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Abstract

In this paper, a learnable neuro-fuzzy controller is proposed for on-line implementing a decoupling
control action for uncertain composite affine nonlinear plants to track a prescribed trajectory. In
structure, the controller is composed of decentralized fuzzy systems with embedded two-stages rule
credit assignment mechanism cascaded with an interconnections compensating associative memory
network and a nonsingularity supervisor. In analytical form, the controller can be parametrized by a
set of linear parameters, which represent a combination of of the credits of rules, locations and shape
factors of membership functions. The parameters are tuned by a deadzone adaptation algorithm to
compensate for uncertainties. It is shown that the incorporation of deadzone in controller guarantees
the stability of adaptation in the neuro-fuzzy system and moreover, a given level of attenuation for
tracking error in the presence of unknown but bounded interconnections and disturbances. Sim-
ulation results of SISO plant, an inverted pendulum, and MIMO plant, a two-link planar robot
manipulator, are given to demonstrate the effectiveness and robustness of the neuro-fuzzy controller
for output tracking in composite nonlinear systems.

Keywords: neuro-fuzzy systems, tracking, nonlinear systems

1 Introduction

In the development of control systems design, there is a major need to build the controllers which
are capable of incorporating experts knowledge and containing enough intelligence to perform ac-
curacy tasks in uncertain environments. This requires design of controllers whose architectures and
consequent control efforts in response to plant outputs and external commands are related to or
resulted from experience, that is, the observed input/output behavior of the plant, rather than by
reference to a mathematical model-based description of the plant. The controller is then a so-called
intelligent controller [1].

One emerging methodology in intelligent controllers design is the use of fuzzy logic [2], [3], mostly
due to the fact that fuzzy methods provide an efficient way to cope with uncertainties and to encode
and approximate numerical functions. This methodology has received more recognition recently
and there have been a number of successful applications of fuzzy methods to a wide variety of
practical problems. For example, industrial process control [4], [5], robot control [6] and automobile
transmission control [7].

However, the majority of fuzzy systems developed so far are static and are designed in an it-
erative open-loop fashion. Usually, the designer specifies a fuzzy rule base, and then enters an
evaluation/editing design loop [8]. Both the performance measures and adaptation strategies are
subjective. In addition, if the plant dynamics and the environment change, then the performance
of well-designed fuzzy systems will degrade. Therefore, developing automatic learning algorithm is
needed for on-line adjusting the rule bases of fuzzy systems in response to variations of operating
conditions.

On the other hand, in view of the promising capabilities of neural networks in learning, adaptation,
fault tolerance, parallelism and generalization, efforts have been made to integrate the fuzzy logic
and neural networks into a unified framework of neuro-fuzzy systems [8] - [15]. By combining the
advantages of neural networks and fuzzy systems, neuro-fuzzy systems can be more effective in
applications, when compared to either neural networks or fuzzy systems. Some researches have
focused on implementing fuzzy systems on a neural network architecture. The layers of the neural
networks perform the fuzzification and defuzzification on crisp input/output data and other functions
of fuzzy systems. For example, neural-network-based fuzzy logic control and decision systems [13],
adaptive-network-based fuzzy inference systems [10], adaptive fuzzy systems [14], compensatory
neurofuzzy systems with adaptive fuzzy reasoning [15]. The approach is that if prior knowledge in



the form of fuzzy rules can be incorporated to develop a neural network in advance, then the initial
performance of the network is improved and requires less training time.

Since the neural networks and fuzzy models are weighted superpositions of nonlinear functions,
such as radial basis functions and fuzzy basis functions, they have been applied to systems control
to implement on-line approximation of the numerical functions describing the model of the plant
dynamics or the controller [14], [16] -[18].

Though the integrations of neural networks and fuzzy logic have helped in accessing and exploiting
better their respective advantages, there are concerns about the stability and performance analysis
of the fuzzy neural or neuro-fuzzy systems. If the mathematical model of the plant is known, the
stability of fuzzy control systems can be analyzed by using, e.g. the ”Circle Criterion” [19], the
”Energetistic Stability” [20], the ”Expert Lyapunov Function” [21], and the ”"Nyquist Stability”
[22]. On the other hand, if the plant model structure is known, then a Lyapunov stability analysis
of the system can be done [14], [16], [17]. For example, [14], [17] applied fuzzy methods where fuzzy
rules can be incorporated and extracted in the adaptive fuzzy controller with guaranteed stability.

This paper studies the output tracking control problem in interconnected affine nonlinear systems.
As regards the output tracking problem of uncertain nonlinear systems, there have been many de-
signs of tracking controllers in the literature using basically the feedback linearization technique in
nonlinear control theory [23]. To mention some among others, there are , robust controller [24], vari-
able structure controller [25] and adaptive controller [26]. More recently, the neural networks with
radial basis functions is combined with adaptive techniques is used to learn approximate feedback
linearizing control action by on-line tuning the parameters of neural networks [16], [27], [28]. Here,
we present a neuro-fuzzy approach for synthesizing decoupling control law from sets of input/output
membership functions. An adaptive fuzzy controller composed of decentralized fuzzy systems with
embedded two-stages rule credit assignment mechanism, cascaded with the interconnections com-
pensating associative memory network, along with its network structure is proposed to realize a kind
of decoupling control action for achieving output tracking in composite affine nonlinear systems.

In Section 2, the output tracking problem for composite affine nonlinear systems is formulated. In
Section 3, the approximate reasoning fuzzy system embedded with two-stages rule credit assignment
mechanism is presented. In Section 4, the components of the fuzzy controller together with its
analytical form and its mapping to a four-layer network structure are given. In Section 5, a deadzone
adaptation algorithm for controller parameters is derived to ensure robustness to approximation
errors. The stability and tracking performance of the fuzzy system tuned by deadzone adaptation
algorithm is analyzed in Section 6. In Section 7, the simulations of the inverted pendulum and a
two-link robot carrying a heavy load are performed to illustrate the effectiveness and robustness of
the controller in output tracking problem. Finally, conclusions are made in Section 8.

