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ABSTRACT

In this article, we propose a new thinning algorithm based on line sweep operation.
A line sweep is a process where the plane figure is divided into parallel slabs by lines
passing through certain “events” and items are then processed according to an order
of the slabs. Assuming that the contour of the figure to be thinned have been approxi-
mated by polygons, the “events” are then the vertices of the polygons and the line
sweep algorithm looks for pairs of edges that lie within each slab.

The pairing of edges are useful for detecting both regular and intersection regions.
The regular regions can be found at the site where pairings between edges exist. Inter-
section regions, on the other hand, are where such relations would cease to exist, due
to the fact that pair relations between edges of wide distance were canceled. A salient
feature of our approach is to find simultaneously the set of regular regions that attach
to the same intersection region. Such a set is thus called an intersection set.

The output of our algorithm consists of skeletons as well as intersection sets. Both
of them can be used as features for subsequent character recognition. Moreover, the
line sweep thinning algorithm is efficient in computation as compared with a pixel—
based thinning algorithm which outputs skeletons only.

1. INTRODUCTION

A common practice of optical character recognition (OCR) is to proceed with a process
which extracts features out of character images. To cope with the high degree of deviations of
characters in either machine—printed or handwritten form, the extracted features are ex-
pected to meet the following three fundamental requirements. (1) Their shapes agree with the
intuition of human beings. (ii) Their forms are tractable for the purpose of subsequent compu-
tations in character recognition. (iii) Their types are stable relative to possible deviations of

printed or written characters.



Strokes have long been suggested as a type of feature for OCR purpose, for the obvious rea-
son that strokes are the units forming characters. From the image point of view, however,
strokes are inferred entities, extracted from more basic features in the images. Moreover, the
task of the inference is made more difficult by the fact that many strokes do not exist in isola-
tion, but intersect with or merge into other strokes. Examples of stroke intersection are seen
in the English letters, such as T, "X, etc., where two strokes either touch or cross each other.
An example of stroke merging can be seen in the case of two English letters ’tt’ connected with
each other so that their horizontal strokes merge into one stroke.

Pixel—based thinning algorithms (see [1] for survey), which are based on gradually remov-
ing pixels from characters, do not solve the above problems well. In spite of large time con-
sumption on a sequential machine, many of the algorithms result in skeletons which are ambig-
uous in the intersection regions.

An alternate approach has been direct vectorization of the planar regions composing the
shape. The earliest such attempt was based on linking black intervals on adjacent scan lines
thus forming stacks of vertical or nearly vertical runs that are then mapped into vectors. This
simple approach has trouble handling nearly horizontal strokes. A more sophisticated ap-
proach along these lines is described in [2]. That paper includes references to earlier work go-
ing as far back as 1958. While this method handles successfully cases that earlier approach
could not, it still suffers from some of the same problems of pixel based techniques, although it
is much faster in computation.

The recent efforts in coping with the above difficulties have developed along two directions.
In one of them, an attempt is to divide the plane figure of character into areas that are non—ov-
erlapping parts of strokes and those that are overlapping parts. This direction has been taken
by Mahmoud, Haiba and Green [3], Li and Suen [4], and also Nishida, Suzuki and Mori [5].
The commonalty among these approaches is to seek a way to identify the compact shapes in
a plan figure before thinning them into lines. Nishida, Suzuki and Mori, in particular, consid-

ered the region to be thinned as consisting of two contour arcs that can be matched to each



other. They named this type of region as regular, as opposed to singular region that is not to
be thinned.

The other direction is taken by Chouinard and Plamondon [6]. Their approach is to use a
line —following scheme to move along pairs of pixels that lie on the character contour. Each
pair of pixels is supposed to determine a point on the thinned line to be produced. Rather than
bypassing thinning operation to the intersection regions, their scheme uses a window to detect
the shape and type of each region to make more accurate thinning.

The current paper develops a method to identify the regular regions, in the sense of Nishida,
Suzuki and Mori, and it also analyses the type of intersection regions, studied by Chouinard
and Plamondon. Our method is based on a general concept of line sweep (also called plane
sweep [7], pp. 10—11). One major advantage of using a general method is the ease of imple-
mentation. In addition, it results in faster execution because of the efficiency of such a proce-
dure.

The proposed method assumes that the contour of the shape to be analyzed has been ap-
proximated by polygons. It then looks for pairs of edges of the polygons that are nearly parallel
and are also close to each other according to certain measure. The pairing of edges is useful
for detecting the existence of both regular and intersection regions and also for determining
their shape. For example, regular regions can be found at the site where pairing between edges
exist. Such a pairing relation ceases to exist at intersection regions. A salient feature of our ap-
proach is to find simultaneously the set of regular regions that attach to the same intersection
region. Such a set is called an intersection set. We base this approach on the observation that,
although an intersection set is structurally more complex than a stroke, the former is neverthe-
less more basic and also more stable than the latter from the image viewpoint.

When all the intersection sets have been determined, it is possible to obtain a skeleton
throughout the character figure. The outcome of our algorithm is not only a set of thinned lines,
but also the identification of the pattern that is associated with each intersection set. It is felt

that the pattern identity of intersection sets can sometimes be more useful for OCR purpose.



For one thing, in the case of connected letters ’tt,” it is more important to detect two crosses
within the connected figures than merely constructing the thinned lines. While the description
of the algorithm is rather complicated, the time of its execution is quite short as we show in
Section 6.

This article is organized as follows. The next section describes the line sweep procedure
which pairs polygon edges. Section 3 shows how paths are formed out of edges by means of
their pairing relations. Section 4 consists of the description of the procedure for finding inter-
section sets and the application to feature analysis. Section 5 describes thinning process and

Section 6 is about experimental results. Finally, a conclusion is made at Section 7.

2. LINE SWEEP ALGORITHM

Line sweep is a process where the plane figure is divided into parallel slabs divided by lines
passing through certain “events” and items are then processed according to an order of the
slabs. In our case, the “events” are vertices of the polygon. It is easy to construct a linked list
for each slab in which the edges are sorted according to certain order. In the example of Figure
1, the dashed lines define the slabs which are labeled by capital letters. In each slab, the edges
can be ordered from left to right. For example, edge (1,2) can be placed ahead of (8,1) in the
linked list for slab A, and (1,2) ahead of (7,8) in the list for slab B, etc.

Figure 1. The plan is divided into parallel slabs.

Usually the number of edges per slab is much smaller than the total number of edges, so

that algorithms of complexity O(N?2) are converted into algorithms of complexity O(Nlog,N).



In our case, rather than considering all possible pairs to find which ones are nearly parallel,
we sort them first and then apply the line sweep algorithm.

The algorithm may miss edges that are nearly parallel to the slab direction, so it is applied
twice to find all pairs of edges that are mutually visible either in the horizontal or in the vertical
direction. Two matrices My and My are used to register the mutually visibility of edges in the
horizontal and vertical direction, respectively. They are defined as follows. Let S be a structure
associated with an edge with two members {x, j}, where j is the label of S and x is the distance
of the intersection of S with a horizontal sweep line (one per slab) measured from an arbitrary
start. Let S[1], S[2], . . ., S[n] be a list of the structures sorted according to x. If we apply a line
sweep algorithm in the horizontal direction that avoids singularities (for example [8]), n will

always be even. Then we set
Mu[S[iL41[S[i+114] = MulS[i+114][S[il4] = 1,

fori=1,3,5,...,m—1, and zero otherwise.

Figure 2. The region between j and k is the area enclosed by j, k and the two horizontal lines. The
distance between j and k is min(a,b).

In Figure 2, edge j and k are mutually visible in the horizontal direction, i.e., Mg][j][k]
=My[k][j]=1. The area enclosed by j, k and the two (dashed) horizontal lines is called the re-
gion between j and k, a useful notion in later context. To avoid pairing edges which are widely
apart, we would always reset My[j][k] and My[k][j] to zero, if the distance between j and k,
defined in Figure 2, is greater than a threshold value Thy. The value we use in our experiments
for Thyy is 1/6 width of the box that encloses a given character.

The matrix My can be similarly defined, and is also subject to a similar distance restriction.



When j and k are two edges with My[j][k]=1 (Mvy[j][k]=1), we say that j is a H—counterpart
(V—counterpart) of k and vice versa. Moreover, we say that j is a left (upper) or right (lower)
edge, according to whether j lies at an odd or even position of the linked list associated with
a slab determined by horizontal (vertical) line sweep. In the example of Figure 1, (1,2), (2,3),
and (4,5) are left edges and (3,4), (6,7), (7,8) and (8,1) are right edges.

3. CONSTRUCTION OF PATHS

Intuitively, a stroke can be conceived as a pair of arcs with maximal matching. To make this
concept rigorous, we use two linked lists, each representing one of the paired arcs.

We start with constructing paired arcs with the help of the relationship represented by My
and My The resulting entities are called H— and V —paths. We then merge H— and V—paths

into extended paths. Details of construction are given as follows.

3.1 Construction of H— and V—Paths

We start with the construction of H—paths. In this case, we use a linked list A to collect left
edges and another linked list B to collect right edges. The operation of adding (i.e, inserting
or appending) edges to A or B is as follows.

