
Non�Intrusive Object Introspection in C��

� Architecture and Application�

Tyng�Ruey Chuang Y� S� Kuo Chien�Min Wang

Institute of Information Science

Academia Sinica

Nankang� Taipei ���� Taiwan

���� � 	�� 
	�� ext� ��
�� ���
� �	



ftrc� yskuo� cmwangg�iis�sinica�edu�tw

ABSTRACT

We describe the design and implementation of system
architecture to support object introspection in C���
An introspective object permits observation and change
to its own state by a general mechanism that is appli�
cable to objects of all classes� This general mechanism
allows the construction of applications where objects
are late�binding and the interactions between them are
highly dynamic�

Unlike Java� which provides full support for object in�
trospection� C�� has limited built�in introspective ca�
pability via its Run�Time Type Information �RTTI�
and related facilities� For example� in C�� one can�
not query an object for methods that can be applied
to it� We show how such introspective information can
be collected at compile�time by parsing class declara�
tions� and be used to build a supporting environment
for object introspection at run�time�

Our approach is non�intrusive because it requires no
change to the original class declarations and libraries�
and it guarantees compatibility between objects before
and after the addition of introspective capability� This
is important if one wants to integrate third�party class
libraries� which are often supplied as black boxes and al�
low no modi�cation� into highly dynamic applications�
We show two applications that are built on top of our
introspective environment� The �rst is a generic facil�
ity for automatic I	O support of complex C�� objects�
The other is a class exerciser that allows interactive ex�
ecution of dynamically loaded C�� class libraries�

�This work has been supported� in part� by National Science

Council� Taiwan� under contracts NSC ��������E�������	� NSC

��������E��������� NSC �
������E��������� and NSC �
������E�

�������� This paper is available on�line as technical report TR�

IIS�	
���� from the Institute of Information Science� Academia

Sinica� via http���www�iis�sinica�edu�tw�

KEYWORDS

Object Introspection� Software Reuse and Integration�
Object�Oriented Software Development�

� MOTIVATION

Many object�oriented programming languages� such as
CLOS 
��
� Java 
�� ��
� Objective C 
��
� and Smalltalk

�
� provide introspective language features that allow
the state of an object to be observed and altered by
means of a general mechanism that is equally applica�
ble to objects of all classes� In these languages� the
binding between a method and the object to be applied
with can be delayed until run�time� and the binding
requires no static type�checking of the object and the
method� This is often called dynamic�binding and it
makes easy the construction of applications of which
classes are dynamically loaded and executed� Several
kinds of applications need dynamic�loading of classes�
as we will show later in this paper� For now� let�s con�
sider an object�oriented development environment to be
such an application since it will need to compile� link�
execute� and debug class de�nitions on�line�

The C�� programming language does not support
object introspection 
��
� It does provide Run�Time
Type Information �RTTI�� a run�time class identi�ca�
tion mechanism� and virtual function� a mechanism for
run�time resolution of method implementation for poly�
morphic objects� However� these mechanisms are lim�
ited in their functionalities since they do not allow full
access to an object� For example� one cannot query an
object for applicable methods� nor can one gain full ac�
cess to data members of the object�

These problems are usually solved by using a meta
object framework� such as the System Object Model
�SOM� from IBM 
�
� the Common Object Model
�COM� from Microsoft 
��
� or other similar framework�
Framework of this kind requires introspective objects to
belong to classes which are either derived from a root
�Object� class� or the classes themselves are instances of
some meta �Class� class� This creates di�culty when
integrating existing class libraries that are developed
without using the framework� It becomes worse if the

�



class libraries are provided by third�party vendors and
are supplied with no source code� Another disadvan�
tage of the above mentioned framework is that objects
with introspective capability are not compatible with
ordinary objects without the capability� For example�
the memory layout of an object is changed once intro�
spection functionalities are added� It may also respond
di�erently to existing methods�

Our goal is to introduce object introspection to existing
C�� classes without intruding the original class library�
including derivations of the class declarations and mem�
ory layouts of the class instances� If achieved� an object
will function the same way whether or not it is capable
of introspection� Except that now in addition we can
invoke methods or access states upon introspective ob�
jects using a general mechanism that bypasses the C��
static type�checking mechanism�

This paper is organized as the following� We �rst discuss
in Section � background and related work in bring object
introspection and re�ection to C��� We then outline
the system architecture of our non�intrusive scheme of
C�� object introspection in Section �� Section � dis�
cusses important implementation issues� Section � de�
scribes two applications that are developed upon the
introspective C�� environment� We then conclude this
paper with Section ��

� BACKGROUND AND RELATED WORK

In 
��
� re�ection is de�ned as the integral ability for a
program to observe or change its own code as well as�
pects of its programming language �syntax� semantics�
or implementations� at run�time� A programming lan�
guage is said to be re�ective if it provides its programs
with re�ection� An important concept in re�ective pro�
gramming languages is rei�cation� the process by which
aspects of an executing program are brought up using
a representation that is expressed in the language and
made available to the program� Furthermore� the rei��
cation data are causally connected to the related rei�
�ed aspects such that a modi�cation to one of them
a�ects the other� Few programming languages provide
the full power of re�ection since re�ection is a very pow�
erful concept and its true implication often is not clear�
However� several languages� such as Lisp and Prolog� do
have limited re�ective language features and are able to
treat programs as data and to evaluate rei�cation data
at run�time�

Object introspection� in the context of object�oriented
programming languages� is the ability to observe and
change the state of an object using re�ection� The con�
cept of introspection is more restricted than re�ection
because it adheres to the original syntactical� seman�
tical� and implementational aspects of the source lan�
guage� It just provides a window to the object states of

the current execution of a program� and allows changes
to them by means of a general gateway to existing legit�
imate interfaces� For example� using object introspec�
tion� one can query� and execute if it exists� an object
for a particular method� However� object introspection
does not mean the ability to add new methods or mod�
ify existing ones for a class �though such ability often
can be simulated� if with di�cult� in some introspective
languages�� Therefore� object introspection maintains
the semantic integrity of a programming language but
open up its programs for general access� Object intro�
spection allows one to construct applications that are
more dynamic� and provides avenues for integration of
diverse applications� Open implementations 
��� ��
 of
class libraries� for instance� will be most natural when
using object introspection�

Some object packaging frameworks� most notable SOM

�� �� �
 and COM 
��
� add object introspection and re�
�ection to the C�� programming language� However�
they require applications using these frameworks to fol�
low their respective class hierarchy� For example� SOM
requires all classes with SOM capability to derive from
the SOMObject class� and COM all components with
COM capability to equip with the IUnkown interface�
Hence object introspection cannot be used for applica�
tions or class libraries that are developed without using
these frameworks� We aim to provide object introspec�
tion to C�� classes without requiring the classes to be
derived from or augmented with extra declarations�

There are several proposals and projects on meta object
protocols for C��� see for example 
�� �� �
� They aim
to bring full power of re�ection to C�� and often re�
quire special implementations of the C�� compiler and
run�time system �since they either add language exten�
sions or change the language semantics�� We seek to de�
velop a framework of object introspection that adhere to
the semantics and implementation of C�� 
��� ��
 and
can be used with existing C�� compilers� Application
developers should be able to add object introspection
to their applications without requiring changes to their
existing class declarations and de�nitions� Nor should
they worry about the new C�� semantics and imple�
mentations altering the integrity of their applications�

� SYSTEM ARCHITECTURE

Providing object introspection for C�� is di�culty be�
cause C�� objects carry no type information during
run�time� �The only exception is the virtual function
mechanism for polymorphic objects and the associated
RTTI facility� which are limited in functionalities�� A
non�intrusive object introspection facility for C�� is
even more challenging because one is not allowed to
augment the existing class declarations so that type
information will be automatically attached to each in�

�



stance to help introspective operations� The approach
we adopt is to de�ne for each class a separate meta ob�
ject that completely captures information of the class
for introspection purposes� Introspective operations on
instances of the class are then conducted via going
through to the corresponding meta object� which has
all the necessary information at run�time�

Before further discussion on the architecture of such an
introspective system� let�s see what a typical introspec�
tive operation in the system looks like� and compare it
to the usual C�� method invocation� Let BSTree be a
class whose instances are binary search trees of which
each non�null tree node stores a character string� Sup�
pose class BSTree provides a new constructor for build�
ing an empty tree and an insert public method for
inserting a new character string into the tree� Then the
following C�� code segment builds a new tree p and
inserts a character string �Sinica� to it�

BSTree �p � new BSTree�

p��insert��Sinica�	�

Note that in the above program segment� at compile�
time� p is known to be an instance of BSTree� and the
insert method is applicable to it�

For introspective operations� however� we cannot as�
sume the binding between p �the object� and BSTree

�the class� is available at compile�time� It may be the
case that the class declaration for BSTree is not even
available at compile�time� and that only the name of
the class �a character string �BSTree�� is known at run�
time� By using our introspective environment� we can
achieve the same e�ect of the above program segment
by the following�

void �p�

Klass bstree � getClass��BSTree�	�

p � bstree
new�	�

Method insert � getMethod�bstree� �insert�	�

void� argv�
 � � �Sinica�� � ��

bstree
invoke�p� insert� argv	�

Note that the static type of p is now �void �	� The
fact that it points to an instance of class �BSTree� is
revealed only at run�time� Furthermore� the invoca�
tion of method insert upon it is via the meta object
bstree� which will contain all necessary information of
class �BSTree��

It is now clear the a non�intrusive introspective environ�
ment for C�� has two parts� One is the meta object
mechanism which includes declarations of meta classes
�such as Klass and Method above� and the associ�
ated supporting libraries �implementations of getClass�

invoke and so on�� The other part is the generation
of meta objects for classes in need of introspective op�
erations� The part about meta class declarations and
libraries is class�neutral and is available at application
development time� If all introspective classes are known
at application development time� then the code for con�
structing meta objects can be prepared at compile�time�
though meta objects themselves will not materialize un�
til run�time� The generation of the code to produce
meta objects can either be manual or automatic� This
situation is described in Figure � where each stand�alone
executable includes a self�contained introspective run�
time environment� We call applications of this kind the
tightly�coupled ones� Object introspection here com�
plements the usual C�� data access and method invo�
cation mechanism� On the other hand� classes can be
dynamically loaded at run�time for their functionalities�
In such situations� generation of the corresponding meta
objects occurs at run�time� and the generation process
has to be automatic� We call applications of this kind
the loosely�coupled ones� Here� binding between an ob�
ject and its associated class is dynamic� and introspec�
tion is the normal way of interacting with objects� See
Figure � for an illustration�

In both the tightly�coupled and loosely�coupled models�
the generation of meta objects will need access to the
original class declarations but must not modify them�
Also note that in both cases� applications are developed
using the original class declarations� with the addition
of the meta class declarations which are �xed� Cur�
rently we generate the meta object code automatically
by using a parser�based analyzer that extract needed
information from application class declarations�

� IMPLEMENTATION ISSUES

As we have shown above� our design of non�intrusive
introspective environment consists of two parts� One is
the meta object mechanism which includes declarations
of meta classes and their implementations� The other
part is the automatic generation of meta objects for
classes in need of introspective operations� We discuss
in this section several important implementation issues
and the solutions we have adopted�

��� Meta Class Interface and Library

An application interacts with the introspective environ�
ment by using methods de�ned in the meta classes�
However� the interfaces for interaction often carry less
type information than what is desirable� As an example�
in Section � we show how to get the class information
for BSTree by passing a character string �BSTree� to
the introspective environment� A character string cer�
tainly does not say much about the class it is associated
with �except its name�� Again� to access method insert
from the meta object for class BSTree� we use a charac�

�



application 
source

application 
binary

application
binary

class
declarations

class libraries
("black boxes")

class libraries
("black boxes")

meta objects
(one for each class)

Introspective Run-Time Environment
Stand-alone Executable

Run-Time

declarations
meta class

meta class
supporting libraries

meta class 
supporting libraries

meta object
code generator

code to generate
meta objects

Compile-Time

Link-Time

Figure �� The tightly�coupled model of introspective applications�

application 
source

application 
binary

application
binary

class
declarations

class libraries
("black boxes")

meta objects
(one for each class)

class libraries
("black boxes")

Compile-Time

Run-Time

Executable (Client)
Dynamically Loaded Libraries (Servers)

declarations
meta class

meta class
supporting libraries

meta class 
supporting libraries

Link-Time

meta objects
code to generate

Script (Meta Object Generation)

meta object
code generator

Figure �� The loosely�coupled model of introspective applications�

�



ter string �insert� as an argument� The interfaces are
typeless because they must serve requests to all kinds
of user�de�ned classes whose properties are not known
at compile�time� With this understanding� we now list
several issues in the implementation�

Meta classes for class and method� The meta
class for class �Klass� as shown above in Section ��
must store the name of the class� pointers to meta
objects of its base classes� methods to get names
and memory o�sets of all its data members� meth�
ods to get names and implementations of all its
member functions �i� e�� getMethod�� and several
instance conversion routines between this class and
its superclasses and subclasses� Several member
functions of class Klass are virtual because they re�
quire di�erent implementations for di�erent classes�
For example� getMethod is a virtual function� and
each meta object corresponding to an introspective
class will be an instance of a class derived from
Klass which actually de�nes the implementation
of getMethod� Again� the invoke method in class
Method is virtual as well� and each derived class
of Method de�nes its own implementation� Making
these methods virtual helps to reduce work when
generating code for meta objects�

Polymorphic object pointers� To correctly access
an object� the introspective environment must have
the dynamic type information of the object� How�
ever� note that all object pointers are treated as
pointers of type �void �	 when interfacing with
the meta objects� Hence� a function is needed for
each class to get the dynamic class names for ob�
jects of its class� This function is stored in the meta
object of the class� Suppose we have a class B� then
the meta object for class B will contain a function
dynamicType�pObj	 de�ned by

virtual const char const �dynamicType

�void const �self	 �

return typeid���B �	 self	
name�	� �

that returns the dynamic type name �a character
string� of its instance� Function typeid above is
from the standard C�� RTTI facility�

Base and derived classes� The content of an object
consists of its data members� and those of its bases
as well� In order to access the base�s data members�
the introspective environment has to perform a �up
cast� operation that adjusts the object pointer�
The up cast function is stored in the meta object
of the class� For example� the following function
will cast an instance of a derived class D of B to an
instance of B�

static void �fromDtoB�void const �self	

� return �B �	�D �	 self� �

If a class has several bases �i� e�� multiple inheri�
tance�� then all the up cast functions will be stored
in the meta object of B� The cast functions are
stored in a table and indexed by names of the su�
perclasses�

Similarly� the following �down cast� routine is
stored in the meta object for B as well�

static void �fromBtoD�void const �self	

� return dynamic�cast�D����B�	 self	��

It is used to adjust a polymorphic object pointer
with known static type �B �	 to its dynamic type
�D �	� The adjustment occurs� for example� af�
ter the dynamic type name �D� is resolved by a
call to dynamicType� All accesses to data members
pointed to by an polymorphic object pointer starts
with this adjusted pointer�

Other details� C�� provides abstract and virtual
base class� Objects of an abstract class cannot
be constructed directly� and base objects of virtual
classes share their storage� Information regarding
whether a class is abstract or virtual or not will be
recorded in its meta object� This means that the
introspective environment has to check �rst with
this information when performing data access or
object construction�

��� Meta Object Generation and Management

For each class in need of introspective operations� the
run�time environment needs a meta object of the class�
The meta object can be constructed manually� or pro�
duced automatically from the program text where the
class is declared� We use a parser�based scanner that
produces program code from class declarations such
that� when the code is executed at run�time� will gener�
ate meta objects� Note that code generation and meta
object generation do not happen at the same time for
the tightly�coupled applications illustrated in Figure ��
The programming language used for code generation
may not even be C��� If it uses C��� it may use
a di�erent compiler for the one used by the application�
Hence� one must take care in generating code to gen�
erate meta objects correctly� especially when regarding
memory layout of their instances�

Memory layout� The memory layout of an object is
calculated by employing a method that relies on a
C�� compiler�s ability to treat a suitable aligned
absolute address as the starting address of any
C�� object 
��
� For example� the following code

�



computes the o�set �in units of char� of the data
member a within an object of class A�

offset�of�a�in�A � �char �	 ����A �	 ��	��a	

� �char �	 ��A �	 ��	

where �� can be any well�aligned absolute address�
Note that� in order to calculate o�sets of private
members� the generator must disable access control
employed by the class� This can be done by alter�
ing the original class declaration in several ways�
One can delete all the private speci�ers in the
class declaration� hence explores all data members
to outside world� A better way is to insert a friend
function to the class declaration and gain access
to all data members without compromising access
control of the class too much 
��
� The generator
inserts as a friend function an initialization routine
to the class to calculate data member o�sets and
to produce a meta object for the class� Note that
this friend function will need to be compiled with
the augmented class declaration� We list additional
issues when augmenting class declarations�

Nested class declarations� If the class declarations
are nested� the initialization routine for the enclos�
ing class� though declared as a friend function� will
not be able to access data members of the enclosed
classes� �They are out of scope�� For these cases�
we have the generator inserts initialization routines
to the enclosed classes as well� and have them de�
clared as friend functions both in the enclosed and
enclosing classes�

Class templates� Since the generator analyzes only
class declarations� it cannot know how a class tem�
plate will be instantiated in a user�s program� We
require the user to give hints on how a class tem�
plate will be instantiated� As an example� in Sec�
tion �� if BSTree is a class template� then one must
explicitly specify that BSTree will be instantiated
with type int� in order for the generator to produce
the meta object for class BSTree�int��

Object compatibility� Note that we may augment a
class declaration in several ways in order for the
code generator to work� �For example� we insert
a friend function to the class declaration� and we
may add additional non�virtual member functions
for other purposes�� However� we never add data
members or virtual functions to the class declara�
tion� This ensures that objects produced by the
original class declaration and the augmented one
will always have the same memory layout� at least
for the usual C�� object model 
��
� Furthermore�
the augmented class declaration is used only by the
generated code and is inaccessible otherwise to the

application developers� Developers continue to use
the original class declarations and will not aware of
the augmented copies�

� APPLICATIONS

We describe two applications based on non�intrusive in�
trospective C�� environments� The �rst is a system
called ObjectStream that provides automatic I	O sup�
port for complex C�� objects� The other is a class
exerciser called RunClass that allows interactive exe�
cution of dynamically loaded C�� class libraries� Ob�
jectStream is a system for building applications that are
tightly�coupled with their introspective classes� While
RunClass itself is a loosely�couple introspective appli�
cation� Work on ObjectStream and RunClass has been
reported elsewhere� although not from the viewpoint of
object introspection 
�� ��
�

��� ObjectStream

The C�� standard I	O stream library� by overloading
the �� and �� operators� provides a convenient and type�
safe interface for I	O� However� it is only applicable to
fundamental types �such as char� int� etc��� If one
wants to input	output objects of user�de�ned classes�
one either must extend the stream I	O library by over�
loading the �� and �� operators� or de�ne I	O opera�
tions as member functions of those classes� Most C��
development environments �such as the Microsoft Foun�
dation Classes� in use today take the latter approach�
Their input	output facilities are parts of a pre�de�ned
application framework� Programmers are required to
de�ne I	O operations for user�de�ned classes by fol�
lowing some prescribed procedures � such as deriving
user�de�ned classes from a �persistent� base class and
rede�ning some virtual functions for the purpose of ob�
ject I	O� This practice takes considerable learning time�
Furthermore� programmers have to write code to con�
struct	traverse an object�s internal structure in order
to perform I	O correctly� When complex objects are
involved� this can be tedious and error�prone� By re�
quiring all user�de�ned classes to derive from a persis�
tent base class� it also prevents pre�built class libraries
from performing object I	O� Pre�built class libraries�
such as those provided by library vendors but supplied
with no source code� often have pre�set class hierarchy
and cannot be re�derived from the persistent base class�

In ObjectStream� we provide a generic I	O library that
interacts with the introspective run�time environment
to automatically traverse an object�s internal structure
for I	O purpose� The meta class declarations include
the follow template I	O operators�

template �class T�

Uostream �operator���Uostream �os� T �obj	 �

�



�include �ustream
h� �� Declarations of I�O operators and universal streams


�include �bstree
h� �� Declarations of BSTree �for Binary Search Tree	


main �	 �

AsciiOut ascout� �� Use ASCII format for output


ascout
precision���	� �� Precision is �� digits wide


Uofstream ofile��tree
dat�� ascout	� �� Create an output stream �tree
dat�

�� on file medium with ASCII format


BSTree myTree� �� The place to hold a BSTree object





 �� Insertion of elements into myTree omitted here


ofile �� myTree� �� Store myTree to ofile


ofile
close�	� �� Close the file stream


AsciiIn ascin� �� Use ASCII format for input


Uifstream ifile��tree
dat�� ascin	� �� Use file �tree
dat� as the input

�� stream
 The format is ASCII


BSTree �pTree � �� �� The pointer to hold a restored BSTree object


try �

ifile �� pTree� �� Restore a BSTree object from ifile
 After this�

�� �pTree and myTree contain the same tree


� catch �IOError error	 � error
printMessage�	� � �� Catch errors� if any


ifile
close�	� �� Close the input file stream


�

Figure �� ObjectStream� A working example�

Uwrite�os� �void�	 �obj� typeid�T	
name�		�

return os� �

template �class T�

Uistream �operator���Uistream �is� T ��obj	�

Uread �is� �void �	 obj� typeid�T	
name�		�

return is� �

where Uistream and Uostream are the class names for
the universal streams that are capable of input	output
objects of all classes� The programmers can then use ��
and �� to input	output objects of user�de�ned classes�

Note that the object reference is passed as a void
pointer� and the class information is passed as a string
containing the static class name of the object� Uwrite

and Uread are generic read	write functions that interact
with the introspective environment to traverse objects
for I	O� The object traversal algorithm used by the li�
brary is a depth��rst search that looks inside an object
for its bases and data members� The traversal algo�
rithm is not that di�erent from those used for garbage
collection� Since bases and data members are objects
as well� the search is recursive in nature� When the
search encounters objects of fundamental types it calls
the corresponding primitive routines for I	O� A major
issue in the search is to avoid duplication of I	O for ob�
jects that have already been visited� For this purpose�

we maintain a dictionary of object reference that maps
between an object�s internal memory address and its ex�
ternal object ID� When output� the library �rst checks
with the object reference dictionary using the object�s
memory address as a key to see whether the object has
been output or not� If so� only the object�s ID is out�
put� Otherwise a new ID is assigned to the object and a
new entry of �address� ID� pair is entered in the dictio�
nary� Similarly� when performing input operation� if the
library see only an object ID� then it uses it as a key to
look for the object�s memory address in the dictionary�

In Figure �� we show a program fragment to illustrate
how to restore	store user�de�ned objects from	to uni�
versal streams� The program constructs a binary search
tree� outputs the tree to a �le using the �� operator� and
read the same tree back from the �le using the �� oper�
ator� ObjectStream also comes with an �object stream
browser� that can be used to open an object stream and
display objects in the stream� See Figure � for a screen
shot�

��� RunClass

Object�oriented development is often characterized by
the development and use of a large set of reusable
classes� Current object�oriented CASE environments fa�
cilitate software reuse by providing tools to inspect and
access libraries� Using these CASE tools� one can easily

�



Figure �� Browsing an object stream�

locate desired classes and retrieve information of inter�
est� However� invocation of classes �including instanti�
ation of objects from classes and invocation of methods
on objects� can only be made in the form of traditional
programming� In other words� in general one has to
write an application program just in order to test a class�
This is �ne if the application programmer really wants
to use the class� However� in many situations� we may
just want to invoke a class to understand its function�
ality� to see an undocumented feature� or too verify its
correctness� For these situations� an interactive� easy�
to�use environment for �exercising� classes appears to
be more convenient than the traditional edit�compile�
run programming environment�

RunClass is a class exerciser that� when taking a set
of classes as input� allows a user to create objects for
given classes� execute methods on speci�ed objects� and
examine their contents interactively� RunClass presents
an easy�to�use graphical user interface to users with
class names and method names displayed on the screen�
Users can then select desired classes and methods with a

pointing device without memorizing their names� Run�
Class also manages objects that are created� Objects
are grouped according to classes for users� convenience�
There are several applications of RunClass� It can be
used as a demonstration tool� interactively showing the
functionalities of a class library� It can also be used for
testing and maintenance purposes because it allows easy
access to classes that are unfamiliar to the programmers�

The implementation of RunClass is straightforward
upon an introspective C�� environment� It needs a
graphical user interface to take commands from the
users and passing them to the underlining introspective
environment� Results from the command are then dis�
played for users to interpret� It also needs a command
manager that can capture a sequence of commands and
log their e�ects� The command sequence can then be
replayed later for regression testing on newer version of
the class library�

Figure � show a snapshot of using RunClass to exercise
the Microsoft Foundation Classes �MFC� 
��
� On the
right�hand side is the reply dialog� which shows some

�



Figure �� RunClass� exercising the Microsoft Foundation Classes�

operations captured previously� They appear in the
form of C�� statements� On the left�hand side are a
window and four MFC �controls� �animate control� list
box� push button� and edit control� inside the window�
which are all constructed by replaying the captured op�
erations� By using the dialog at the bottom� users can
manipulate the windows and controls� like pause and
play the animate control� add items to the list box� and
so on via interactive method invocations� This MFC
exerciser using RunClass appears to be as an attractive
CASE tool for training novice MFC programmers�

� CONCLUSION

We present the concept of object introspection and
a framework of non�intrusive implementation in C��
that works with standard compilers and existing class
libraries� Several important implementation issues are

discussed and two substantial applications are demon�
strated� It is shown that object introspection can be
added to C�� in a straightforward way and it makes
easy application reuse and integration�

ACKNOWLEDGEMENTS

We thank Chuan�Chieh Jung and Wen�Min Kuan for
their e�ort in implementing ObjectStream� and Chin�
Chuan Hsu and Wei�Hsueh Lai for their e�ort in imple�
menting RunClass�

REFERENCES


�
 Shigeru Chiba� A metaobject protocol for C���
In Conference proceedings of Object�Oriented Pro�
gramming Systems� Languages and Applications�
pages �������� Austin� Texas� USA� October �����
ACM Press�

�




�
 Tyng�Ruey Chuang� Chuan�Chieh Jung� Wen�
Min Kuan� and Y� S� Kuo� ObjectStream� Gen�
erating stream�based object I	O for C��� In ��th
International Conference on Technology of Object�
Oriented Languages and Systems 	TOOLS Asia