2 The Output Tracking Problem

We begin our study by defining the class of plants under consideration. Consider a composite affine
nonlinear system which is composed of n interconnected subsystems. Each subsystem is an SISO
affine nonlinear system in a companion form:

v = fi@ 1) + Y gij(@)u; + vil, 1) (1)
j=1
s = hiz,m) )
where x = [z, 22, -, z,]7, z; = [yi,yi,---,y?*”]T, y;i € R, i =1,---,n; pis an integer. z is a

vector of appropriate dimension, f;, g;; are bounded nonlinear functions of the state , v; is unknown
but bounded interconnection.



(1) can be rewritten compactly as

y? = f(x,t) + G(x)u + v(x,t) (3)
where

Yy= [yh o '7yn]T7

f(mvt) = [fl(mat)> Ty fn(mat)]T;
gu(x) -+ gin(x)

Gx)=| : ., (4)
gnl(m) gnn(m)

u = [Ula - ,U,n]T,

v(z,t) = [vi(z,t), -, vn(zx, )T,

and u, © and z, y represent, respectively, the input, the observable and unobservable state, the
output of the composite system (2)-(3). The matrix G is called the decoupling matrix while the
dynamics (2) is called the unobservable dynamics of the system [23]. Throughout this paper, we
assume the system (3) is decouplable, i.e. G is nonsingular; and the internal dynamics (2) is
bounded-input bounded-state (BIBS) stable, i.e. for bounded  the dynamics (2) is bounded.

Given a desired trajectory y,(t) € R™ and let e; = (Vi — Yia, Ui — Vid, " - ,yl(p_l) — yg_l))T and
e = (e1,--+,en)T denote the tracking error of the ith subsystem and the composite system. Then
the tracking control problem for system (3) is to design a controller such that an acceptable tracking
performance can be achieved (e.g., e is attenuated to a given level of accuracy) while stability is
guaranteed. For the cases that the plant dynamics is completely known a priori, or bounds and
properties of the functions f;(-,t), v;(+,t), and matrix G(-) are available, the controllers such as
PID, variable structure controller or adaptive and robust controllers have beem developed and could
achieve satisfactory tracking performance. However, for the class of plants we investigate here, the
subsystem dynamics and the interconnections among the subsystems are unknown, the tracking
problem requires a controller with learning capabilities.

In what follows our aim is thus to construct an adaptive fuzzy controller which could on-line
learn the decoupling control for stable tracking in the composite affine nonlinear systems. Since the
internal dynamics is assumed BIBS stable, it is omitted in the following .

3 Fuzzy System with Two-Stages Rule Credit Assignments

As a preliminary, this section introduces basic concepts of fuzzy systems. In general, a reasoning-
based fuzzy system is composed of four principal components:the fuzzifier, the if-then rule base,
the approximate reasoning engine, and the defuzzifier [29], [30]. In this paper, we modify the
approximate reasoning engine by rewarding or punishing the rules using the technique of credit
assignments. The resulting system is designated as by Fuzzy System with adjustable Rule Credit
Assignment (FS-RCA). The configuration of the FS-RCA is shown in Fig. 1, with more details of
its diagrammatic representation shown in Fig. 2.

The approximate reasoning engine, as shown in Fig. 2, processes the input knowledge according
to the following four stages: (i) rule matching stage: This stage computes the matching degrees
(or firing strength[10]) between the current fuzzy input and the antecedent part of each rule. (ii)
fuzzy implication stage: This stage determines the corresponding output action (recommendation)
of each rule which was adjusted by the (stage I) rule credit assignment, and further (iii) modifies
each recommendation by giving a credit in the (stage II) rule credit assignment, (iv)Finally, the
system combines all the recommendations with different matching degrees into output fuzzy sets.

Let s = (s1,---,5,)7 represents the input (e or ) of the fuzzy system. The jth rule in the ith
knowledge rule base, Rg; (Re,; or R ;), for the ith subsystem is defined by a set of linguistic rules
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Figure 2: Diagrammatic representation of F'S-RCA
of the following type:
RL,: IFs isAl, AND---AND s, is Al
THEN w;is B (5)

where Aik is reference antecedent fuzzy set of sj, and Bg is reference consequent fuzzy set of
the outputs of the fuzzy system. This set of fuzzy if-then rules forms a control rule base whose
antecedent parts are related to the measurement and whose consequent parts determine the control
action. The quality of control action is inferred by a fuzzy inference engine and is evaluated by the
credit assignments mechanism, as shown in Fig. 1.

For the simplicity of presentation, we consider an FS-RCA with single input only. The extension



to multi-input case is presented in next section. Now, we describe each phase of the fuzzy information
processing in Fig. 2.

A. Rule Matching and Fuzzy Implication Phases
There are many different kinds of fuzzy logic which may be used in a fuzzy inference machine [14],
[31] - [33]. Let A'(s) denote an arbitrary fuzzy set input to the fuzzy system. By fuzzy implication
inference, the corresponding output action (recommendation) of each rule R% determines a fuzzy
set in the output space U based on the generalized modus ponens [34], [35]:
jth rule, RL: IF syis Al AND---AND s, is Al
THEN wuisBJ

Input of FS-RCA: s is A
Corresponding  recommendation: uis A' o R%
A'(s) 0 (s, u) = Sup [A'(s) + I(A7(s), B (w))] (6)

ucu

where A7(s) = AJ(s;)*---* AJ (s,) denotes the matching degree, * is the T-norm [14]. I the impli-
cation function (such as min-operation, product-operation, arithmetic [14], [32], mean-of-maximum
[33], local mean-of-maximum implications [31]). Note that B7(u) denotes a reshaped consequent
fuzzy set of B’ (u) in the original rule base (5) after stage I rule credit assignment.