First, we say that two edges are vertex—connected, if they share a common vertex. On the
other hand, edge m and n are said to be H—connected, if there exists a horizontal line l between
m and n. Finally, two edges are said to be connected, if they are either vertex—connected or
H—connected.

Now, starting with a pair of empty linked list A and B, we can add first a left edge j to A
and then a right edge k to B, if k is a H—counterpart of j. At the next step, we add a left edge
m to A, if m satisfies the following condition.

Condition C: m is connected with an outstanding (i.e., the first or last) element of A, and
m has a H—counterpart n such that n is either itself an outstanding element of B or n is con-

nected with an outstanding element of B. In case m is H—connected with an outstanding ele-



ment p of A, we shall add both m and m’ to A, where m’ is the horizontal line lying between

m and p (Figure 3).

Figure 3. Edge m is H—connected with an element of A, n is a H—counterpart of m, and m’ is

a horizontal edge lying between m and an element of A.

We keep on adding left edges to A, as long as they satisfy Condition C one after the other.
Then, we go on adding right edges to B, so long as each one of them satisfies a similar condition.
The operation is switched between A and B alternatively, until no edge can be possibly added
to either of them.

Having constructed a pair of linked lists, we go on to construct another pair of linked list
by adding an unused edge to each of them and proceeding as in the above. When we have con-
structed all possible pairs of linked lists, we want to further determine the endpoints for each
linked list. For this purpose, we assume the following order convention for edges and vertices.

Convention: The points on a polygon and the edges of a polygon are ordered in such a way
that when one moves along the polygon from one point to another point, or from an edge to
another edge, the interior of the polygon always lies on one’s left—hand side (for example,
[10]). When point (edge) I' comes ahead of point A (edge) in such an order, we use "T'—+A”
to represent their relation.

We say that 7 is a point of A, if  lies on an edge contained in A. Also, we say that e is an
edge of P=(A,B), if e is contained in either A or B.

Now for a given pair of linked lists (A,B), we first determine the endpoints for A as follows.

Let o and f be the first and last vertex of A, where the order of vertices are specified as in
the Convention. The endpoints of A will be derived from o and 3 in the following way (Figure

4a).



Suppose that a lies on edge j, of A. If j, does not appear in any other paired linked list, then
a is taken as an endpoint of A. Otherwise, we choose a point w,, as follows. Let Q,=1{E: § is
on j, and § lies on a horizontal line that passes through a vertex of B}. Then i, is taken as the
point in Q, such that |y(a)—y(my) | =min{ |y(a)—y(E)|: Eisin Q}, where y( - ) is the y—coor-
dinate of a given point. We derive the other endpoint of A from f in a similar way. The end-

points for B can be determined similarly.

P @) (b) (©)

Figure 4. (a) Creation of a new vertex 7y and a new edge (7, B). (b) Vertex y is a terminal. (c)
Vertices d and € are terminals.

Remark: In Figure 4, not all edges on the character contour are shown. But it is assumed that
if an edge is not shown in the figure, it is not part of the path discussed in the text. The same
remark also applies to all the forthcoming figures.

In what follows, we shall refer to the endpoints of paths also as vertices. The line segments
between two consecutive vertices are still called edges. One can conceive the original polygon
edges as now divided into several pieces at the newly added vertices, and each of the pieces
now being taken as an edge. Thus, back in the example of Figure 4a, point i, is now taken as
a vertex and (m ) is taken as an edge.

We now summarize the procedure for constructing paired linked lists as follows.

1) Starting with two empty linked lists A and B, add any left edge to A.

2) Insert or append right edges to B, if they satisfy Condition C.

3) Insert or append left edges to A, if they satisfy a similar condition.

4) Iteratively apply 2) and 3) until no more edge can be inserted or appended to A or B.
5) Construct all other pairs of linked lists, following steps 1 to 4.

6) Determine endpoints for each linked list thus constructed.



If A and B are two linked lists constructed in the above procedure, we shall refer to the pair
(A,B) as a H—path. We shall refer to A and B as flanks of P. It can be easily shown that a flank
is always a continuous curve. A V—path can be similarly defined as a pair of linked lists
Q=(C,D), where C consists of upper edges and D consists of lower edges. Linked lists C and
D are also referred to as flanks of Q.

Suppose that (A,B) is a H— (V—) path. If A and B share an endpoint y (Figure 4b), then
v is called a terminal. If, on the other hand, an endpoint d of A is connected with an endpoint
¢ of B by way of a horizontal (vertical) line (Figure 4c), then 8 and ¢ are also called terminals.

Two flanks are said to be connected, if one of the following conditions holds. (i) They share
a common endpoint . (ii) They share a common edge. (iii) Their endpoints are connected by

edges which do not have any H— or V—counterpart (in short, counterpart).

3.2 Construction of Extended Paths

We now construct extended paths out of H— and V —paths in the following way.
A H—path R can be merged with a V—path S to form an extended path T, provided each

flank of R is connected with a flank of S, and conversely.

Figure 5. (a) Two paths with a terminal are merged into an extended path. (b) Two paths without
any terminal are merged into an extended path.

In Figure 5a, the H—path R=¢{(1,y),(v,9)},{(a,p),(B,1)}) can be merged with the V—path
S={(B,1),(1,y)},{(a,p) }). In Figure 5b, the H—path R=({(3,0)},{(,6)}) can be merged with
the V—path S=({(y,2)}, {(6,8)}). Note that, in Figure 5b, the flank {(Y,2)} of S does not share
any endpoint or edge with the flank {(3,8)} of R. Instead, their endpoints are connected by

edge (2,3), which has no counterpart.



When two paths R and S are merged into an extended path T, their flanks A and B are deter-
mined as follows. First, we consider the case in which R and S have a terminal (Figure 5a). Let
A={e:eisanendpoint of R or S}, a be the first element of A, and § the last element of A, where
the order is given as in the Convention. Also, let [T={t: tis a terminal of R or S},  be the first
element of I and y be the last element of I1 Then, let A be the linked list which is composed
of all edges lying between y and 9, and B be the linked list which is composed of all edges lying
between a and f3. Next, we consider the case in which R and S do not have any terminal (Figure
5b). Then, the extended path T has two separate connected sets. Let o and § be the first and
last endpoint of one set, and y and d be the first and last endpoint of the other set. Then, again,
let A be the linked list which is composed of all edges that lie between y and 0, and B be the
linked list which is composed of all edges that lie between o and 3. In either case, the extended
path T is represented as (A,B).

We can further merge an extended path T with another H— or V—path U to generate an
even larger extended path, provided the same conditions for merging holds between T and U.
When the new extended path is generated, its flanks are also determined in the same way as
described in the above. The merging is continued, until there is no more H— or V— path that
can be merged with the extended path lastly formed.

Having completed the construction of an extended path, we mark those H— and V —paths
comprised in it. We then continue to construct other extended paths out of the unmarked H—
or V—paths, until we exhaust all the possible ones.

For a H— or V—path R to be merged with another path S, every flank of R has to be con-
nected with a flank of S, and also conversely. In Figure 6, path R=({(4,5)}, {(6,7)}) can not
be merged with S=({(1,2)},{(3,4),(4,5),(5,6),(6,7),(7,8)}), since both flanks of R are con-
nected with the right flank of S but the left flank of S is not connected with any flank of R. In
this example, however, all the edges of R are comprised in a flank of S. When this is the case,

we say that R embeds in S.
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Figure 6. The V—path R embeds in the extended path, which is identical to the H—path S in this
example.

From now on, we shall only deal with extended paths. When no confusion can be possibly
generated, we shall simply refer to them as paths. For the time being, we shall focus on the paths
which do not embed in any other paths. Those which embed in some other paths will be treated

as special case.

4. FEATURE ANALYSIS

The paths constructed thus far do not exactly match with our intuitive notion of strokes. In
Figure 7, for example, we see that path P=({(2,3),(3,4)},{(7,8),(8,1)}) overlaps much with a
vertical stroke. However, P contains an edge (7,8) which in our intuition should be part of a

horizontal stroke.

[

Figure 7. The edge (6,7) is contained in both the horizontal and vertical stroke.

Note that, in Figure 7, if the cross formed by the horizontal and vertical stroke occupies a
large proportion of the character, such as in English letter ’t,” then the pairing between edges
(3,4) and (7,8) would be eliminated due to their wide distance. However, when the cross only
occupies a small fraction of the character (e.g. some Chinese character), the pairing would not
be eliminated, giving rise to the above problem.

In a series of papers [9—11] reporting our former experimental works, we viewed the prob-

lem as generated by the conflict between two paths. One of them is path P=({(2,3),(3,4)},
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{(7,8),(8,1)}), and the other is path Q=¢{(7,8)},{(5,6)}). Since both P and Q contain edge
(7,8), there is a conflict between them. Our approach was then to use rules to resolve the con-
flict based on the shape of P and Q. The disadvantage of this approach lies in the fact that the
shape of paths can vary drastically and it is rather difficult to come up with reasonable rules
for conflict resolution.

This paper uses a new approach. Rather than determining the shape of each path individu-
ally, we determine simultaneously the shape of all paths that attach to the same intersection
region. Since the location of the intersection region can not be known in advance, our approach
relies on the following process. We start with a path P, and look for any path neighboring to
it, and also any path neighboring to its neighbor, etc. When such a process leads back to P
again, we have found an intersection set.

