
1

Phoinix A Fault-Tolerant Object Service in OMA

Deron Liang
Institute of Information Science

Academia Sinica
Taipei, Taiwan, 11529

R.O.C.

S. C. Chou & S. M. Yuan
Department of Information & Computer Science

National Chiao-Tung University
Hsin-Chu, Taiwan 31151

R.O.C.

Key words:

Fault-tolerance, object-oriented programming, OMA, CORBA, distributed computing
environment, distributed object services.

Abstract

 The Object Management Architecture (OMA) has been recognized as a de facto standard in the
development of object services in distributed computing environment. In a distributed system, the
provision for failure-recovery is always a vital design issue. However, the fault-tolerant service has not
been extensively considered in the current OMA framework, despite the fact that a increasing number of
useful common services and common facilities have been adopted in OMA. In this paper, we propose a
fault-tolerance developing environment, called Phoinix, which is compatible to the OMA framework. In
Phoinix, object services can be developed with embedded fault-tolerance capability to tolerate both
hardware and software failures. The fault-tolerance capability in Phoinix is classified into three levels:
restart, rollback-recovery and replication; where the fault-tolerance capability enhances as the level
increases. Currently, Phoinix is ported on Orbix 3.0 and on SunOS 4.2. Object services provided in the
current version of Phoinix are able to tolerate hardware failures with capability up to the level two
fault-tolerance, i.e., the level of rollback-recovery. We plan to continue the development of Phoinix so
that object services can tolerate not only hardware failures but also software failures, such as process
hangs, with all three levels of fault-tolerance.

1. Introduction

 As users demand for resource sharing grows, distributed systems have become
increasingly attractive in recent years. For their excellent price-performance ratio,
distributed systems are not only attractive to programmers but also to MIS managers.
However, the increasing use of computers in human lives, especially in critical
environment, has led to an urgent need for highly reliable computer systems. Fault
tolerance is an approach used to increase the reliability of computer systems. Since
heterogeneous distributed systems tend to be less reliable in nature, fault tolerance for

2

distributed systems thus becomes an important design issue.

 Fault-tolerance design for distributed systems requires comprehensive knowledge
from all aspects of system engineering, from detail hardware characteristics to complex
software specification and also from low-level communication protocols to high-level
distributed computing theory. Therefore, a user-friendly fault-tolerance case tool is highly
valuable for application programmers without experience in the fault-tolerant system
design. The existing tool-kits are either too primitive to use, such as ANSA[1] and
ISIS[5], or lack of portability and/or extensibility (due to the deployment of proprietary
protocols in these systems), such as PSYNC[16] and HORUS[17]. In this paper, we
attempt to create a software development environment within which software
components can be built not only with embedded fault-tolerance capability but also with
better support of portability and extensibility in a user-friendly manner.

 Object-oriented design (OOD) [6] provides a high-level abstraction to describe
the nature of software components. With the class inherence mechanisms, object-oriented
technology also offers greater potential in portability and code reusability. To facilitate
the development of integratable software objects in distributed environment using OOD,
several object interconnection standards have been proposed; notably, Object
Management Group's (OMG) OMA[15], Microsoft's COM[7] and IBM's DSOM[8,18].
In this research, we select the OMA standard as our software platform for two reasons: it
is an open standard and it is supported by most of the major software venders.
Although the OMA specifications provide a higher-level approach for the distributed
applications, it does not take the fault-tolerance issue into consideration.

Application Objects

Client Object Implementation

Common Object Services
(COSS)

Common Facilities
(CFA)

Object Request Broker (ORB)

Figure 1. The OMA framework.

3

 As shown in Figure 1, OMA consists of four major components: object request
broker, (ORB), common object service specification (COSS), common facility
architecture (CFA), and application objects. In OMA model, an object that provides
service to clients over network is called object implementation. ORB serves as a software
interconnection bus between clients and object implementation. COSS defines several
commonly used services in distributed systems, such as transaction service, persistence
service, etc. CFA specifies a few facilities that are closer to the application level and are
more toward to specific application domain, such as common task management tools and
facilities for financing and accounting systems. CORBA (common object request broker)
defines the interfaces and functionality of ORB via which client programs may access
services from application servers and service provided by COSS and CFA. The objective
of this research is to create a fault-tolerant software development environment that is
operating in CORBA platform and within which distributed object services can be easily
developed to tolerate both hardware and software failures. In this paper, the capability of
the fault-tolerance is classified into three levels: restart service(level one), checkpoint-
recovery service(level two) and replication service (level three). We notice that the
fault-tolerance capability of the object enhances as the fault-tolerance level increases.