B. Two-Stages Credit Assignment Phase

However, there are situations that inappropriate rules get high matching degrees in the antecedent
part, and the the performance of fuzzy system will degrade. To overcome the problem, the stage
IT rule credit assignment is introduced at the output fuzzy sets to enhance the performance of the
approximate reasoning engine.

In summary, there are two rule credit assignment stages introduced in the fuzzy system. At stage
I, we reshape the consequent fuzzy sets in the original if-then rule base. Basically, the use of credit
assignment in stage I is to reward (or punish) a rule by increasing (or decreasing) the certainty of
its consequent fuzzy set before using the rule base. The concept of credit assignment is shown in

Fig. 3.
L8 2

B’ (u)
punish
_—>

=

The consequent part in After stage I rule credit assignment
the origional rule base

Figure 3: The stage I rule credit assignment: (a) reward and (b) punish rules

The stage II credit assignment is imposed on the fuzzy output where we have determined the
corresponding output action of each rule. Here, we refine them by giving a credit, w’ , to the jth
rule, then the output fuzzy set becomes:

w’ - A'(s) o R (s,u) (7)

”.n

where is the multiplication operation.



C. Defuzzification Phase

The crisp output ug generated by the fuzzy system is obtained by defuzzification of output fuzzy
set, which is obtained from the combination of the recommendation of each rule. Define the overall
output fuzzy set F' inferred by the fuzzy system as follows:

F(u) = ij - A'(s) o RL(s,u) (8)

J

where | denotes the T-conorm [36]. Some of the commonly used defuzzification methods are defined

in terms of F(u):
a) Center of Area:
uS§ 94 = defuzz(F(u)) = %

b) Center Average [14]: .
oA _ > wl - Al(s) o Rg(s,u’) - @

o i / j ; (10)
Y jwi - Al(s) o Ryg(s,ul)
where @ is the point in U at which A’(s) o R}(s, u) achieves its maximum value.
¢) Maz-Criteria:
u)'® = u, such that F(u) is the mazimum. (11)

4 The Fuzzy Controller

By combining the approximate reasoning engine described in Section 3, a fuzzy controller that could
on-line implement decoupling control law for composite nonlinear systems (3) is constructed. As
will become clear later, the construction of the fuzzy controller is a deterministic nonlinear system,
thus allowing the analysis to be carried out for performance evaluation. This is in contrast to the
constructions of [37] and [38] whose linguistic constructs prevent an analytic evaluation.

Nonsingularity Supervisor

e | L_FSRCA |
o [ FSRCA. ] | € M
[ FS-RCA. J T+
MIMO FS-RCA interconnections compensating

associative memory network

Figure 4: Components of the proposed controller

As shown in Fig.4, the proposed controller is composed of (a)decentralized FS-RCAs, (b)an
interconnections compensating associative memory network for counteracting the unknown inter-
connections among the subsystems and (c)a nonsingularity supervisor for monitoring the feasibility
of cascading the components (a) and (b). The aim of this fuzzy system is to on-line compute an
approximately decoupling control action to achieve nearly decoupled trajectory tracking behavior
for each subsystem.



4.1

Analytical Form of FS-RCA

First, consider the multi-input-single-output FS-RCA presented in previous section. For derivation
of fuzzy control as a kind of decoupling control law, we construct a class of fuzzy system by specifying
its four components. This class is that the following assumptions hold.

Al

A2

A3

A4
A5

Membership Function: Let the fuzzy sets A7, A} ..., AJ and BJ in the rule base be in LR
parametrization, or

L((—s/al,), if s <cly

R((sk —cl k)/agis , if sp > c; ,8; € Sk, k=1,-

) 7

Al (sy) = (12)

or
L((c-w/d,), ifu<d

B (u) = o : ;
R((u—c{i)/agu , ifu>c uelU

(13)
where c7 por cl), aJL o a{é s (or aL w aR ), denote, respectively, the center, left spread, and
right spread of membership function A7, (or BY).

Typical L (or R) functions, defined in terms of some generic argument z, are

max(0,1 — |z|%), TYPE I or
] eap(—je). TYPEIT or
L(z)(orR(z)) = (1+||)1, TYPE III or (14)

asz® + asx?® + a1z + ag, TYPE IV

where b > 0 controls the curvature. This paper uses TYPE III LR parametrization as mem-
bership functions.

Fuzzifier: The fuzzifier maps a crisp input s =s° =(s9,--+,s2)7€ S to a fuzzy set A'(s) in
S. In this paper, we use the singleton fuzzifier, i.e., A'(s) = 1 for s;, = s{ and A'(s) = 0,
otherwise, k = 1,---,n, where s is the support of the singleton fuzzy set.

Fuzzy Implication: This paper adopts the local mean-of-maximum (LMOM) [31] method as
the implication method in the fuzzy system. Then the operation of implication in (6) can be

written explicitly as ‘
; = A’(s), for u=4¢l
J J) — ) u
[(A’(s), B') = { 0, otherwise

where & denotes the location of the singleton implication fuzzy set. It is defined by (see Fig.
5)

(15)

& = the centroid of the set {u: B (u) > Al(s1) % ---x Al (s,)} (16)

T-norm: We assume that the operation ”«” is the (algebraic) product.

Defuzzification: In this paper, the center-average defuzzification method [14] is used to map
the fuzzy set F'(u) in U to a crisp point ug given by (10).