One immediate benefit of the above process is the following. Those paths which do not par-
ticipate with any other paths to form an intersection set would be eliminated. The second bene-
fit of the process is to provide a way to resolve the conflicts between paths, now formulated
in the following way. When moving from one path to the next in the process, there might be
ambiguities as to where to set a break point between two neighboring paths. This happens
when two paths share some common edge(s), as in the example of Figure 7. To solve this prob-
lem, we allow ourselves to consider all possible combinations of candidates for break point.
We then base on a measure of the shape of each possible combination to select the one with
the best shape.

We shall now describe the detailed implementation of the algorithm in the forthcoming sub-

sections.

4.1 Description of the Plan

The next two subsections carry the heaviest load of technical contents in this article, and
deserve an overview here.
First we define a few terms. A pair of points forms an end of path, if one of them is the first

endpoint of a flank, and the other is the last endpoint of the opposite flank. Thus, in the exam-
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ple of Figure 8a, vertices a and f§ constitute an end of path P=(A,B), where a is the last end-
point of flank A, and f is the first endpoint of flank B. Path P has another end, in this case de-
generating into a single vertex y. In the example of Figure 8b, both ends of path Q consist of

two vertices.

‘y -/_
Ap B Qy
o T8 o
-
(a) (b)

Figure 8. Points labeled by Greek letters constitute the endpoints of paths P and Q.

When an end consists of one vertex only or it consists of two vertices connected by edges
belonging to the path, it is called a closed end. The endpoints of a closed end are called fermi-
nals. If an end is not a closed end, it is called an open end. When two endpoints o and f form
an open end, we shall denote them as [a,]. The order within the bracket is immaterial.

Recall that if j and k are two edges with My[j][k]=Mg[k][j]=1, then the area enclosed by
j» k and two horizontal lines is called the region between j and k (cf. Figure 2). Now, if P is a
H—path, then the region of P=(A,B) is defined as the union of all the regions formed between
pairs j and k, where j falls in A, k in B, and My[j][k]=Mpg[k][j]=1. Note that the region of P
is the area enclosed by A, B and two horizontal lines, called end—lines (Appendix A). If the
region of a V—path is defined in a similar way, then we define the region of an extended path
T to be the union of regions formed by all the H— and V —paths that are comprised in T.

If two paths do not share any contour point but their regions have non—trivial intersection,
namely, their intersection is more than single points, then they are said to cross each other (Fig-
ure 9a). The necessary and sufficient conditions for two paths to cross each other is the follow-
ing: both paths have two open ends and one of them is a H—path and the other a V—path and

their end—lines intersect with each other (Appendix A).
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Figure 9. Let P=({(1,2)},{(3,4)}) and Q=({(5,6),(7,8)}). (a) P crosses Q. (b) P inserts in Q. (c)
P makes normal intersection with Q.

If a flank of P is a proper subset of Q and another flank of P does not overlap with Q, then
P is said to insert in Q (Figure 9b). On the other hand, if P does not cross or insert in Q, nor
does Q insert in P, but P has a flank overlapping with a flank of Q, then P is said to make a
normal intersection with Q (figure 9c¢).

Thus, for any two paths whose regions have non—empty intersection, only one of the follow-
ing conditions can hold between them. (i) They cross each other. (ii) One of them inserts in
the other. (iii) They make a normal intersection.

When condition (i) or (ii) in the above holds between two paths, each of them is called a
traversable path. The rationale for this terminology is given as follows.

When two paths cross each other, or when one path inserts in another path, there is a con-
flict between the two paths and one of them must be completely or partially eliminated.
Whether a path is retained or eliminated has much to do with its shape. As mentioned in the
above, the shape of a path is determined by its relationship with all the paths that forms a syner-
gy, to be called intersection set. Thus, we allow various synergies to be formed with or without
the conflicting paths. Thus, a conflicting path can be excluded from a synergy even when it
stands in the middle of the paths within this synergy. For this purpose, we adopt the following
definition.

Path Q is a neighboring path of P, if one of the following conditions holds. (i) Q makes a nor-
mal intersection with P. (ii) A flank of P is connected with a flank of Q by some edges having
no counterpart. (iii) A flank of P is connected with a flank of Q by some edges of a traversable

path.
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Figure 10. Movement from the flank A and endpoint o of path P.

To form a synergy of paths, we start with a path P=(A,B) and an open end [a,f] of P. Our
goal is to find a neighboring path Q=(C,D) of P and an open end [vy,8] of Q that is supposed
to attach to the same intersection region as [a,f3] (Figure 10). Note that it is not necessary that
[a,p] and [y,8] share any common point. From Q and [y,8], we go on to find a path neighboring
to Q and its associated open end, etc. If, by continuing this operation, we are able to get back
to P and [a,p], then we have found a collection of paths that forms an intersection set.

It is possible that there exist more than one intersection set for a given open end of a given
path. Thus, we need a way for deciding the most appropriate intersection set for it. When a
unitary intersection set has been found, we can further determine the break points between
the neighboring paths in such a set. The technique for finding the possible intersection sets,
deciding the unitary one, and setting the break points will be described in Subsection 4.2.

With the technique developed there, we proceed in the following way.

(1) First, we examine all the paths which are in conflict with each other. They are the paths
that cross or insert in other paths. For each open end of such paths, we find the associated uni-
tary intersection set. With the break points between neighboring paths determined, we are
then able to compute the length—to—width ratio of each conflicting path, and use this metric
to determine whether to eliminate or retain each of the conflicting paths.

(2) The next step is to construct all the intersection sets for the remaining paths. For this
purpose, we follow a simple sequential procedure. We look for a path in which there are still
some unmarked edges, and find the unitary intersection set associated with each of its open
ends. When such an intersection set is obtained, we mark all the edges and open ends com-

prised in it. We then go on to look for another path with unmarked edges and repeat the above
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process. The construction of intersection sets is completed when we are left with no unmarked
edges.

(3) With a modified technique, we can also obtain a unitary intersection set associated with
an embedding path P and two separate parts of the path in which P embeds. We can then com-
pute the length—to—width ratio of P and use this metric to determine whether to eliminate
or retain P.

(4) For each of the remaining paths, we compute its length—to—width ratio and use this
metric to determine whether to eliminate or retain the path. When a path is eliminated, a new
intersection set will be constructed out of its neighboring paths.

The implementation details of the above listed steps will be developed in Subsection 4.3.

Having read through the overview as given in this subsection, the readers who are not anx-
ious to immerse themselves in the technicality involved in the procedures can proceed to Sec-

tion 5.

4.2 The Procedure for Finding Intersection Sets

This subsection is devoted to the procedure for finding, from an arbitrarily given starting

point, all possible intersection sets and deciding the most appropriate one among them.

4.2.1 Starting with an Initial Path

Given a path P=(A,B) and an open end [a,f] of P, with a being the last endpoint of A and
B the first endpoint of B. To look for a neighboring path Q of P, we always start with the flank
whose last endpoint falls within the open end [a,3]. By assumption, this is flank A. We now look
for a path Q in connection with A. There are two possibilities. (i) Q does not have any flank
sharing edges with A. (ii) Q has a flank sharing some edge with A. We shall consider both of
them.

For the first possibility, we move from vertex o along the contour and look for the first edge
e having a counterpart f (Figure 11a). Here, again, we assume that the edges are ordered ac-

cording to the Convention specified in Subsection 3.1. We then look for a path Q with one flank
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containing e and another flank containing f. Q is certainly not the same as P. If Q happens to
be a traversable path, then we also look for the first edge ¢’ outside Q that has a counterpart
f’. Let Q' be the path with one flank containing e’ and another flank containing f’. By defini-

tion, both Q and Q' are neighboring paths of P.

Figure 11. (a) Edge e lies outside of flank A. (b) Edge g lies within flank A.

For the second possibility, we look for all those edges within A which have a counterpart
not in B. Let g be one such edge within A and let h be a counterpart of g not contained in B
(Figure 11b). We then look for any path with one flank containing g and another flank contain-
ing h. This path is certainly not the same as P, since h is not contained in B. There may be more

than one such g and h, and thus more than one neighboring path of P.

4.2.2 Proceeding from a Neighboring Path

Let Q=(C,D) be a neighboring path of P=(A,B). We want to determine the open end [y,0]
of Q which would, intuitively speaking, attach to the same intersection region as the open end
[0,B] of P.

Assuming that flank C is connected with flank A and a is an endpoint of A, we determine
[v,8] in the following way. Since «a is the last endpoint of A, vy is taken as the first endpoint of
C (Figure 12). When y has been determined, 9 is taken as the endpoint of D such that [vy,d]
forms an open end of Q. Note that § must be the last endpoint of D.

Having determined the open end of Q, we can then proceed as in Subsection 4.2.1 to find

neighboring path R of Q, with a flank of R connected with flank D of Q (Figure 12).
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Figure 12. Determination of open end [y,8] of Q and a neighboring path R of Q.

4.2.3 Finding Intersection Sets

III

10%

Figure 13. Tree representation of a procedure.