 In this paper, we present the design and implementation of Phoinix, a fault-
tolerance case tool. An object server is called fault-tolerant object provided it is able to
continue serving clients in the presence of faults. In the current stage, two levels of fault-
tolerance are supported; namely, the restart service and the checkpoint-recovery service.
Objects intend to obtain these two levels of FT capability are realized in the forms of
restart objects and logable objects, respectively. We implement the enhanced IDL
compiler (EIDL) which parses IDL interface files of the fault-tolerant objects and
generates corresponding codes for the failure detection and the recovery triggering. We
design a fault-tolerance library that serves as the base classes of logable objects. We also
implement a log server that maintains the run-time states and audit trails of those active
logable objects in the system. For the replication service, i.e., the level three fault-
tolerance, we have designed but not yet implemented a daemon called replication
manager and the class libraries for the replicated objects. The platform we adopted is
Orbix[9,10,11] running on SunOS 4.2. Our system can be ported to most CORBA
compliant platforms with minimal modifications since Orbix is a full implementation of
CORBA.

 The organization of this paper is as follows. The architecture of CORBA and the
related works are presented in Section 2. An overview of Phoinix development
environment and the concept of the fault-tolerant objects are discussed in Section 3.
Section 4 gives the design and the implementation of the fault-tolerant objects in Phoinix,
whereas Section 5 presents the design and implementation detail of other important
components. Section 6 discusses the performance and other extension of Phoinix. Finally
Section 7 summarizes the contribution of this work and points out the future research.

2. Background and related works
 Phoinix is operating in the CORBA-compliant environment. In this section, we

4

first describe the functionality of major CORBA components and client and server
development in CORBA, and it follows by the discussion of two related case tools.

Generated by the IDL Compiler

 Application Program

ORB

Client

Clienb
Stub

IDL
Compiler

IDL Interface
Specification

Object
Implementation

Implementation
Skeleton

Runtime Communication

Code Generation

Library Linking

Object Server

CORBA Components

Figure 2. The illustration of Common Object Request Broker Architecture (CORBA).

2.1 Application development in CORBA

 As shown in Figure 2, a CORBA environment consists of the following major
components: the client, the object implementation (or server), the IDL compiler and the
ORB. We briefly describe the functionality of each of these components and then discuss
the interaction among these components during the program development phase as well
as in the run-time. In CORBA, the service of an object server is specified in terms of the
application program interface (API) using the standard CORBA interface definition
language (IDL). An object that implements the service (or API) according to an IDL
interface specification is called an object implementation (with respect to that IDL
interface). In other words, an object implementation is an excitable entity that is capable
of delivering the client the service specified by the IDL interface over the networks. A

5

client makes a request to an object implementation and expects the reply from it all via
ORB. In other words, the ORB serves as a software interconnection bus between the
client and the object implementation. As shown in Figure 2, a client is able to access the
service of an object implementation only if it has the handle of that object, i.e., the client
stub. The client stub is generated by IDL compiler after it compiles the IDL interface of
that object implementation. On the other hand, the object implementation can provide its
service over the networks via ORB only if it has the implementation skeleton which is
also generated by the IDL compiler. Figure 3 illustrates the complete development of the
object implementation and the client.

interface account {
 read-only attribute float balance;
 void makeLodgement(in float f);
 void makeWithdrawal(in float f);
};

IDL interface
specification

Enhanced IDL
Compiler

Client stub

IDL C++ class

Implementation skeleton

Client source code

C++ compiler

C++ compiler

Source code

Application programCode generated by IDL compiler

Code generation

Object
Implementation

Figure 3. The application development in CORBA.