Then under the assumptions A2, A3 and A4, for input s = s°, (6) can be written as

A'(s%) o R4(s%,u) = Sup [AI*I(Aj(SO),Bj(U)) (17)
uelU
= I(A(s"), B (u)
0

_ [ AV, for u=¢]
o 0, otherwise



B/ (u)
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Figure 5: The modified local mean-of-maximum implication method

where we denote A7(s?) as matching degree corresponding to the numerical input s°.
Thus after defuzzification by the center-average method (10), for input s°, the output of the
FS-RCA becomes )
Zj wl - AV(s") - ¢,

SRERVED)

uo (1) (18)

This is the output of fuzzy system.
Next, by imposing further assumptions of each phase in the FS-RCA, (18) will be in the form of
feedback linearizing control law or decoupling control law.

o Membership Function: For the derivation of analytical form of the fuzzy controller as a de-
coupling control, two types of antecedent fuzzy sets are used. For s = x, A, is the Gaussian
membership function

A (xh) = exp(—(zr — ] ,)%) (19)
For s = e, a class of bell-shape functions is chosen with
Ay (ek) + ANk (ek) =1 (20)

for two arbitrary neighboring membership functions Ay (ex) and Ay (e). It is reasonable and
can be achieved by the LR parametrization using an appropriate pair of a]L’s and ag%’s. With
this choice, one can show the Fact 1:

Fact 1 Let the membership functions Ai, k=1,---.n of rule base Ré, j=1,--- N be chosen
such that (20) hold. Then we have

N .
Y Ale)=1 (21)
Jj=1
where N is the number of rules in RL,, A’(e) = Al(ey)--- Al (e,).

Proof: see Appendix A. Q.ED

e Rule Credit Assignment (Stage I): After stage I rule credit assignment, the consequent mem-
bership function becomes

. N —1 i
N (1+ &), ifus<d
L

s ") , (22
(14 Ggrm) s ifu>d



where ¢, aﬁ, aJL are called, respectively, the center (where B’ (u) achieves its maximum (one)),
right and left spread of B/ membership function; 37 is the credit. Note that reducing (or
increasing) 37 makes the definition of the linguistic term represented by B7(u) more precise
(or broader).

e Rule Matching Phase: The rule matching degree is calculated as gl (s) = Al(s) for ith rule in
jth rule base R%.

o Fuzzy Implication Phase:This phase computes the location & of a singleton implication fuzzy
set. For R}, using A3 and (22) with bJL = b}, = 2, we have (see Appendix B)

& =c,;— Bhal g/ (Al(x) ' —1 (23)

u,i u,i

where aJL R= (aJL — a{%) /2 is the difference of left and right spread of fuzzy membership function
Al

. On the other hand, suppose Re_; is chosen to be of Takagi- Sugeno type and its consequent
membership function B7 is singleton with support in the form of synthesis input

=y —ale (24)
where o/ = (a,-+-,a})T. This paper chooses membership functions with @}, = 0 and all

credits equal to one for error rule base. By this specification, we have

Gl o— o
Cu_cu

e Defuzzification phase: Let a/ = a for all j and choose 87 = 1/w’ Q = Block diag(Q1,+,Qn)-,
i.e. the credits in stage I and II are assigned simultaneously. By the use of (21), (23), (24),
the equation (18) resolves into (for details, see Appendix C)

S Wi Al (@) 0+ YN, Ale) 0d

Ug(t) = o - . N p
Ej (Wl - Al )+Ej:1 A'(e)
0 fo() +u — a®
= o (25)
wlg,(z) +1
where m is the number of rules in Rg, 8°Y = (w'cl,---, w™me™, atp, - afe)T, fo =

(AL, - —A™, fiR, e fi”R)T, fiR:Aj\/(Aj)*l —1, and g,, w are vectors composed,

respectively, of A7 and w.

4.2 The Mapping of Fuzzy Tracking Controller into Layered Network
Structure

In this section, the integration of (a) the decentralized FS-RCAs, (b) the interconnections compen-

sating associative memory network, and (c) the nonsingularity supervisor as a fuzzy controller is
described.

e The decentralized FS-RCAs

In view of the defuzzification formula (25), the defuzzification of the decentralized FS-RCAs
can be defined as

up(t) =D (2,0) (F(2,00) +r(e,1)) (26)



where

[wigo1(z) +1 0
D(z,0)) = : : :
9 e wgngwn( ) +1 (27)
foi() ?J;Z) —afe
f(ma @(ca)) = ,r(e,t) = )
01" Fou(@) v~ een
with G)(w):(agu))a Tty G(W))Ta agw)_(wila ot win)T wz’r‘:(wzlja ot ) ) gu)z (ng7 e ’ggg)T’
@(ca):(ggcﬂ)’ e, 0 Ca)) g(ca ( zlzczlu : wu Cy 70’},R,i7 T a’ZnR,i) ’ f@i_(_ R _Agn’ fiR,i’

"afEnR,i)Ta fiR,i:Ag (Ag)_ - L
e The Interconnections Compensating Associative Memory Network

To compensate the unknown interconnections among the subsystems and disturbances acting
on each subsystem to achieve decoupled tracking behavior, the interconnections compensating
associative memory network is cascaded with decentralized FS-RCAs. Basically, the intercon-
nections compensating associative memory network recombines the output of the decentralized
FS-RCAs, ug, into a new vector u, the control action, by the operator M defined as

u(t) = M(uo) = (I + W)(uo) (28)
W=—(,+¢C 'D)! (29)
where . .
. 0 w%;gwl(m) T wingwl(m)
. w51G.2() 0 T wy,G,s(T)
Clz,0@) = | . o (30)
wglgwn(m) wrj;ngn(m) T 0

e The Nonsingularity Supervisor
Since such a weight matrix W in (29) will likely be singular, the nonsingularity supervisor is
used to monitor the feasibility of cascading the decentralized fuzzy systems and the intercon-
nections compensating network. This is done via the function of nonsingularity supervisor by
slightly perturbing C' to another nonsingular C' during the whole control process.