��
� Beijin� China� September �����


�
 Scott Danforth and Ira R� Forman� Re�ection
on metaclass programming in SOM� In Confer�
ence proceedings of Object�Oriented Programming
Systems� Languages and Applications� pages ����
���� Portland� Oregon� USA� October ����� ACM
Press�


�
 Adele Goldberg and David Robson� Smalltalk����
The Language and its Implementation� Addison�
Welsey� �����


�
 James Gosling� Bill Joy� and Guy Steele� The Java
Language Speci�cation� Addison�Wesley� August
�����


�
 Brendan Gowing and Vinny Cahill� Meta�object
protocols for C��� The Iguana approach� In Gre�
gor Kiczales� editor� Proceedings of the Re�ection
�� Conference� pages �������� San Francisco� Cal�
ifornia� USA� April ����� Proceedings available
from Xerox Palo Alto research Center�


�
 Jennifer Hamilton� Robert Klarer� Mark Mendell�
and Brian Thomson� Using SOM with C��� C��
Report� ����������� ��� July�August �����


�
 International Business Machines� SOMobjects De�
veloper
s Toolkit� Programmer
s Guide� Volume ��
�� �nd edition� December �����


�
 Yutaka Ishikawa� Atsushi Hori� Mitsuhisa Sato�
MotohikoMatsuda� J�org Nolte� Hiroshi Tezuka� Hi�
roki Konaka� Munenori Maeda� and Kazuto Kub�
ota� Design and implementation of metalevel archi�
tecture in C�� � MPC�� approach� In Gregor
Kiczales� editor� Proceedings of the Re�ection ��
Conference� pages �������� San Francisco� Califor�
nia� USA� April ����� Proceedings available from
Xerox Palo Alto research Center�


��
 JavaSoft� Java Core Re�ection � API and Speci�
�cation� January �����


��
 Gregor Kiczales� Beyond the black box� Open im�
plementation� IEEE Software� ����������� January
�����


��
 Gregor Kiczales� John Lamping� Cristina Videira
Lopes� Chris Maeda� Anurag Mendhekar� and Gail
Murphy� Open implementation design guidelines�
In Proceedings of the ��th International Conference
on Software Engineering� pages �������� Boston�
Massachusetts� USA� May ����� IEEE Press�


��
 Stanley B� Lippman� Inside The C�� Object
Model� Addison�Wesley� �����


��
 J� Malenfant� M� Jacques� and F��N� Demers� A tu�
torial on behavioral re�ection and its implementa�
tion� In Gregor Kiczales� editor� Proceedings of the
Re�ection �� Conference� pages ����� San Fran�
cisco� California� USA� April ����� Proceedings
available from Xerox Palo Alto research Center�


��
 Robert Mecklenburg� Charles Clark� Gary Lind�
strom� and Benny Yih� A dossier driven persistent
objects facility� In USENIX �th C�� Technical
Conference� pages �������� Cambridge� MA� USA�
April ����� USENIX Association�


��
 Microsoft� Microsoft Foundation Classes� version
������ �����


��
 NeXTSTEP� Object�Oriented Programming and
the Objective C Language� Addison�Wesley�
November �����


��
 Andreas Paepcke� editor� Object�Oriented Pro�
gramming� The CLOS Perspective� MIT Press�
�����


��
 Dale Rogerson� Inside COM� Microsoft Press� �����


��
 Bjarne Stroustrup� The C�� Programming Lan�
guage� Addison�Wesley� �nd edition� June �����


��
 Walter F� Tichy� J org Heilig� and Frances Newbery
Paulisch� A generative and generic approach to per�
sistence� C�� Report� ����������� January �����


��
 Chien�Min Wang and Y� S� Kuo� Class exerciser�
a basic tool for object�oriented development� In
Proceedings of the ���� Asia Paci�c Software Engi�
neering Conference� pages �������� Brisbane� Aus�
tralia� December �����

��


