � � �

when �cd� �cd
 x � � may x�� �	 goto bus�idle	

�

mode sender�wait� true �

when �begin� true may x�� �	 goto sender�transm�	

when �cd� true may x�� �	

when �cd� true may x�� �	 goto sender�retry�	

when �busy� true may x�� �	 goto sender�retry�	

�

mode sender�transm� x �� � �

when �end� x�� may x�� �	 goto sender�wait�	

when �cd� x�� may x�� �	 goto sender�retry�	

�

mode sender�retry� x �
 �

when �begin� x �
 may x�� �	 goto sender�transm�	

when �cd� x �
 may x�� �	

�

mode sender�wait
 true �

when �begin
 true may x�� �	 goto sender�transm
	

when �cd
 true may x�� �	

when �cd
 true may x�� �	 goto sender�retry
	

when �busy
 true may x�� �	 goto sender�retry
	

�

mode sender�transm
 x �� � �

when �end
 x�� may x�� �	 goto sender�wait
	

when �cd
 x�� may x�� �	 goto sender�retry
	

�

mode sender�retry
 x �
 �

when �begin
 x �
 may x�� �	 goto sender�transm
	

when �cd
 x �
 may x�� �	

�

initially

bus�idle��� and x��� � �

and sender�wait��
� and x�
� � �

and sender�wait
��� and x��� � �	

risk

sender�transm��
� and x�
� �� �

and sender�transm
��� and x��� �� �	

B FDDI with two station processes

process count � �	 �
 � is for ring� the others for stations�
�

local clock x� y	

global synchronizer tt�� tt
� rt�� rt
	

mode ring�to�� x �� � �

when �tt� x � � may goto ring��	

�

mode ring�� true �

when �rt� true may x�� �	 goto ring�to�
	

�

mode ring�to�
 x �� � �

when �tt
 x � � may goto ring�
	

�

mode ring�
 true �

when �rt
 true may x�� �	 goto ring�to��	

�

mode station���idle true �

when �tt� true may y�� x	 x�� �	 goto station���sync	

�

mode station���sync x � � �

when �rt� x � � and y �� � may goto station���idle	

when x � � and y � � may goto station���async	

ii

�

mode station���async y �� � �

when �rt� true may goto station���idle	

�

mode station�
�idle true �

when �tt
 true may y�� x	 x�� �	 goto station�
�sync	

�

mode station�
�sync x � � �

when �rt
 x � � and y �� � may goto station�
�idle	

when x � � and y � � may goto station�
�async	

�

mode station�
�async y �� � �

when �rt
 true may goto station�
�idle	

�

initially

station���idle��� and x��� � � and y��� �� �

and station�
�idle�
� and x�
� � � and y�
� �� �

and ring�to����� and x��� � � and y��� �� �	

risk

�station���sync��� or station���sync����

and �station�
�sync�
� or station�
�sync�
��	

C Fischer	s timed mutual exclusion protocol

�
 Fischer�s protocol with
 processes
�

process count �
	

global pointer lock	

local clock x	

mode idle true �

when lock � null may x�� �	 goto ready	

�

mode ready true �

when x � � may x�� �	 lock�� P	 goto waiting	

�

mode waiting true �

when �x � � and lock � P� may goto critical	

when lock �� P may goto idle	

�

mode critical true �

when true may lock �� null	 goto idle	

iii

�

initially lock � null and idle��� and x��� � � and idle�
� and x�
� � �	

risk critical��� and critical�
�	

iv