Using (26), (28), (29) and applying the Matrix Inversion Lemma [39] (4 + BCD)™! = A~! —
AT'B(DA™'B+ C 1) 'DA™1, the defuzzified output of the fuzzy controller resolves into

u(t) = (In (I, + é’li))*l) D (}(m, ey 4 r(e,t)) (31)

= G (f@.0) +r(e,) (32)

where G = C + D. The invertibility of G in (32) can be guaranteed by proper choices of controller
parameters (see Section 6).

The fuzzy control processing can be adapted to a parallel neural network structure where each
node contains the knowlege of fuzzy membership functions and each connection represents a com-
bination of credits of a fuzzy rule. The mapped layered network consists of four layers: an input
layer, an output layer and two layers of nonlinear nodes. The nodes are interconnected layer by
layer. Each layer corresponds, respectively, to a substage shown in the fuzzy system of Fig. 2. This
mapping is shown in Fig. 6. This structure allows the input be fuzzified/defuzzified in a parallel
way by simultaneously matching membership functions encoded in the nodes. With the network
structure, the fuzzy controller has a total of four layers :

10



e Layer 1: Each node denotes the input e or x to the fuzzy system.
e Layer 2: Each node calculates the rule matching degree §7(s) = A7(s).

e Layer 3: Each node in this layer obtains the singleton implication fuzzy set and computes its
location &, ; by (23) and (24).

e Layer 4: This layer contains n nodes, which calculate the decoupling control according to (32).

Though the layered structure of the fuzzy controller is fixed, the connection strengths of the layers
can be adjustable. Our focus in the following section will be on the network weights learning rules.

Layer 1 Layer 2 Layer3 Layer 4

J— / Credit Assignments and

associative memory network weightings

g@\ R = gt

: § ) (gl " (1)
s

7/

uNFLC(t)

Q
X~

State x

L Error e

Figure 6: The network structure of the fuzzy controller

5 Parameters Adaptation Algorithm

In this section, we present an adaptation algorithm for parameters of neuro-fuzzy system (Fig. 7).
It is assumed that, given any uniform bounds €y, €,, there exist parameter vectors 67, -- -, 8}, such
that the network approximation errors satisfy
maxy f(mvt) - }.(ma @(ca)*)
maxg ||G(x) — G(x,0=)%)

Sef)

(33)
<egg.

However, the parameter vectors which ensure the above approximation accuracy are unknown and
must be on-line estimated. Consider the parameters update algorithm that works for each subsystem
in parallel )

Oi = R;lwlblTP,el (34)

11



where P; = P! > 0 is the solution of the following Riccati-like equation
1
PA;+ AT P + Fpibibzrpi +Qi=0 (35)

with p > 0,Q; > 0 and

R\“) = Block diag (R",---,R\"™),

(3

where Rl(c), Rl(a),Rz(»l), SRR Rl(n) > 0.

Unboundedness of vector 6;(t) due to the presence of disturbance (called parameter drift in adap-
tive control) could usually occur when using the adaptation algorithm (34). However, it is noted that
the parameter drift phenomenon can be avoided by suitably modifying the adaptation algorithm us-
ing the deadzone technique so that the adaptation could be turned off whenever the tracking error is
smaller than a threshold. The incorporation of dead zones in parameter tuning algorithm guarantees
the boundedness of approximation errors of the nonlinear matrix functions involved in decoupling
control to be approximated. Thus, a deadzone of size dy is employed in the adaptation algorithm
to achieve stopping the adaptation if necessary and to counteract the modeling error and the pa-
rameter estimation errors. Now, we present a deadzone modification of the adaptation algorithm
(34). Suppose the parameter 6;(t) is required to be inside a bounding set M; during adaptation.
Let 6;1 = 6;/||6:||. Define P = Block diag (P.,---,P,), and b = Block diag (by,---,b,). Then
the modified deadzone adaptation algorithm is :

6;, = 0 if €TPbbT Pe < d}

= (I —dum, (0:)8;107 )R w;bT Pie;, otherwise (36)
where we define the distance measure between a set and a vector
dMi (01) =
0 if 0F(R;7'w;bl Pe;) <0 (37)
man [1, dist(8;, M;)/e*],e* > 0, otherwise

and dist(-,-) denotes the distance between the arguments.

5.1 Adaptation Algorithm for Systems with Symmetric Decoupling Ma-
trix

The lower component of 0, can be denoted as

o _J0; if €T Pbb’ Pe < d? 38)
. = -1
’ (I—dum, HiLB?L)ng) wgw)bfPiei, otherwise.

Suppose G(z) in (3) is symmetric. We can let w; = w,; so that the number of parameters could

be reduced. To meet this need, the adaptation law is modified as follows: The adaptation algorithm

BE“’) is replaced by gbﬁ“’) defined by

(@) | pl@)”

(@) _ ith row of %(ol +6;

P, ) (39)

Remark:
It is interesting to observe that the component matrices (R\”, R{”)) and R*) of R; is closely related
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to the inverse of the adaptation gains in adaptation laws of Ogca) and 05“’). This provides a guide for
choosing the weighting matrices. Take robotic manipulators as example. For robot dynamics the
variations of the components of G are usually smaller than those of f, then the adaptation gain of
6'“) could be set smaller then that of Ogca).

(3

6 Guaranteed Tracking Performance

Parameters Adaptation
Algorithm

_

Disturbance
Target
Output

Ji

- ¢ Composite Nonlinear | J
%O Fuzzy Controller pS —>

p ystems
+

Figure 7: The adaptive fuzzy control system

In this section, stability and performance of the fuzzy tracking system, depicted in Fig. 7, is
investigated. Let the parameters estimation error be defined as 0, =0, — 07 where 0; represents
actual parameter used in the controller and is tuned by deadzone adaptation algorithm. In terms of
#; the error equation can be rewritten as

where
& = (fi(wat) —ggm)* foz)

n

+ 3 (9i5(@) — Wi guil@) —1)u;(t) +v; (41)

j=1

represents the lumped disturbance term of i-th subsystem due to the network approximation error
and external disturbance.

6.1 Feasibility of the Controller

If there exist €, and §, small enough such that ¢, < & and [|0®)|| < §,, it can be shown that
G_l(:c, ©@) exists, which in turn, guarantees the feasibility of the controller (32). Let |G| > ¢ > 0.

13



From

1G@,0¢) ~ G@)| < |G 0) -Gz, 0| + |G 0¢)") - G(z)|
< 0+ & (42)
we have
16~ (2)G (2, 0¢) - G(z)| < é@m)
<1 (43)

if €, and 4, are small enough. Then, we have [39]: I, + G~ (z)(G(z,0“) — G(x)) is invertible.
This, in turn, implies that

G(z)(I, + G (2)(G(z,0")) - G(2))) = G(z,0)

is invertible.

6.2 Initial Weights for Better Tracking Performance

Let the available knowledge about the nonlinear system (3) be encoded in the form of ”approximation
to the decoupling matrix G(x)” denoted by Go(x| nominal plant parameters). The accuracy
requirement that €, is sufficiently small can be satisfied by selecting a set of proper initial weights
G)[()“’) by off-line training using the least squares algorithm [40]. Our approach is based on the
element-by-element minimization of the following objective function at a set of training data {z(*)}:

. 2
Z HGO (2®| nominal plant parameters) — Gz, G)[()w)) H
k

where the training data {:c(k)} are either the sampled points along the desired trajectories or points
near them. Thus, a high level of accuracy can be achieved not only at a set of discrete points, but
along the points on the desired trajectory.

6.3 Stability and Performance Analysis

The following theorem shows the properties of the fuzzy controller with the deadzone parameters
adaptation algorithm.

Theorem 1 Consider the composite nonlinear systems (3) with unknown but bounded f;(x,t),
vi(x,t), i =1,---,n and nonsingular matrix G. Assume that the controller (32) is adopted with the
adaptation algorithm (36) . Then in the bounded state space ¢ € Q = {x : ||z|| is bounded}, we have
0; and the control input u(t) are bounded. Let & = (& (z,1), -, & (2, 1))T. Assume that there exists
¢ =Supg [|&(z, t)||*. Then e converges to the residual set {e : 7 Qe < p*¢ or e Pbb” Pe < d3},
where Q = Block diag(Q1,---,Qrn). Moreover, for the case that ¢; and ¢, are small enough such
that [|€]| < #dg, then e converges to the deadzone {e : eZ Pbb” Pe < d2}.

Proof: Let Vj be

1 n

Vo =3 Z 070, (44)
=1

then we have Vj = % Z?Zl OZTBZ < 0 or @; will not be adapted whenever 8; € 0 M .«, the union of

M ; and a boundary layer of thickness €*. Therefore, we can guarantee the boundedness of 8;. Thus

the arguments x, 6;, in (32) are bounded by the assumption of & € 2. Thus w(¢) is bounded.

14



Consider the tracking error equation. Choose the Lyapunov function candidate as
V=Vi+-+V, (45)

where L

Vit) = 1d% +16; ngi, o if e" Pbb’ Pe < d?
%e?Piei + %01» R;0;, otherwise,

Taking the time derivative of V;, we have V; = 0, if e” Pbb’ Pe < d3, while for e” Pbb’ Pe > d}

we have

(46)

V;(t) = EZTPZEZ + éZT(I — dMGU_GZTL)’wzblTPZQ,
1
= el (AT P+ Pidi)e; + &b Pee
~T
—d,0; 6,107, w;b] Pe;, (47)

Suppose the parameter bounding set M; is appropriately selected such that 0} is in the interior
of M; and GiTRiHi > G{TRZH;* if 6; is in the exterior of M;. Now, we investigate the last term
in the the above inequality. By definition of das,, for dy;, # 0, 0; is in the exterior of M; and
07 (R; *w;b! Pie;) > 0 which implies 87, (R; 'w;b! Pie;) > 0. Thus, 7 (R; 'w;b! Pe;) > 0, which
implies 87 (R; 'w;bT Pie;) > 0. In addition, by the definition of 8;, we have

9?Ri0u = GZTRzGlL — G:TRiGiL (48)
1
= 36 ((0;»* —0,)"R;(6; —0;) + 07 R0, — 0;*TRi0;*) >0 (49)

for #; in the exterior of M;. Thus, one can deduce that, outside the deadzone

1
56?(A?Pl + PlAl)ez + flblTPZCl

1 1
—5ei Qiei + 5G| (50)

Vi(t)

IN

IN

and 1 1
V< —§6TQ6 + 5025_ (51)
Thus e converges to {e : e7 Qe < p*¢ or €7 Pbb’ Pe < d2}.
Next, consider the case that ey and €, are small enough such that ||£]| < #dg, for €T Pbb” Pe <
d%. In this case,

. 1 1
V = —-e'Qe—- —e”"Pbb! Pe + ¢Pbb! Pe
2 22
1 1
< —§eTQe + (—2—p2||eTPb|| +[l€l) 6" Pel
1
< —§eTQe (52)

Following the arguments of [41], we can conclude that e converges to the deadzone {e : e” Pbb’ Pe <
dg}. Q.E.D.

In applications to the class of composite nonlinear systems whose G matrix is symmetric (e.g.
robot manipulators), we have the following.
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Corollary 1 Consider the affine nonlinear system (8) with symmetric G matriz. Then for the fuzzy
controller (82) with the adaptation algorithm (39), all properties described in Theorem 1 hold.