The procedure for finding intersection sets can be represented as a tree, illustrated in Fig-
ure 13, where the node (horizontal bar) represents a pair consisting of a path X and an open
end ey of X, and the link between a node A at level 1 and a node B at level i+1 signifies the
fact that, when we apply the operation as described in Subsections 4.2.1 or that in 4.2.2 to A,
we would obtain B. Thus, our procedure starts with the root of the tree, namely node (P, e;)
at level L. It then splits into as many sub—procedures as the number of possible neighboring
paths obtained by the operation. Each of the sub—procedure, in turn, splits into one or more
than one sub—procedure.

There are two stopping criteria for the tree development. (1) No branch will be developed
from any node which is located at the N—th level. This means that we are only interested in

intersection set with no more than N—1 paths. The number N, of course, varies in applications.
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(2) When a node at any level between 1st and N—th is found to be identical to the root, no
branch will be further developed from it.

We define T—sequence as a sequence Ny, N, ... such that Nj is a node at level i, and there
is a link between Nj and Nj4 1, fori= 1, 2, ... The purpose of our procedure is to find a T—se-
quence Ny, Ny, ... such that Ny 1=Nj and, moreover, no path appears twice in the subsequence
N1, Ny, ..., Nj. When this is the case, we say that there is an intersection set N1, N, ..., Ny found
within such a tree structure. Thus, for example, if node (V, ey) in the tree structure of Figure
13 is identical to (P, ep), then we have found an intersection set (P, €p), (Q, eq), and (T, ey).

We now consider two examples.

L 16 13 12

T \%%
_2A_ _ 1
33716 71 [0

Y X

Figure 14. First example.

In the first example (Figure 14), we assume that U= ({(2,3)},{(10,11)}) is a path whose
width does not exceed 1/6 width of the character (not completely shown). From U and
ey=[2,11], one obtains W=({(13,14)},{(11,12)}) as a neighboring path of U and ey,=[11,14]
as the open end associated with W. Form W and ey, one obtains V=({(14,15)},{(6,7)}) and
ey=[14,7]. Thenceforth, one obtains X=({(7,8)},{9,10}) and ex=[7,10],and U and e,,'=[3,10].
Note that e, is not the same as e,. From U and e’ one further obtains the following subse-
quence: Y=({(3,4)},{(5,6)}) and ey=[3,6], V and e,'=[15,6], T=¢{(1,2)},{(15,16)}) and
et=[2,15], and finally U and e,. Thus, one has finally obtain U and e,,. However, the subse-
quence leading from U and e, to themselves is not deemed as an intersection set, since paths
U and V appear twice before U and e, are ever reached.

Note that in this example paths U and V cross each other, and V serves as a "wormhole,”

through which one can travel from one end of U to its other end.
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Figure 15. Second example.

In the second example (Figure 15), let P=({(2,3)},{(7,8)}). Note that path P does not end
at point 4 but ends at point 3, due to the fact that the polygon edge (2,4) is divided into two
pieces and the piece (3,4) becomes an edge (cf. Figure 4a for a similar case). Thus, from P and
ep=[2,8], one would obtain the following subsequence: S=({(11,12),(12,13)},{(9,10)}) and
es=[9,13], R=({{(1,2),(2,3),(3,4)},{(12,13),(13,14)}) and e,=[4,12], Q=({(4,5) },{(6,7) }) and
eq=[4,7], P and ep'=[3,7]. The sequence leading from Q and eq can not possibly contain an
intersection set, since P appears twice and ey, is not yet reached.

In this example, path P inserts in path R and R serves as a "wormhole” for one to travel be-

tween two ends of P.

4.2.4 Determination of Break Points

Given an intersection set consisting of paths Py, P», ..., Pj, we need to determine the break
points between neighboring paths. For i=1, 2, ..., J, the break point between P; and P;j4 1 is de-
noted as B;, where Py, is assumed to be Pj.

Let us first determine the candidates for the break point between P; and Pj4 . If the two
paths meet at a single vertex vy, then vy is the only candidate. If, on the other hand, P; and P;4
share some edges, then we recruit all the vertices and midpoints of the common edges as the
candidates. If P and P; 1 do not have any common edge or common endpoint, then their end-
points must be connected by some edges with no counterpart or some edges of a traversable

path. In this case, the candidates are taken an the vertices and midpoints of those edges.
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Figure 16. Vertices 3, 4, 5, 6, 8 and 9, and midpoints of (3,4) and (8,9) are candidates for break
points.

In Figure 16, for example, P=({(2,3),(3,4)},1(8,9),(9,1)}) and Q=¢({(8,9)},{(6,7)}) share
(8,9) as a common edge. Thus, vertices 8 and 9 and the midpoint of (8,9) are the candidates
for break point between P and Q.

Let Sj={y: v is a candidate for break point between P; and P+ 1}, fori=1, 2, ..., J. We now

consider all the possible sequences of candidates v1, Y2, ..., Y5, where yj is in S; for i=1, 2, ...,

J. For each candidate sequence, we define its shape measure as ziJ=1S(YiYi +1)> Where s(.) is

the size (i.e., length) of a given line segment. We then choose the sequence whose shape mea-
sure is smallest among all candidate sequences. The set of points in the chosen sequence will
be called junction.

In the example of Figure 16, the junction consists of points 3, 5, 6 and 9. We use thick lines
to connect the consecutive points in the junction. The region enclosed by the thick lines will

be called junction region.

4.2.5 Selection of Intersection Sets

The existence of traversable paths (cf. Subsection 4.1) implies the possibility of obtaining
more than one intersection set from the same open end of the same path. Two intersection sets
are said to be competing with each other, if they both are obtained from the starting point. In
this subsection, we describe the rule for eliminating intersection sets and that for selecting
among competing intersection sets.

Let an intersection set IS comprise paths Py, Py, ..., Py and the break point between P; and

Pi+1 be Bifori=1, 2, ..., J. We set
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d(IS)= max{_,s(B,B,),

namely, the maximal distance of 31 to the other break points in IS. We also set

m(IS)= maX*iT= (SBBi s
namely, the size of the longest line segment connecting the break points in IS.

First, we stipulate the following rule.

Rule A. If an intersection set IS has d(IS)>Thy, then IS is aborted.

The value of Thy is taken as max(Thy, Thy), where we recall that Thyy (Thy) is the thresh-
old that regulates the distance between an edge and its H— (V —) counterpart. The reason to
set such a restriction is to avoid mis—identifying as intersection set the smeared part of a char-
acter caused by certain kinds of pollution.

Next, we use the following rule as the selection rule for competing intersection sets.

Rule B. Let ISy, IS, ..., IS, be the intersection sets that are obtained from the same open
end ep of P. We select IS; as the unitary intersection set associated with (P, ep), provided
m(IS;)= minj?l= 1 m(ISj).

Referring back to the example of Figure 14, we see that path U and V cross each other. Thus,
if we start from the pair (T, e;), we obtain the following three intersections sets.

IS1: (T, ep), (Y, ey), (V; ey),
IS7: (T ), (U, ey), (W, ey),
IS3: (T, en)s (Y, ey), (X, ex), (W, ew).

One can see that the longest line segment in IS; is spanned by break point 2 and 11, that
within IS3 is spanned by 14 and 15, and that within 1S3 is spanned by 15 and the midpoint of
(2, 3). Thus, m(IS7)>m(IS3)>m(IS1) and IS is the chosen winner, according to Rule B. We
observe that the longer the path V, the better the chance for IS to beat the other two intersec-
tion sets, since the longest line segment in IS, and that in IS3 actually traverse through the re-

gion of V.
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In the example of Figure 15, we see that path P inserts in path R. Since the two paths are
traversable, it follows that if one starts with the pair (R, e;), one would obtain two different
intersection sets.

IS4: (R, er), (B, ep), (Q, eq)s
ISs: (R, &), (Q, €g).

Here again, we observe that the longer the path P, the better the chance for IS4 to beat IS5,
since the only line segment connecting the break points in IS5 traverses through the region of
P. The two observations motivate us to define a shape measure called length—to—width ratio,
to be described in Subsection 4.3.1.

In the end of this subsection, we put forth some remarks regarding how to accelerate the
procedure for finding intersection sets.

Because of the existence of traversable paths, we may waste time on generating all possible
nodes, while many of them are really useless. Thus, to avoid the repetitive search for the same
neighboring paths from the same given paths, we can pre—store the relationship as repre-
sented by {(P, ep), (Q, eq)}, indicating that (Q, eq) can be obtained from (P, ep,) by the proce-
dure as described in Subsection 4.2.1 or that in 4.2.2. Moreover, we can also pre —store the can-
didates for break—point between (P, €p) and (Q, €4), so as to facilitate the procedure for deter-
mining break points for each intersection set that is found.

Next, in developing the tree structure as described in Subsection 4.2.3, we can do the follow-
ing step to avoid conducting useless searches to further depth. For every node Nd; generated

at level 1, we define
v(i)=min{s(y1Yj): Vi is a candidate for break point between Nd; and Nd;;1}.

If v(i)>Thy, then we stop generating any new node from Nd;. This is reasonable, since
v(i) =s(B1pi) =d(IS), where f; is the break point between Nd; and Nd; ;1 and IS is the intersec-
tion set, if existing, obtained by following this pathway. So if v(i) >Thy, then so is d(IS). By Rule
A, IS will be aborted.