 We now briefly describe the basic concept of how CORBA and its components
operate. To invoke an operation on a remote object implementation, a client must first
bind to that object. ORB first check if the remote object implementation exists. If not, an
instance of the object implementation will be invoked. The object implementation replies
the results of the invocation to the client via ORB after the object implementation
completes the execution of the invocation. The client may send subsequent requests to

6

the same object implementation without the re-establishment of the communication
channel.

 Notice that the IDL is a definition language, it is not an operational programming
language such as C. Given an IDL interface, there may exists many object
implementations for that interface. Moreover, these object implementations may be
implemented in various programming languages in different operating systems or
hardware platforms. To accommodate the independence of the IDL interface from the
object implementation, IDL compiler must be able to compile the IDL interface to
produce the client stub and the implementation skeleton into many target programming
languages, such as C, C++, FORTRAN and PASCAL, according to CORBA language
bindings. We notice that the client stub acts as an local proxy to the client process on
behalf of an object implementation that provides the actual service. More precisely, the
client stubs shield the complex operations, such as remote request preparation,
parameter's interpretation, request invocation and reply delivery from the client. Similarly,
the implementation acts as the local proxy of a client that makes the request. Finally, we
turn our attention to exception handling. ORB raises an exception signal to the client
proxy (the client stub) if the peer object implementation crashes or hangs during the
request invocation; the client may react to this signal via an exception handling routine.

2.2 Related Works

 In this section, two object-oriented fault-tolerance tool-kits, Electra and Arjuna,
are reviewed for comparison. The major difference between Phoinix and the two tool-kits
is that both Electra and Arjuna are proprietary while Phoinix is built upon CORBA and is
compliant to the open standard.

Electra

 Electra is an object-oriented tool-kit providing a set of new abstractions helping
to build reliable distributed systems in C++. The tool-kit allows programmers to create
C++ objects that can live on different machines in a network and communicate
synchronously with other Electra C++ objects. In Electra, services can be defined using
the Electra Services Definition Language (SDL) called SNOOPY-SDL. (A service is an
abstract definition of what a server is prepared to do for its clients.) The programmer
exploits services mainly by communicating with them using Remote Method Calling
(RMC) and broadcasting. Electra chooses the Multi-cast Transport Service
(MUTS)[12,13] as its basic transport layer. MUTS offers primitives to manage threads,
sending and receiving messages, and performing reliable group communication. In Electra,
objects derived from the abstract base class Migratable can be transmitted over a
network. Every migratable object must have an appropriate dump and recover method,
and the stub code generated by SDL relies on these methods for marshaling and
unmarshalling the state of an object. Because Electra has its own Services Definition
Language (SDL) and does not follow an open standard, it is very difficult to port Electra
to an existing platform.

7

Arjuna

 Arjuna is an object-oriented programming system that provides a set of tools for
the construction of fault-tolerant distributed applications[20]. Arjuna provides nested
atomic actions for structuring application programs. Atomic actions control sequences of
operations upon local and remote objects, which are instances of C++ classes. Operations
upon remote objects are invoked through the use of remote procedure calls (RPCs). The
computational model of Arjuna is using atomic action controlling operations on persistent
objects. In Arjuna, objects are long lived entities and are the main repositories for holding
system states. A persistent object can be replicated on several nodes to achieve fault
tolerance. Arjuna ensures the consistence of internal states by automatic invocations on
objects. The major drawback of Arjuna is that it is not conformed to any standards. It will
be more difficult to adapt Arjuna to existing working environments whereas Phoinix can
be ported to most CORBA compliant products with minimal modifications.

3. Overview of Phoinix
 We state the design philosophy and design objectives of Phoinix in this section.
We also sketch the development as well as the run-time environment of the Phoinix
system. In the second half of this section, we introduce the key concept in Phoinix, the
fault-tolerant objects. Two types of fault-tolerant objects are introduced, namely, the
restart objects and the logable objects.