Proof: For e” Pbb' Pe < d2, we have
V(t) = ¢ P@Z + o(ca Rz(ca)glca) n 0 ()T R! w)o (53)

where R\“") = Block diag(R\”, R\")). Substituting (39), the above can be rewritten as

(ca)

Vi(t) = X Pé; + 0 RV 4 g R\, (54)

In view of the following properties:
(i) @ij = @y, since w;j = wji,
(ii) R(]) = Rg-l),

we have the identity

Zo(‘” R“8! zj: "R@H) (55)

Thus,

Zv|along (36),(40) — Zv|along (39),(40) (56)

so that the results of Theorem 1 hold.

7 Simulation

In this section, two simulations are presented to demonstrate the effectiveness of the adaptive fuzzy
controller.

1) Inverted Pendulum: Consider the inverted pendulum depicted in Fig. 8. Suppose the move-
ment of both the pole and the cart is restricted to the vertical plane and the cart is allowed to
move infinitely in the left or right direction. The state of the system is described by the pole’s
angle, #, and its angular velocity, 6. Its state equation can be expressed as:

.’17.1 Z2, (57)
gsinwl _ mlzZcoseysiney cosx1
. Me+m ct+m
T2 4 mcos3z + 4 mcos3z u+v,
[(3 — meosPzy) I(5 - L)
3 me+m 3 me+m
Y T,

where z1 = 6, x5 = 9, g is the acceleration due to gravity, m. is the mass of the cart, m
is the mass of the pole, [ is the half-length of the pole, u is the applied force and v is the
external disturbance. In simulation, we choose |v(t)| < 0.5. This system is unstable if the
control u is set to be 0. Fig. 9 shows the membership functions of :vl, xzo and u. Let M = {6 :

lci| < 15, |a} | <6, || < 2} and aq = 10, az = 100. Initially, ¢, are chosen randomly in
the interval [—12,12], and a}, = aRO = 2, w} = 1. Simulations are performed for p = 0.02,
Q = IOIQXQ, ex = 0.05 and R = Block dmg[O 02[25><25, 0. 01]25><25, 1. 0]25><25] Flg 10 shows
the result of tracking a periodic trajectory yq = {&sint + 55cost. The tracking performance of
the neuro-fuzzy controller is quite good.
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me=1.0kg
m=0.lkg
[=0.5m
g=9.8Im/sec’

H— Me

Figure 8: The inverted pendulum system.

Lo NB NS ZE PS PB
05¢f
0.0 __ _ N N

— Xiagax — — 7T 0.0 Xiagax — TT

X, X

loNB__ NM NS ZE PS PM PB
0.5

—2 A(,) =—15 i 00 ) 2l g ~—1s

Figure 9: Membership functions for x;,zs and u. N represents negative, P positive, ZFE approxi-
mately zero, S small, M medium, B big.

2) Planar Robot: Consider a two-link robot manipulator depicted in Fig. 11.

The equations of motion for the planar robot are as follows.

(m1 4+ m2)r? + mar3 4+ 2mariracs + J1 mari + m2r1r202]

mgrg + moriracs mQT% + Js
0 ] n { —m2T1TQSQQ1(Q}2+ d2) ] (58)
q2 mariraS2qs
n ((m1 + ma)lica + malacia)g _| W n dy
(m212012)g u2 d> |’
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0.1 /\;desired trajectory
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Figure 10: Simulation result of the inverted pendulum.

y A

'
X
Figure 11: A two-link robot manipulator

where ¢; = cos(q1), s12 = sin(q1 + ¢2), etc.. Let the combined effects of friction and the
external torque disturbance be assumed as

dy = 2.0sin(¢1) + 2.5sin(g2) + 0.5sin(t) (59)

dy = 5.0sin(¢1) + 4.0sin(g2) + 0.4sin(t)
The kinematics and inertia parameters of the robot are given by I; = 2.0m, I = 1.6m,
ry = 0.5ly, 72 = 0.5, J; = Jo = 5kg - m, m; = 0.5kg, ms = 6.35kg. The excessive ratio

between my and ms is to emphasize the load effect.
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The desired trajectory for the robot to track is given by :

q1da = 7/12sin(0.57t)

g2q = 2.5m/12c0s(0.57t) + 2.57/24c0s(0.257t) (60)

with the initial state ¢1(0) = —1.5rad, ¢2(0) = —1.2rad, ¢1(0) = Orad/sec, §2(0) = Orad/sec.
To reduce the number of adaptation parameters, only four linguistic labels for the qualitative
statements defined as {NB, NS, PS, PB} are used, where NB : f(z;) = 1/(1+exp(5(z;+1))),
NS : f(z;) = exp(—(wi + 0.6)%), PS : f(z:) = eap(—(z; — 0.6)%), PB : flw;) = 1/(1+
exp(=5(z; — 1))). Moreover, let a}p, = alp, = 0, ie., the left and right spreads of the
consequent membership function are equal in the adaptation period.

The initial parameters ¢/, (0) and ¢/,(0) are chosen randomly in the interval (—50, 50). To ob-

tain a set of appropriate initial parameters @(()w), thirty-two testing points uniformly distributed

along the desired trajectory are used in the least squares minimization process with the follow-
ing nominal inertia parameters: JY = 4.8kg-m, J? = 5.1kg - m, m? = 0.48kg, m3 = 6.30kg.
The design parameters in (40) and (58) are Q1 = Q2 = 10542, ex = 0.05, a1 1 = a1 = 100,
Q12 = Q22 = 65, R1 = Block diag[0.005125ﬁx256, 3000]256><2567 2000[256><256]: RQ = Block
diag[0.0051256x 256, 20001256256, 30001256 x256]-

Simulated responses for different sizes of deadzone are shown in Fig.12 where solid line and
dotted line denote p; = po = 0.01 and p; = py = 0.5, respectively. Only the results of joint 1
are shown since those of joint 2 are relatively good, compared to those of joint 1. It verifies
that the smaller the deadzone the higher the tracking accuracy.

10 15 20

@

200

100

10 15 20

(b)

Figure 12: Simulation results for joint 1 (a)position error vs. time (b)applied torque vs. time.
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8 Conclusion

For output tracking in composite affine nonlinear systems, this paper proposes a fuzzy controller
composed of decentralized approximate reasoning fuzzy system with adjustable rule credit assign-
ment mechanism cascaded with an interconnections compensating associative memory network and
a nonsingularity supervisor. The fuzzy controller can be naturally mapped into a four-layer net-
work structure. In this mapping, the weights of network represent a combination of the credits of
rules, shapes and locations of membership functions. The weights are tuned via a deadzone adap-
tation algorithm to compensate for the uncertainties. The incorporation of deadzone in controller
achieves on-line computation of decoupling control while guaranteeing the boundedness of network
weights and stability and the attenuation of tracking error to a prescribed level in the presence of
disturbance and approximation errors. In particular, it is assumed that that the functions f;(x,t),
vi(x,t) and g;(x) in the nonlinear plant model (1) describing the systems under investigation are
bounded and furthermore, their bounds are not explicitly used in controller design. Simulations of
the inverted pendulum and a two-link planar robot demonstrate the effectiveness and robustness of
the neuro-fuzzy controller in output tracking.

A Appendix
Appendix A

Proof of Fact 1 by Induction:

Suppose there are N rules Réi in the rule base Re ;. For notational simplicity, consider the ith
rule base and drop the subscript i later.

In the rule matching phase, suppose that the error e (¢) has two positive grades of membership,
AP(ey) and AP (e;) for some p (see Fig. 13) where the superscript of 4; denotes some membership
function of fuzzy partition and A7, A’f“ denote two neighboring membership functions in the
universe U;. Likewise, es(t) belongs to A2 and A%™ for some q,- - -, and e, (t) belongs to A? and
AST! for some s.

4f 4" A (e)+ 4 +1(‘31> =1

¢ (t) /‘31

Figure 13: Collections of fuzzy subsets partition.

In this situation, the n-input-one-output system uses 2" fuzzy rules since each linguistic variable
has two linguistic values. Let the following 2™ ( 2 < 2™ < N ) rules be fired:
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Rg),q,---ﬁ) .

1.g.
Rg)-i- 1q5"58) .

1o
R(é’:Q-i— yes8) .

(p+1,q4+1,--,5+1) |
R
e :

IF e is AY ANDeyis A3 AND---
THEN wis BP9 )

IF e is AP*" AND ey is AY AND---
THEN wis BP+1:0:9)

IF e is A ANDeyis AT AND--.
THEN wis BPatl:-s)

IF ey is AP™ AND eyis AT AND ..
THEN u is B®tLa+l,s+1)

where the superscript of Re indicates which rule in the rule base Re is fired.

Now, we prove Fact 1 by induction.

Suppose for n = some integer k, we have

Forn=k+1,

j=1

i Ale)
= Af(er)Al(ea) - Af(ex) +
AP (e) Al(en) - Af (ex)
Al (en) AT (e2) -- Ai(ek)
+A”'+1( )Aq+( 2) -+ Ay (ex)
= Al(er)Aj(e2) -~ Aj(er) +
(1—Al(e1))A (62) A( k) +

Af(er)(1 — Aj(e2)) - - AR (ex) +

+(L— Af(ex)) (1 — Aj(e2)) -+
= 1.

(1 — Ai(ex))

A(e)
[AT(e1) A3 (e2) - - A (ex) +
AT (er) A5 (e2) -+~ Af (ex)
Af(e) A5 (e2) -+~ A} (ex)

+AV T (e1) AT () - - A
+[A7 (e1) A3 (e2) - - - A (ex)
AV (e1) Al (e2) - - Af(ex)
AP (1) AL (e2) -+ Af (ex)

FAPT (e) AST (en) - - ATF (e)](1 — AL (ex41))

21

AND e, is A3,
AND e, is A3,

AND e, is A},

AND e, is ASH!

Let n = 1, we have 2! fired rules and ZN
AP(e1)+ AP (e;). Since LR parametrization is chosen such that (20) holds, one has E L Al(e)

/(e

) =
=1.

(61)

(62)



In view of (83), we deduce that Ejvzl Ale) =1.
Q.ED.
Appendix B

The derivation of (23) is provided in this appendix. '
Let by ; = by ; = 2. Now, refer to Fig. 5. For input matching degree g/, at the left intersection

point u4, by (22) we have
¢ u -
o i uA
glg:<1+(uz. 7 )2>
WL

i iia]L,i (9)) -1

While at the right intersection point up, we have similarly the relation

: -1

j Chi — UB

il =1+ (e
ﬂzqia’g%,i

up = ¢}, ; + Bliap A\ (G)71 —1

or

’U,A:C‘;

or

Thus, by definition, .
;= (ua+up)/2

)2

which derives the relation (23).
Appendix C

This appendix derives the weighted center-average defuzzification of single-input single-output
fuzzy system.

The weighted center-average defuzzification method considers contributions from all possible con-
trol actions and evaluates the final control in proportion to the matching degree of each fuzzy output.
Thus, for input s, the output of the fuzzy system is calculated as

> wl - A'(s) o Ri(s, @) - &/
u= :
>, - A(s) o Rl (s, )

where 4/ is the point in U at which A’(s) o Ri(s,u) achieves its maximum value. Then, using
LMOM implication, the above equation reduces to

. ijj - Al(s) ¢,
TX, W AT()

By the use of (21), (23), (24), the equation is rearranged as

S Wl Al(w) - E + Y0 Al(e) - 6
S wi - Al (z) + YN Ai(e)
—0°")" f(x) +ga —a”e
wlg(z) +1

This is the equation (25) for single-input single-output case.
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