4.3 Application to Feature Analysis
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In the previous subsection, we described the procedure for obtaining the unitary intersec-
tion set from an arbitrarily given path and its open end. But we have not specified the situations
towhich the procedure is applied. In fact, we shall employ the procedure in the following order.
First, we use it to make selections among the paths that are in conflict with each other. This
work is to be described in Subsection 4.3.2. Next, we apply the procedure to establish all inter-
section sets for the remaining paths, to be described in Subsection 4.3.3 and 4.3.4. As a result,
we are able to identify and thus eliminate spurious paths, to be described in Subsection 4.3.5.
As we proceed along this line, a shape measure, called length—to—width ratio, for paths will

be employed. We now define this measure as below.

4.3.1 Determination of Length—to—Width Ratio for Paths

For a given path P, we assume that a unitary intersection set has been found for each open
end of P. We first consider the case that P has two open ends (Figure 17a). In this case, P has
a neighboring path at each of its ends. Let A be a flank of P, and 3 and y the break points that
separate A from neighboring paths of P. Then all the edges between {3 and y will be assigned

to the legitimate zone of P, denoted as LZ(P).

(b)

Figure 17. (a) All the edges between {3 and v are assigned to LZ(P). Moreover, if 3 is a break
point between P and Q, then AP is assigned to LZ(P), and B is assigned to LZ(Q). (b) All the
edges between 0 and 1) are assigned to LZ(P).

Moreover, if {3 lies within the interior of an edge (A, u), where A—, then the line segment
M is also assigned to LZ(P), while Bu is assigned to the legitimate zone of Q, where Q is neigh-
boring path of P (Figure 17a). Similar assignments are made if vy lies within the interior of an

edge.
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Let us now consider the case that P has only one open end (Figure 17b). In this case, let &
be a terminal of P, lying on flank A of P. Letn be the break point that separates A from a neigh-
boring path of P. Then, all the edges between & and ny are assigned to LZ(P) (Figure 17b). When
n happens to fall within the interior of an edge, similar assignments are also made as before.

LZ(P) will actually take the role that used to be played by P. We shall consider LZ(P) as
consisting of two flanks. Thus far, all the edges and parts of edges assigned to LZ(P) constitute
one flank of LZ(P). The other flank of LZ(P) can be obtained similarly.

Now, we determine the length—to—width ratio for P as follows.
Let 1(P) be defined as Ze s(e)/2, where e ranges over all edges or parts of edges that are

assigned to LZ(P). The metric 1(P) is supposed to measure the length of P.

If P has two open ends (Figure 18a), let a, 3, Y and d be the break points that separate P
from its neighboring paths. Moreover, we assume that o and 3 belong to the same flank of
LZ(P) and a—f. We also assume that similar relation holds between y and 0. Then we define

w(P) as (s(ad) +s(BY))/2. In this case, a () is said to pair with 8 (y).

N
a 0
P
P
gl g
— —
(a) (b)

Figure 18. (a) P has two open ends and w(P)=(s(ad)+s(By))/2. (b) P has only one open end and
w(P)=s(Bv).

If, however, P has only one open end (Figure 18b) and thus has only two break points, say
B and v, then w(P) is defined as s(By). In this case, f is said to pair with v.
The metric w(P) is supposed to measure the width of P.

Now, we define the length—to—width ratio of P as r(P)=1(P)/w(P).
4.3.2 Selection among Conflicting Paths
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Two paths are said to be in conflict, if they cross each other, or one of them inserts in the
other. In the former case, one of the conflicting paths must be eliminated. In the latter case,
both conflicting paths may be retained. The decision as to whether to retain or eliminate a con-
flicting path is given as follows.

Let us assume that P crosses some other path(s). Note that P must have two open ends (Ap-
pendix A). Thus, for each open end of P we can find the associated intersection set. Using the
procedure as described in Subsection 4.3.1, we can then determine the length —to—width ratio
r(P) of P.

Let Q be the path which crosses P. We follow the same procedure as described in the above
to determine r(Q). We then check the two paths by the following rule.

Rule 1. When path P crosses path Q and r(P)<r(Q), P is eliminated.

Thus, in the example of Figure 14, it can be easily seen that path U has much smaller
length—to—width ratio than path V, and is eliminated according to the above rule.

Rule 1 has the following implication. Whenever P is found to have smaller length—to—
width ratio than a path which crosses it, P is eliminated, regardless of whether P has larger
length—to—width ratio than some other path which also crosses it. Thus, for example, if we
have three paths P, Q and R such that P crosses Q and P also crosses R, while r(P)<r(Q) and
r(P)>r(R), then both P and R are eliminated.

Let us now assume that P is a path that inserts in path Q. Here, again, P must have two open
ends (Appendix B). Thus, we use the same procedure as described in Subsection 4.3.1 to com-
pute the length—to—width ratio r(P). We then check path P by the following rule.

Rule 2. For each path P that inserts in another path, if r(P)<1/2, then P is eliminated.

An example of a path that inserts in another path is P in Figure 15, wherein the readers
might agree that the length—to—width ratio is a reasonable criterion for the elimination of P.

When a traversable path P is eliminated, the counterpart relationship between all the edges

of P will be canceled. That is, M (i,j), Mu(j,1), My(i,j) and My(j,i) will be reset to zero for all
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pairs of i and j, with i1 belonging to a flank of P and j belonging to another flank of P. On the

other hand, when path P is retained, P will no longer be marked as traversable path.

4.3.3 Establishment of All Intersection Sets

Having completed the procedure as described in the previous subsection, we are now left
with all the paths which are not in conflict with any other paths. One of the remaining work
is to construct intersections sets for them.

To generate all the intersection sets, we follow a very simple sequential procedure. Starting
with a pair (P, ep), where P is a path and e, an open end of P, we go find the unitary intersection
set by the technique that has been described in Subsection 4.2. When we have successfully
found an intersection set, we mark all the edges and open ends comprised in this set.

We then start with another open end of P, if existing, and look for the intersection set asso-
ciated with this new starting point. Note that, under the present circumstance, when we devel-
op the tree structure as described in Subsection 4.2.3, we would put forth a new constraint as
follows. Whenever a node generated at certain level contains a marked open end, we would
stop generating any new node out of it. When the new intersection set is found, we shall once
again mark all the open ends and edges in the set.

To continue, we can pick up another path Q. It can be proved that if Q has some unmarked
edges, then one must be able to find an intersection set with each open end of Q serving as
starting point (Appendix C). Thus, if there are unmarked edges in Q, we shall apply the above
procedure to each open end of Q, and also mark all the open ends and edges in the associated
intersection set. If, however, there is no unmarked edge in Q, then we abort Q.

We go on to find paths with unmarked edges and repeat the same process as before. The
construction of intersection sets is completed, when we have exhausted all the unmarked edges
on the character contour.

To save computational efforts, we may employ the intersection sets which have been con-
structed for the paths that were marked as traversable paths and are now kept as ordinary

paths. But before employing these sets, we have to subject them to a check. That is, when an
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unmarked open end of a path is known to be comprised in an intersection set of this sort, we
have to ensure that the intersection set does not contain a path that has already been elimi-
nated, and it does not contain an open end that has already been marked. When such an inter-
section set passes the check, we would accept it as a newly generated set and mark all the open

ends and edges in it accordingly.

4.3.4 Dealing with Embedding Paths

Thus far, we have only dealt with the paths which do not embed in any other paths. In this
subsection, we begin to deal with the embedding paths. As is shown in Figure 19, path
R=¢{(6,7)},{(4,5)}) can form an intersection set with two separate parts of path S=¢({(1,2)},
{(3,4),(4,5),(5,6),(6,7),(7,8)}). This happens when R is a path embedding in P. To find such an
intersection set, however, the procedure described previously do not apply. We need the fol-

lowing modification of the procedure.

h(B)
h(a)

Figure 19. Path R can form an intersection set with two separate parts S; and S; of S, where R
embeds in S.

Let us first define two functions. For each point a that lies on an edge j, we define h(a) (v(a))
as the point at which the horizontal (vertical) line passing a intersects with edge k, where k is
a H— (V—-) counterpart of j.

Suppose a V—path R embeds in a path S (Figure 19). We first seek a way to divide S into
two separate parts. Let X be the set of edges in R for which there is a H—counterpart. Let a
and P be the first and last vertex of the edges in 2. Taking h(a), h(f) as newly added vertices,

we can use them together with oo and f§ to subdivide path S into two separate parts. In the exam-
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ple of Figure 19, the two separate parts are S;=({(1,h(f)},{(B,4)}) and Sp=({(h(a),2},
{B,a)h.

Treating now S1 and S; as new paths, we can use them together with path R to construct an
intersection set. When the break points in this intersection set have been determined, we are
able to compute the length—to—width ratio r(R) of R. We now stipulate the following.

Rule 3. If r(R) is greater than or equal to 1/2, then we eliminate S and keep R, Sy and S; as

ordinary paths. Otherwise, we eliminate path R, S; and S;, and retain S as an ordinary path.

4.3.5 Identification and Elimination of Spurious Paths

In the example of Figure 20a, Path P=({(2,3) },{(3,4) }) fits our intuitive notion of a spurious
path, because it does not correspond to any significant part of a character. One possible charac-
terization of P is that it splits at its one end into two paths, i.e., Q=¢{(1,2)},{(7,8)}) and
R=¢{(6,7)},{(4,5)}). This characterization, however, can not be used as a criterion for spuri-
ous paths, since path S=¢{(2,3),(3,4)},{(5,6),(6,7)}) in Figure 20b meet the same criterion but

should not be taken as a spurious path.

(a) (b)

Figure 20. Path P and S split into two paths at the upper end.

In the example of Figure 21, we have a similar situation in which path V=({(1,2),(2,3)},
{(5,6),(6,7)}) in Figure 21a splits into two paths at both ends and should be taken as a spurious
path, while path W=({(7,8),(8,9)},{(11,12),(12,13)}) in Figure 21b meet the same criterion

but should not be taken as a spurious path.
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Figure 21. Both path V and W split into two paths at each end.

In the above examples, what actually discriminates one path from the other (P from S in
Figure 20, or V from W in Figure 21) is their length—to—width ratio, rather than their relation
to neighboring paths. Thus, we stipulate the following.

Rule 4. 1f the length—to—width ratio r(P) of P is less than 1/2, then P is taken as a spurious
path.

Thus, in Figure 20a, the break points between path P and Q are 7 and 2 and those between
P and R are 7 and 3. The junction associated with path P, Q and R then consists of points 7 and
3. Thus, LZ(P) consists of 7 and 3 only. We conclude that P is a spurious path, since 1(P)=0.

In Figure 21a, the break points between V and one of its neighboring path consists of points
2,4, and 6, and that between V and its other neighboring path consists of points 2, 6, and 8.
LZ(V) then consists of 2 and 6 only. V is thus a spurious path, since 1(P)=0.

When a path P is judged to be spurious, P and the intersection set(s) associated with open
end(s) of P are eliminated. Moreover, the counterpart relationship between all the edges with-
in P will be canceled. When P is eliminated, we shall find a new intersection set starting from
a path that used to be neighboring to P. Thus, for example, in Figure 20a, the new intersection
set is found to consist of path Q and R and in Figure 21a, the new intersection set consists of

the four neighboring paths of V.

5. CONSTRUCTION OF THINNED LINES

Having constructed all the intersection sets, we are now ready for constructing thinned lines

for the paths that fall within each intersection set.
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Recall that in the previous section, we were able to determine the points, called break
points, that demarcate each pair of neighboring paths falling in the same intersection set.
Moreover, we determined the legitimate zone LZ(P) of a path P as the collection of edges lying
between the break points associated with P. The break points and legitimate zones, taking the
role played by endpoints and paths, were useful in many operations. Now, we also use them
for the construction of thinned lines.

For a given path P, let A be a flank of LZ(P). If LZ(P) has two open ends, we let o and f§
be the break points between LZ(P) and its neighboring paths. If, however, LZ(P) has only one
open end, then either a or 3 does not exist and we shall use the terminal of A instead.

Among all the vertices v with ao—v—f, we choose the one with maximal projected distance
to the line connecting o and . This vertex is denoted as va. Let B be another flank of LZ(P)
and vp be the vertex similarly defined as va. If pjd(va)>pjd(vp), we proceed to work on A.
Otherwise, we go on to work on B.

Assuming that pjd(va)>pjd(vp), we thus proceed to work on A. If pjd(va) is greater than
the width w(P) of P, defined in Subsection 4.3.1, then we subdivide A into two parts. We apply
the same subdivision procedure recursively to each of the divided parts. The subdivision proce-
dure is terminated at a part, say S, if the maximal projected distance of the vertices on S to the
line connecting the endpoints of S is smaller than w(P).

When we have completed the subdivision procedure on A, we shall construct the thinned
line for P in the following way.

For each subdivision point o, we determine its corresponding point c(0) as below. If o is a
terminal (for example, point 1 in Figure 22), we define c(0) to be the other terminal (possibly
o itself) at the same closed end. If, on the other hand, o is a break point (for example, point
3 in Figure 22), then c(0) is defined as the break point that pairs with o. If o is not a terminal
or a break point (point 2 in Figure 22), let T and v be two subdivision points neighboring to o
(point 1 and 3 in Figure 22) and L be the line passing through o and perpendicular to the line

connecting T and v. Then c(0) is the point at which L intersects with an edge of B.
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Figure 22. Thinned line constructed for P.

Now, we define m(0) to be the midpoint between o and c(0). For each pair of consecutive
points, say o and t, we form the line segment connecting m(c) and m(t). The union of all such

line segments is the thinned line for P.

6. EXPERIMENTAL RESULTS

In the following table, we lay down the average time consumption of our method, applied
to two hundred Chinese characters of size 88 X 88 pixels. Following the first line of the table
are those that show the time consumption of each module of our method. The time is measured

on a SUN SPARC-2 machine at the unit of mini—second.

Mean S.D.
Line Sweep Thinning 71 42
Contour Tracing 20 21
Polygon Approximation 18 8
Path Formation 17 15
Feature Analysis 13 16
Thinning 3 1

It is clear from the above table that there is a decreasing tendency in the time consumption
by the involved modules. This result is reasonable, since the number of items worked by each
module is reduced, with the help of the previous one, and so is the time consumption. Thus,

for example, the first module works on the whole plane figure. The second module works on
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the contour extracted by the first one. The third module works on the polygon edges obtained

by second one, the fourth on the paths obtained by the third one, etc.

It is worthwhile to compare the thinning method as presented in this article with a pixel —
based thinning method. To allow a fair comparison, we let both methods work on the same set
of two hundred characters, from which the table in the above for line sweep thinning method

is obtained. The result of pixel —based thinning method is shown as below.

Mean S.D.
Pixel—Based Thinning 99 17
Note that the pixel —based thinning method adopted in the comparison is based on a simple
operation that works on each pixel of the character figure, where decision on each pixel is
based on an efficient table lookup method. We also note that although the pixel—based thin-
ning method consumes more time than the line sweep thinning method, it only obtains a skele-
ton as outcome, while the latter obtains skeleton, paths and intersections sets, all of which are

useful for the purpose of character recognition.

(a) (b) (c)
Figure 23. The intermediate and final results obtained from line —sweep thinning algorithm: (a)

all H—paths, (b) all V—paths, (c) all extended paths, and (c) skeletons, paths, and intersection
sets.

In Figure 23, we display the intermediate and final results of applying the line—sweep thin-

ning algorithm to a Chinese character in Ming Font.

In Figure 24, we display the final results of applying the algorithm to the same Chinese char-

acter in three other fonts.
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Figure 24. The final results obtained from the line—sweep thinning algorithm, applied to the
same Chinese character in (a) Black Font, (b) Song Font, and (c) Kai Font.

We now comment about the sensitivity of the parameter values used in our algorithm. The
first parameter is Thyy (Thy), the threshold to regulate the distance between an edge and its
H- (V-) counterpart. Here, the value is set as 1/6 width (height) of the enclosing box of a
given character. Note that the selection of a larger value would have the effect of creating many
paths which will be detected as spurious at a later stage, and is certainly not worthwhile in terms
of computational cost. The selection of smaller value, on the other hand, has the effect of elimi-
nating some genuine paths.

The second parameter we employed is Thy, the threshold to regulate the size of a junction
region. Here, again, the selection of a larger value than that chosen by us would be costly in
computation, for it sets free the search for intersection sets along pathways which stretch too
faraway from the starting point. A selection of smaller value has the devastating effect, since
it completely destroies a genuine intersection set and there is no way to restore the set by any
other means.

The third and last parameter is the threshold to regulate length—to—width ratio of paths.
The determination of the length—to—width ratio is certainly very robust, as one may be con-
vinced by the examples as in 4.3.5. The threshold value, 1/2, as chosen by us is somewhat arbi-
trary. But it serves the purpose for eliminating spurious paths, because most of those paths
have zero or nearly zero length—to—width ratio. Moreover, the arbitrariness of the regulatory
value of length—to—width ratio reflects the arbitrariness of human writings or printed fonts

themselves. In fact, in quite many Chinese characters, small pieces of strokes that appear in
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some fonts, corresponding to our paths with extremely small length—to—width ratio, disap-
pear in some other fonts.

Note that there still exists means to restore some of those paths with too small length—to—
width ratio. One possible means is to check the intersection sets comprising the paths in ques-
tion. If the intersection sets carry certain significant patterns, then we can retain the paths, even

though they have below—threshold length—to—width ratio.

Finally, we note that the thinning method as described in this article can serve as the front
end to a character recognition system. The outputs of this method can be employed for charac-
ter recognition in several ways. For example, the types of intersection set, such as hook, end,
T shape, cross and corner, can be used as character features (Xie and Suk [12]). On the other
hand, the paths as well as their neighboring relations (i.e., the intersection sets in which they
participate) can be used as primitives for a recognition system. Examples of such systems are
Kahan, Pavlidis and Baird [13], and Cheng, Hsu and Kuo [14]. The paths and intersection sets
can also be used as a basis for identifying more complex features in characters. Those features
are either single strokes, which are collections of paths extended along a single direction, or
sub—character patterns, which are collections of paths extended in various directions. The rec-
ognition of characters are then based on a hierarchical matching method (Chang, Cheng and

Huang [15]).

7. CONCLUSION

The line sweep operation provides neat and structural information about the plane figures.
The paring of polygon edges, for one thing, can be efficiently derived and easily implemented
on this basis. However, the computation of skeletons can not be simply made on these pairs
of edges, because possible conflicts may exist among them. To resolve the conflicts, one can
again exploit the structural information acquired from the procedure. Our approach is to look
for the set of paths that end at the same intersection region and then to determine the break

points between each pair of neighboring paths within this set. This method not only settles the
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boundary of each path, but also helps to determine whether certain paths should be elimi-
nated. Our experimental results also show that the line sweep thinning algorithm is more effi-
cient in computation than pixel—based thinning method. While the former is able to obtain
thinned lines and also to extract intersection sets out of a character figure, the latter requires

more amount of computing time to obtain skeletons only.

APPENDIX A

Recall that the crossing of two paths refers to the intersection of their regions. We denote

the region of path P as rgn(P).

LEMMA 1. Two paths cross each other if and only if one of them comprises a H—path P and
the other a V—path Q such that P and Q cross each other.

Proof. No H—paths can intersect with any H—paths. Neither can V —paths intersect with each
other. Sowhen two paths cross each other, one of them must comprise a H—path P which inter-
sects with a V—path Q comprised in the other path. Also, rgn(P) an rgn(Q) can not share any

edge, since the regions of the paths in which they are comprised do not share any edge.[_]

DEFINITION. Suppose that P is a H—path and Q is a V—path. Then

the left layer of rgn(P) = {m: = lies on a left edge of P} Nrgn(P),

the right layer of rgn(P) = {m: & lies on a right edge of P} Nrgn(P),

the upper layer of rgn(Q) = {m: r lies on an upper edge of Q} Nrgn(Q), and

the lower layer of rgn(Q) = {m: x lies on a lower edge of Q} Nrgn(Q).
DEFINITION. Suppose that P is a H—path. Let a and p be the first and last point on the left
layer of rgn(P), and y and 9 be the first and last point on the right layer of rgn(P). Then the
upper end—line of rgn(P) is defined as the line segment ad, and the lower end—line of rgn(P)
is defined as the line segment By (Figure 25a).

Similarly, suppose that Q is a V—path, with ) and ¢ as the first and last point on the upper
layer of rgn(Q) and % and A as the first and last point on the lower layer of rgn(Q). Then the
left end—line of rgn(Q) = ¢x, and the right end—line of rgn(Q) = nh (Figure 25b).

36



(a) (b)

Figure 25. (a) Region of a horizontal paths and its upper and lower end—lines. (b) Region of a
vertical path and its left and right end—lines.

Note that both the upper and the lower end —line of a H—path are horizontal line segments.
Moreover, all points on the two line segments, except their endpoints, are interior points
(namely, points within the character interior). Similar remarks can be made about the left and

right end—line of a V—path.

LEMMA 2. Suppose that P isa H—path, Q is a V—path and they cross each other. Let x(.) and
y(.) denote the x— and y—coordinate of a give point. Also, let

5113= {x(7): m lies on the left layer of rgn(P)},

ng {x(m): m lies on the right layer of rgn(P)},

S;l= {y(7): m lies on the upper layer of rgn(Q)},

S;l: {y(m): m lies on the lower layer of rgn(Q)},

X1 =maxS‘13, Xp=min S‘2°, yi=maxS%, and y,=min Sg (Figure 26a).

Then, x; <x(f) <x; for every point f in rgn(Q), and y; <y(a) <y, for every point a in rgn(P).

0 | T > X 0 > X
Xy X, B M 5
~ Y1 TC:.I_ Y1 A _:_‘[j__—_o'-:- u
|
i Eq : rgn(P) L, : Eq : rgn(P)
— y ————— y2 L
2 @ rgn(Q)
y
2 ’ )

Figure 26. (a) A H—path P crosses a V—path Q. (b) The assumption that rgn(P) contains a point
whose height is lower than y; can lead to contradiction.
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Proof. There are four inequalities to be established. We only prove the following one: y; <y(a)
for every point o in rgn(P). The other three inequalities can be proved similarly.

Assume, on the contrary, that rgn(P) contains a point whose y—coordinate is lower than y;
(Figure 26b). Then, there must exist a point y on the left layer of rgn(P) with y(y)<y;. Let §
be the point on the right layer of rgn(P) and is of the same height as y. Since rgn(P), being the
union of horizontal line segments, overlaps with rgn(Q), there must exist a pair of points A and
u such that A lies on the left layer of rgn(P), u on the right layer of rgn(P), A and u are of the
same height, and A intersects with rgn(Q).

Let t and o be the leftmost and rightmost point in rgn(Q) NAw. Point T can not have lower
x—coordinate than A, since this would imply that A, being a contour point, lies within character
interior. Point t can not locate at the same position as A either. For if it were, T would be a con-
tour point in rgn(P) Nrgn(Q). Since rgn(P) and rgn(Q) do not share any edge, and A is not an
endpoint, we reach a contradiction. We thus conclude that t has higher x—coordinate than A.
Similarly, we can show that o has lower x—coordinate than p. In summary, x(A)<x(t)<
x(0)<x(u). This implies that T and ¢ are interior points.

Point t assumes the lowest x—coordinate among all the points of Q that lie on the same hori-
zontal line, and T is an interior point. Thus, T must be a point that lies on the left end—line E4
of rgn(Q). On the other hand, A is a point that lies on the left layer L, of rgn(P). Since L, can
not intersect with Eg, L, must always lie on the left—hand side of Eq. Similarly, the right layer
of rgn(P) must always lie on the right—hand side of the right end—line of rgn(Q). These two
facts imply that part or all of the upper layer of rgn(P) lies within the area enclosed by: (i) the
line segment Y9, (ii) the lower end —line of rgn(P), (iii) the left layer of rgn(P) and (iv) the right
layer of rgn(P). But this area is part of the character interior. This is an absurd outcome.

Thus, we conclude that the assumption we start with in the Proof is invalid.[_]

THEOREM 1. A H—path crosses a V—path, if and only if the end—lines of rgn(P) intersect
with those of rgn(Q).
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Proof. Using the same notations as in lemma 2, we prove that if P and Q cross each other, then

the end—lines of rgn(P) intersect with those of rgn(Q).

First, we note that the left end—line of rgn(Q), being a vertical line segment, has x—coordi-
nate xp =min{x(f): p in rgn(Q)}, and the right end—line of rgn(Q) has x—coordinate xg =
max{x(f): Binrgn(Q)}. Therefore, we have that x; < x; < xg =< X,,by Lemma 2. On the oth-
er hand, the left endpoint § of the upper end—line of rgn(P) lies on the left layer of rgn(P),
while the right endpoint € of the upper end—line of rgn(P) lies on the right layer of rgn(P).
Thus, we have that x(§) < x; < x, < x(C). From these facts, we conclude that x(§) < x; <
xg = x(C), or equivalently, the upper end—line of rgn(P) intersects with both the left and the
right end—line of rgn(Q). We can similarly prove that the lower end—line of rgn(P) also inter-

sects with the left and the right end—line of rgn(Q).

Figure 27. The end—lines of rgn(P) intersect with those of rgn(Q).

Now, we want to prove that if P is a H—path and Q a V—path with the end—lines of rgn(P)
intersecting with those of rgn(Q), then P and Q cross each other (Figure 27). Since the two
end—lines of rgn(P) intersect with those of rgn(Q), it follows that rgn(P) overlaps with rgn(Q).
We now prove that rgn(P) and rgn(Q) do not share any edge.

Let Eq be the left end—line of rgn(Q). The upper endpoint ¢ of Eq must lie above the upper
end—line of rgn(P), and the lower endpoint ¢ of Eq must lie below the lower end—line of
rgn(P). These facts imply that Eq is not just a single point. It also follows that all points in Eg,
except ¢ and 1, are interior points.

Let w be the left endpoint of the upper layer of rgn(P), i the left endpoint of the lower layer
of rgn(P). Both w and y must lie on the left—hand side of Eq. Therefore, the left layer of rgn(Q),
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which is a contour curve connecting w and y, can not overlap with Eg and must lie on the left—
hand side of Eg.

We can similarly prove that the upper layer of rgn(Q) lies above the upper end—line of
rgn(P), and the lower layer of rgn(Q) lies below the lower end—line of rgn(P). It follows that
the left layer of rgn(P) can not share any edge with both the upper and the lower layer of
rgn(Q). We can similarly prove that the right layer of rgn(P) can not share any edge with the
upper and the lower layer of rgn(Q).[_]

The following proposition can be easily obtained from Jordan Curve Theorem, and is thus

stated without proof.

LEMMA 3. When a closed circuit W intersects with another closed circuit ® at two points o

and f, an arc of 1 that connects a and f3 lies within the interior of @ (Figure 28).

B

Figure 28. Two closed circuits intersect at two points.

THEOREM 2. If a path crosses another path, it must have two open ends.

Figure 29. Path P with a closed end crosses path Q.
Proof. Suppose that path P has a closed end and P crosses path Q (Figure 29). By Lemma 1,
we can assume that there exists a H—path P{ comprised in P and a V—path Q comprised in
Q such that P1 and Qg cross each other. Let o and f§ be a pair of points lying on the opposite

layers of rgn(Pq) with y(a) =y(p). We label as I the part of contour curve that passes the closed

40



end of P and ends at o and B. The curve I and line segment aff forms a closed circuit, and we
label it as ®. We also label as W the closed circuit that encircles rgn(Qq). Note that W consists
of two end—lines and two layers of rgn(Q).

By Lemma 2, the line segment off intersects two end—lines of rgn(Q). The two intersection
points are the only points at which ® intersects y, because of the following reasons. (1) I, being
part of path P which crosses Q, can not intersect any layer of rgn(Q). (2) I', being part of char-
acter contour, can not intersect any end—lines of Qy, lying within character interior. (3) The
line segment af}, being part of character interior except its two endpoints, can not intersect any
layer of rgn(Qy).

But then, by Lemma 3, part of ¥ must lie within the interior of ®, and this part includes ei-
ther the upper layer or the lower layer of rgn(Qq). This is a contradiction, since any layer of
rgn(Qq) is part of character contour and can not possibly lie within the interior of &, which is

part of character interior.[_]

THEOREM 3. If two paths cross each other, then one of them is a H—path and the other a
V —path.

Figure 30. A V—path Py, comprised in P, crosses a H—path Q1, comprised in Q. Furthermore
Py is connected with P, also comprised in P.

Proof. Let P and Q be two paths that cross each other (Figure 30). By Lemma 1, we can assume
that there is a V—path P, comprised in P, that crosses a H—path Q{, comprised in Q. Suppose
that there is, furthermore, a H—path P, comprised in P. Since both P, and Q are H—paths,
they can not have any intersection.

Let o and P be a pair points lying on the opposite layers of Py with x(a)=x(p), and y and d

be a pair of points lying on the opposite layers of P, with y(y)=y(0). Moreover, we assume that
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o and d lie on the same flank of P, while § and v lie on the other flank of P. We label as ® the
closed circuit that comprise the line segment af, the part of character contour connecting f3
andy, the line segment vd, and the part of character contour connecting 6 and a.. Also, we label
as W the closed circuit that encircles rgn(Qy).

Then, one can easily show, as in the proof for Theorem 2, that ® and W intersect only at the
points where af intersect with two end—lines of rgn(Q1). By Lemma 3, part of W lies within
the interior of @, and it includes either the right layer or left layer of Qy, a contradiction. Thus,
we conclude that P can not comprise any H—path. By similar argument, we can also show that

Q can not comprise any V—path.[_]

COROLLARY. Two paths cross each other if and only if both of them have two open ends and
one of them is a H—path and the other a V—path and their end —lines intersect with each oth-

Cr.

APPENDIX B

THEOREM. If path P inserts in path Q, then P must have two open ends.

Proof. Let P=(A,B). By definition, a flank of P, say A, is a proper subset of Q and another flank,
B, of P does not overlap with Q. Suppose that P has a closed end. Then A and B are connected.
But then, A isnot a proper subset of Q (Figure 31a) or B overlaps with Q (Figure 31b). In either

case, we reach a contradiction.[_]

7 1
Q2
6 3
4
5
(b)

Figure 31. (a) P=(A,B)=({(2,3),(3,4)},{(4,5)}) and Q=({(1,2),(2,3)},{(6,7)}). (b) P=(A,B)
=({(2,3)},{(3,4),(4,5)}) and Q=({(1,2),(2,3),(3,4)},{(6,7) }).
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APPENDIX C

Recall that the procedure for finding intersection sets starts from an open end of a given
path. We refer to such a starting point as a seed. When a unitary intersection set has been found
from a seed, we apply the same procedure to a new seed, with the restriction that the open ends
of paths incorporated in any intersection sets found previously can not be employed in the new
intersection set again.

We now stipulate the following assumptions. (A) In a character figure all the conflicts
among traversable paths have already been resolved by the operations as described in Subsec-

tion 4.2.5. (B) No path embedding in other paths are considered here.

LEMMA. With any open end of any path employed as the first seed, the procedure for finding

intersection sets can always succeed at finding an intersection set.

Proof. We prove by induction. Given with a character contour C and two matrices My and My,
specifying the mutually visibility between edges of C, we let S={j: j is an edge on C for which
there is some edge k on C with Mg|[k][j]=1}. We also let num(C,My,My) be the total number
of edges in S. Suppose that the proposition is true for every triple (C,My, My) with
num(C,My,My)<N. We now prove that it is also true for every triple with num¢(-, -, - )=N.

So, let a triple (C,My,My) with num( -, -, - )=N be given. Let P be a path with open ends.
Moreover, let My and My be the matrices which are obtained from My and My by resetting
Mpy[m][n]=0 and My[n][m]=0 for those m and n contained in opposite flanks of P. We now

consider the following two cases.

P, P P
/ /\\ PV\P L
(a) (b)

Figure 32. (a) Path P has only one open end. (b) P has two open ends.
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Case 1. P has only one open end (Figure 32a).

Since num(C,My,My) <N, it follows from our induction hypothesis that there exists, with
respect to (C,My,My), an intersection set IS comprising Py, ..., P1., with a flank of Py con-
nected with that of P; via the edges of P. So we must have an intersection set, with respect to

the original triple (C,My,My), comprising P, Py, ..., Pr.
Case 2. P has two open ends (Figure 32b).

Again, we construct a new triple (C,My,My), in which My[m][n]=0 and My[n][m]=0 for
those m and n contained in opposite flanks of P. Then we can show similarly as in Case 1 that
there exists, with respect to (C,Mp,My), an intersection set consisting of Py, Pa, ..., P1, Py 41,
..., PMm, such that Py and Py are connected via the edges on one flank of P, while Py and Py 4+
are connected via the edges on another flank of P. It follows that, with respect to the triple
(C,M1,My), P, Py, ..., P compose an intersection set, and P, Py 41, ..., Ppq compose another
intersection set.[]

If a path P has some unmarked edges, namely, edges not employed in any intersection sets
found previously by the procedure, then every open end of P can be used as a new seed. We

now prove the following theorem.

THEOREM. With an open end of a path employed as a new seed, the procedure for finding

intersection sets can always succeed at finding an intersection set

Proof. Let the pair (P, ) be a given seed. By the above lemma, there exists an intersection set
IS, with (P, ep) employed as the first seed. If every entry in IS participates in only one intersec-
tion set, then IS must be the intersection set found by the procedure, even when (P, ep) is not

the first seed ever employed.

So we assume that there exists a pair (R, e;) in IS which is comprised in a intersection set,
say IS, found previously by the procedure. Let W be a path which is not in IS but is a neighbor-
ing path of Rin IS; (Figure 33a). We now state and sketch the Proof for the following listed

statements.
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Figure 33. Intersection set IS comprises paths P, Q, R, S and T. (a) W and S are comprised in

another intersection set. (b) W has some edges lying outside of the contour curve of IS.

(1) The edges of W must completely lie within the contour curve C of IS.

Suppose W contains some edge lying outside C. The only possibility for this to occur, while
assumption (A) is not violated, is that W overlaps with some path, say Q, in IS (Figure 33b).
In this case, the intersection set ISy must also comprise (P, ep). But P contains some unmarked
edges, a contradiction.

(2) W must have two open ends, say ey, and ey,

Suppose that W has a closed end. Then W has a single connected component. Let Q be the
neighboring path of R in IS such that a flank of Q is connected with the flank of R via some
edges of W. In order for a flank of Q to get connected with a flank of R, it must comprise all
edges of W, since W locates between the two flanks. This means that W embeds in Q, violating
assumption (B).

(3) If (W, ey) is comprised in ISy, then (W, ey) is comprised in another intersection set, say
IS,, which also comprises (P, ep) (Figure 33a).

Suppose that (W, ey,) is comprised in IS;. There must exist a pair (Q, €q) in IS such that Q
is a neighboring path of R and Q overlaps with W. Moreover, since (R, e;) is connected to (W,
ew'), (Q, eq) must be connected to (W, ey), at an endpoint of ey. Similarly, there must also exist
apair ('T, e;) in IS which is connected to (W, ey), at the other endpoint of ey,. Then, all the pairs
from (P, ep) to (Q, eq), followed by (W, ey) and all the pairs from (T, e{) back to (P, ep) would
form an intersection set. This intersection set, denoted as IS,, is called a derived intersection

set.
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(4) From IS, one can obtain an intersection set which comprises (P, €,) and does not contain
any marked paths, namely, paths which are comprised in an intersection set found previously
by the procedure.

Suppose that IS; is not itself the desired intersection set, namely, it does contain any un-
marked path. Then, by repeating the same process, one can obtain a derived intersection set
IS3 from IS;, also comprising (P, ep). Moreover, IS3 comprises fewer number of paths originally
in IS than IS;. Thus, by repeating the same process no more than N times, where N is the total
number of paths comprised in IS, one can obtain a minimal intersection set IS, comprising
(P, €p). ISy, can not contain any marked path, for if it does, then (P, e,)) must have been marked,

a contradiction.[_]
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