 As mentioned in the introduction, we are interested in the design of a
development environment in which object implementations are constructed with desired
fault-tolerance capability in a semi-automatic fashion. We categorize the fault-tolerance
capability into three levels: restart service(level one), checkpoint-recovery service(level
two) and replication service (level three)[22]. Object implementations in Phoinix with
fault-tolerance capability of level 1, 2, and 3 are called restart objects, logable objects,
and replicated objects, respectively. As the names suggest, the restart object resumes
the service as a fresh server after recovering from failure whereas the logable object
resumes its service from the last check-point. For the replicated object, several replicas of
the object implementation coexist in the system in some kind of cooperative fashion. The
functionality and the implementation detail of these fault-tolerant objects are presented in
the current and the following section respectively. We notice that many common types of
hardware failures and software failures can be handled by these three levels of fault-
tolerance. For example, permanent software failures such as design faults can be managed
by replicated objects, such as N-version programming[2]. Lastly, an object
implementation is called a fault-tolerant object if it is implemented with a level of fault-
tolerance.

 Phoinix is designed with a few assumptions on the operating environment. Firstly,
crashed sites are assumed to operate in a fail-stop[19] manner. (This is a common
assumption in many fault-tolerant systems[9][19][20].) In many systems, we find that site
crashes in a distributed environment are relatively infrequently and are usually
independent of each other. We assume that the client invocation is not nested, i.e., the
invoked object doesn’t invoke operations on objects of another object implementation.

8

This assumption implies that the object implementation is unlikely to hang due to the
crash of the client. In order words, the failure detection of the client becomes unnecessary.
Possible extension of Phoinix to support the nested invocation will be discussed in
Section 6.2.

 Next, we discuss the fault-detection and the triggering of recovery process in
Phoinix. The detection of an object implementation failure relies on a fundamental service
from ORB. Recall that the object implementation failure can be detected by ORB so long
as this object is bound by a client invocation. More precisely, the client is able to detect
the object implementation failure after it makes an invocation and receives an exceptional
signal from ORB.

interface account {
 read-only attribute float balance;
 void makeLodgement(in float f);
 void makeWithdrawal(in float f);
};

IDL interface
specification

Enhanced IDL
Compiler

Client stub

 Reliable proxy

IDL C++ class

Request handler
 &
Persistent request

Implementation skeleton

Client source code

C++ compiler

C++ compiler

Source code

Application Program

Code generated by IDL compilerCode generated by EIDL compiler

Code generation

Object
Implementation

Fault Tolerance
Class Library

Inheritance

Phoinix component

Figure 4. The Enhanced IDL compiler and the application development in Phoinix.

 We are now ready to introduce the development of application fault-tolerant
object in Phoinix. Figure 4 depicts the development procedure for both the object
implementation and client. The development of fault-tolerant objects in Phoinix closely
matches with the application development model in CORBA as introduced in the
previous section. As described, three types of fault-tolerant objects are identified, and the
restart objects as well as the logable objects are implemented.

9

/* account.idl */

interface account : Public Logable {

 readonly attribute float balance;

 void makeLodgement (in float f);

 void makeWithdrawal(in float f);

};

Figure 5. IDL specification of an account object declared as a logable object.

 To declare an object to be a fault-tolerant object, the keyword Restart (or
Logable) has to be included in the IDL specification for the restart object (or logable
object). Figure 5 illustrates the IDL declaration of a the logable object. After parsing an
object‘s IDL specification, the enhanced IDL compiler (EIDL) generates two sets of
codes in addition to the ordinary client stub and the implementation skeleton. These two
sets of programs are the fault detection routine and the for the client and the fault-
tolerant skeleton for the object implementation. The functionality of the fault-tolerant
skeleton will be discussed in Section 4.2.

 For the client program, the client stub with the fault detection routing and
recovery process triggering routine are called reliable proxy. Recall that this reliable
proxy assumes the responsibility to detect the crash of the bound object implementation
as discussed previously. Upon the detection of a server failure, appropriate recovery
process is triggered by the reliable proxy according to the type of the object
implementation. The recovery process of the restart objects and the logable objects are
discussed later in this section.

 For logable objects, the fault-tolerance library defines the base class of logable
objects from which such objects can inherit directly. This base class declares a set of
fundamental member functions in virtual form so that logable objects may manage its
critical data members in cooperation with the log server. The detail implementation of the
fault-tolerance library is given in Section 5. We notice that these member functions are
implemented in virtual base, the application designer has the freedom to overload these
functions to better manage the critical data of the logable objects in a more efficient
manner.

 The fault-tolerance architecture is designed as a software layer operating on top
of ORB, as shown in Figure 6. This architecture consists of four major components: the
enhanced IDL compiler, the fault-tolerance library, the log server and the replica manager.
Finally, the replica manager is responsible for coordinating decisions among the replica of
an object implementation during request invocations from clients.

10

Generated by the EIDL Compiler

 Application Program
Phionix components

ORB

Client

Fault
Tolerance

Stub

Enhanced IDL
Compiler

 Fault
Tolerance

Library
Log
Server

IDL Interface
Specification

Object
Implementation

Fault
Tolerance
Skeleton

Replica
Manager

Runtime Communication
Code Generation

 Inheritence
Library Linking

Object Server

The Fault-Tolerance Layer

Designed but not Implemented

Source Code

Figure 6. The architecture of the fault tolerance layer in Phoinix.

4. The fault-tolerant objects
 We have stated that the restart objects and the logable objects are supported in
current version of Phoinix. In this section, we present the detail implementation of these
two types of objects. We first describe the implementation of the failure detection
mechanism and recovery invocation of Phoinix in conjunction with the CORBA
framework, and then we briefly describe the recovery process for the restart objects. The
major part of this section devotes to the design and implementation of logable objects
since the recovery process for the restart objects is rather straightforward. It is unable to
restore the failed objects to their previous states before failures occur. That's why we
designed another level of fault tolerance object (the logable object), for the purpose of
returning the failed object to its previous state.

11

4.1 The failure detection and recovery

 The design philosophy of Phoinix is to let the procedures of failure detection and
recovery of the fault-tolerant objects be transparent to the object designer. Before we
discuss the real implementation, we briefly review the binding between a client and an
object implementation in CORBA. Before binding to an object implementation that
provides the desired service, the client first broadcasts to check if an object
implementation of that type is already activated in the network. If there are more than one
object implementation that are already activated, the client randomly chooses one to bind;
otherwise, client randomly activates one. If the binding is successful, the client proceeds
to making request invocations, or the client repeats the “broadcast and bind” procedure
until the binding is successful. Upon the detection of a failure of a bound object
implementation, i.e., the object implementation crashes, the client would try to rebind to
an available object implementation that provides the same IDL interface. Once the
binding of a new object implementation is successfully, the new object implementation
may continue the service to the clients after the appropriate recovery process. (See
discussion below.) In order to make the rebinding operation transparent to the client, we
design reliable proxy, as described in the previous section, to perform these operations.

 If an object implementation is declared as a restart object, the client just needs to
rebind to the target object in a new object implementation, and the object implementation
doesn’t need to do any recovery. Notice that this fault tolerance level only assures the
object is always available to users; it can not return failed objects to their previous states
before the failures occurs.

4.2 The design and implementation of the logable objects

4.2.1 The failure recovery of the logable objects

 In this section, we first describe the design concept and the failure recovery
procedure for the logable objects, then we discuss the implementation details in the
second half of this paper. Through our fault tolerance service, the object implementation
has to cooperate the logable server in order to maintain its critical data and subsequent
client invocation.

 A logable object binds to a log server using the “broadcast-and-bind” strategy as a
client, when it is first activated on a node. Under normal operation, the requests sent from
the client shall be logged in the audit trail of the bound log server. The bound server will
create an audit trail for the log server and a safe storage for the critical data. The logable
object shall have the capability to decide whether a request needs to be saved in the audit
trail according to the application domain. The logable object also can decide to
checkpoint its critical data into the safe manipulated by the log server as necessary. Once
the checkpoint is done, the log server purges the audit trail and continues service to the
logable object. If the object implementation crashes, the client will receive an exception in
the successive method call. Then, the client uses the “broadcast and bind” strategy
described before to re-activate a reliever server. Then the logable server is up, the client
binds to the new object and informs the corresponding log server. Then the logable object

12

binds to the log server and starts the rollback recovery process. Note that we have
assumed that the failures occurrence is infrequent in a distributed system. This implies
that the possibility that logable object and its log server both crash at the same time is
very slim. In other words, our failure deception and recovery algorithm is robust. The log
server and failure recovery will be discussed in Section 5. Notice that a logable object
may serve more than one client at a time, and it is possible that each client may bind or
even reactivates different object implementations after it discovers the crash of the
logable object.

4.2.2 The implementation of the Logable objects

 As discussed in the design, a logable object that shall be able to perform a few
fundamental operations in provision of the recovery from a failure. These operations are:
logging requests, redoing requests, saving objects, and loading objects. Notice that the
first two operations are for handling the requests whereas the later two are for the object
states. We now describe these operations.

Logging requests

 For each IDL interface operation, we need to implement a persistent request class.
The persistent request class‘s constructor has the same arguments as the IDL interface
operation. The persistent request class can be generated automatically from IDL interface
specification. The persistent request will save itself into the log server automatically when
the IDL interface operation call terminates. Since it is not necessary to log every
performed request for logable object, we let the user declare the to-be-logged request
himself. When the user implements a to-be-logged IDL interface operation, he can create
the corresponding persistent request at the beginning of the operation. The persistent
request will save itself into the log server automatically when the IDL interface operation
call terminates.

Redoing requests

 As described previously, during the recovering process, the object implementation
should redo the requests logged in the audit trail in the original order. In order to dispatch
the logged requests to the target object, we need a request handler array. The request
handler array maintains request handlers for the object implementation’s logable objects.
A request handler unmarshalls the arguments of a specific IDL interface operation from a
logged request, then invokes the operation on the target object. Request handler can be
generated automatically from IDL interface specification.

Saving objects

 In order to make a checkpoint for all its logable objects, an object implementation need
to maintains an object table to record all its logable objects. The to-be-saved critical
states of the logable object should be defined by its designer. Hence, we design an
abstract class Logable, which is the base class of all logable objects, as shown in Figure 5.
Logable objects are supposed to register themselves to log severs when it is created the

13

first time. Object implementations may overload the member functions SaveState() and
LoadState() defined in the base class, which is inherited from virtual class Logable, to
save the user-defined critical states.

Loading objects

 As described in Section 3, when an object implementation is activated by the fault-
tolerant client stub as the substitute for the crashed object implementation, it shall start
the recovery process by reloading all the logable objects saved in the log server by the
crashed object implementation since the last checkpoint. However, if a logable object to
be loaded is not in the memory, the object implementation should create it in memory first.
Hence, we design an object factory for each kind of logable object. Users can declare the
object factory for a logable object using the macro we provide. If a logable object has
pointers to other logable objects, the loading operation goes in depth -first- search.

5. Implementation of other components in Phoinix
 As outlined in Figure 6, Phoinix consists of three major components: EIDL
compiler, the fault-tolerance library, and log server. In this section, we will discuss the
design of these components and some implementation issues.

 EIDL Compiler

 The Enhanced IDL (EIDL) compiler scans IDL interface specification file and
produces fault tolerance codes in addition to standard IDL compiler‘s client stubs and
implementation skeleton (see Figure 6). For the client side, the EIDL produces reliable
proxy for each IDL interface. The reliable proxy is responsible for the failure detection of
the object implementation and to trigger the recovery process according to the type of the
objection implementation. For the object implementation’s side, the EIDL compiler
generates the fault-tolerant skeleton. The skeleton performs the request logging in the
normal operations and performs the redo of these requests during the failure recovery
recourses for three logalble objects.

Fault Tolerance Library

 The fault-tolerance library consists of two families of class libraries for the logable
objects. One family is for the fault-tolerant skeleton, where it defines the Persist Request
class and Request Handler class as the base classes for request logging and request redo,
receptively. The other family defines the base class from which the application logable
objects can inherit. This class defines the virtual functions SaveState() and LoadState() to
manage the critical data members of the logable objects. Note that member functions are
declared as virtual, so that the application may be implemented in a customized manner
by overloading these number functions.

Log Server

 As stated briefly in Section 3, an object implementation shall register to a log
server upon the invocation from a client. That log server maintains the audit trail and also

14

the reliable repository for that registered object implementation. To avoid the data
consistency issue, we implement the 2 phase lock (2PL) protocol on each object
implementation handled by a log server. A client is allowed to bind to an object
implementation only if it is granted the lock to access the audit trail of that object
implementation. This implies that an object implementation serves a client for a given
point of time. To support the concurrent service to multiple clients certainly
complicates the design of the log server. This will be considered in the next version of
Phoinix and is not of the scope of discussion in this paper. Next, we consider the failure
recovery of the log server itself. If the object implementation detects the failure of its log
server, using the same technique as the client detects the object implementation failure,
the object implementation binds to another log server using the same broadcast-and-bind
strategy. When a log server recovers from crash, it must reset itself and recovers all the
audit trail it once managed. We also have to consider the case that a failure occurs in the
object implementation on the log server during the check-pointing process. To avoid
either the object implementation or the log server enters an inconsistent state, we
implement the 2 phase commit (2PC) protocol in the check-pointing process. This
protocol ensures the either all audit trail data has been saved into the save area in the log
server and the audit trail has been removed, or everything remains intact.

 In distributed system, fault-tolerance is always a vital design issue, however,
fault-tolerance service has been ignored in the OMA framework despite the fact that
increasing number of common services and facilities have been discussed and adopted in
OMA. The fault-tolerance capability in Phoinix is classified into three levels: restart,
rollback-recovery and replication, where the fault-tolerance capability enhances as the
level increases.

6. Discussion
 In this section, we first report the performance study of the Phoinix based on a
series of experiments. We also discuss possible extension to the current version of
Phoinix so that it can fully support our optimal design goal.

6.1 Performance Measurement

 We design a single experiment to explore the performance of Phoinix. The
experiment involves account services, such as deposit, withdraw, and balance inquiry. A
client program makes 200 invocations on a remote account object over a local area
network. During this period, the account object checkpoints it‘s critical data onto a log
server residing on another host. The account object, the client program, and the log
server are all running a Sun Sparc Workstations connected through a 10B-T Ethernet.
Figure 7 depicts the experiment results where the X-axis represents the number of
checkpoints during the client‘s invocations and the Y-axis represents the time duration
over which the client makes those 200 requests. It clearly shows that the overhead
increases from the check-pointing data to the log server. It appears that the total
overhead from the check-pointing dominates the total overhead from the fault-tolerance
measure in Phoinix. This also suggests that performance improvement of the checkpoint

15

implementation deserves more attention in future version of Phoinix.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9 10

(ms)

No. of Checkpoints

none

T
im

e
sp

en
t i

n
20

0
in

vo
ca

tio
ns

Figure 7. The response time of 200 invocations under various check-pointing frequencies.

6.2 Extensions

 In the previous section we have identified areas where the current version of
Phoinix can be enhanced in order to support the replication service, the nested invocation,
and the software failure. The replication service provides for the explicit replication of
objects in a distributed environment of replicated copies. In our original design, the
replica manager is responsible for the coordination of the interaction among all replicas so
that object implementation operates as if there is a single copy in the system. To support
nested operation, a persistent request in an IDL interface operation call should also log
every outgoing request and response. If the IDL interface operation call is resumed later
because of a failure, those outgoing requests which already have logged response should
be rolled back to avoid the same requests from being executed for more than once. For
masking transient software failure, we define RequestRandomizer class to reorder the
requests saved in the audit trail before redoing requests. A programmer can redefine his
own policy to reorder the logged requests. Huang has suggested that most transient
software failures can be masked by redoing the past requests from the last checkpoint to
the crash point in the audit trail in a different order[22]. Thus object implementations
developed with Phoinix will be able to tolerate transient software failures provided the
recovery process with this mechanism. One possible approach to support this mechanism
in Phoinix is to modify or overloaded the PersistRequest() in the Fault-Tolerance class

16

library in such a way that the redo order differs from that in the audit trail.

7. Conclusions

 In a distributed system, the provision for failure-recovery is always a vital design
issue. However, the fault-tolerance service has not been extensively considered in the
current OMA framework, despite the fact that a increasing number of useful common
services and common facilities have been adopted in OMA. In this paper, we propose a
fault-tolerance developing environment, called Phoinix, which is compatible to OMA
framework. The fault-tolerance capability in Phoinix is classified into three levels: restart,
rollback-recovery and replication; where the fault-tolerance capability enhances as the
level increases. Currently, Phoinix is ported on Orbix 3.0 and SunOS 4.2. Object services
provided in the current version of Phoinix are able tolerate hardware failures with
capability up to the level two fault-tolerance, i.e., the level of rollback-recovery.

 In this paper, we have introduce the concept of fault-tolerant objects in Phoinix.
Two types of fault-tolerant objects are supported, namely, restart objects and logable
objects, corresponding to the two level of fault-tolerance, restart and rollback-recovery.
We have discussed the system architecture of Phoinix that consists of these major
components: EIDL compiler, fault-tolerance and log server. We also have described the
application development environment of Phoinix within which application object
implementation can be developed with desired level of fault-tolerance. Phoinix was
designed to support three levels of fault-tolerance as described in the introduction,
though, two of them are implemented. We also plan to extend the recovery mechanism in
the logable objects so that software transient failures can be masked and tolerated. The
replication service can also be supported with minor extension hardware and software
platforms. Performance issues have not been drawn extensive attention in the current
implementation. As the experiments demonstrated, we have identified key areas where
performance improvement can be mad in the next generation of Phoinix.

17

 References

[1] ANSAware Version 4.1 Manual Set, Architecture Projects Management Ltd.,
Castle Park, Cambridge UK, March 1993.

[2] A. Arizienis, "The N-version approach to fault-tolerant software," IEEE Trans. on
Software Engineering, Vol. SE-11, No. 12, pp. 1491-1501, December 1985.

[3] J. Bacon, Concurrent systems, Addison-Wesley, Inc., New York, 1993.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and
Recovery in Database Systems, Addison-Welsey, Reading, NJ, 1987.

[5] K. P. Birman, "Integrating runtime consistency models for distributed computing,"
Tech. Rep. 91-1240, Dept. of Computer Science, Cornell University, July 1993.

[6] G. Booch, Object-Oriented Design with Applications, The Benjamin/Cummings
Publishing Company, Inc., 1991.

[7] K. Brockschmidt, Inside OLE, 2nd ed., Microsoft Press, Redmond, Washington,
1995.

[8] “SOMobjects: A Practical Introduction to SOM and DSOM”, IBM, International
Technical Support Organization, July 1994.

[9] IonaSphere Issue 11, IONA Technologies Ltd., May 1995.

[10] Orbix Advanced Programmer’s Guide, IONA Technologies Ltd., November 1994.

[11] Orbix Programmer’s Guide, IONA Technologies Ltd., November 1994.

[12] MUTS Documentation, The ISIS GROUP, Cornell University, September 1992.

[13] R. Koo and S. Toueg, "Check-pointing and rollback-recovery for distributed
systems," IEEE Trans. on Software Engineering, Vol. SE-13, No 1, pp. 23-31,
January 1987.

[14] R. Ladin, B. Liskov, and S. Ghemawat, "Replication," ACM Transaction on
Computer Systems, Vol. 10, No 4 , pp. 360-391, November 1992.

[15] The Common Object Request Broker (CORBA): Architecture and Specification, v
1.2, Object Management Group, Inc. December 1993.

[16] L, Peterson, N. Buchholz and R. Schlichting, "Preserving and using context
information in inter-process communication," ACM Transactions on Computer
Systems 7, Vol. 3, pp. 217-246, August 1989.

[17] R. V. Renesse, K. P. Birman, R. Cooper, B. Glade, and P. Stephenson, "Reliable
multicast between microkernels," Proceedings of the USENIX Workshop of Micro-
Kernels and Other Kernel Architectures, Seattle, Washington, April 1992.

[18] J. R. Rymer, “IBM‘s System Object Model”, Distributed Computing Monitor, Vol. 8,
No. 3, page 1-24, March 1993.

[19] R. D. Schlichting and F. B. Schneider, "Fail-Stop Processors: An approach to

18

designing fault-tolerant computing systems," ACM Transactions on Computer
Systems, Vol. 1, No. 3, pp. 222-238, August 1983.

[20] S. K. Shrivastava, G. N. Dixon, and G. D. Parrington, "An Overview of the Arjuna
Distributed Programming System," Computing Laboratory, University of Newcastle
upon Tyne, UK.

[21] R. V. Renesse, A MUTS Tutorial, Cornell University, 1991.

[22] Y. M. Wang, Y. Huang and W. K. Fucks, "Progressive Retry for Software Error
Recovery in Distributed Systems," Proceeding of 22nd Fault-tolerance Computing
Symposium, 1993.

19

