OPTIMAL AUGMENTATION FOR BIPARTITE COMPONENTWISE
BICONNECTIVITY IN LINEAR TIME
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Abstract. A graph is componentwise fully biconnected if every connected component either is an
isolated vertex or is biconnected. We consider the problem of adding the smallest number of edges to make
a bipartite graph componentwise fully biconnected while preserving its bipartiteness. This problem has
important applications for protecting sensitive information in cross tabulated tables. This paper presents a
linear-time algorithm for the problem.
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1. Introduction. The problem of adding the minimum number of edges to make a
given graph biconnected is called the smallest biconnectivity augmentation problem. This
problem has been extensively studied for general graphs [4, 17, 18]. A simplified sequential
algorithm which corrects an error in [18] and an efficient parallel algorithm are reported in
[13]. Efficient algorithms for other vertex connectivity augmentation problems can be found
in [9, 10, 20].

A graph is componentwise fully biconnected if every connected component either is bicon-
nected or is an isolated vertex. This paper presents a linear-time algorithm for the problem
of adding the smallest number of edges into a given bipartite graph to make it component-
wise fully biconnected while maintaining its bipartiteness. Our problem arises naturally from
research on data security of cross-tabulated tables [16]. To protect sensitive information in
a cross tabulated table, it is a common practice to suppress some of the cells in the table.
A fundamental issue concerning the effectiveness of this practice is how a table maker can
suppress a small number of cells in addition to the sensitive ones so that the resulting table
does not leak significant information. This protection problem can be reduced to augmenta-
tion problems for bipartite graphs [6, 7, 11, 14, 16, 15]. In particular, a linear-time algorithm
for our augmentation problem yields a linear-time algorithm for suppressing the minimum
number of additional cells so that no nontrivial information about any individual row or
column is revealed to an adversary [16].

In §2, we formally define our problem and give some basic definitions. In §3, we review a
data structure for representing a graph that is not biconnected. In §4, we give a lower bound
on the minimum number of additional edges necessary for achieving the desired bipartite
biconnectivity. We prove a matching upper bound for a special case in §5 and for the general
case in §6. We conclude this paper with a linear-time algorithm for our augmentation
problem in §7.
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2. Problem formulation and basic definitions. In this paper, all graphs are undi-
rected and have neither self loops nor multiple edges, unless explicitly stated otherwise.
Given a graph G’ an edge subset F’ and a vertex subset V', G — V' denotes G’ without the
vertices in V' and their adjacent edges. G’ — E' is ' without the edges in E'. G’ U E' is
the resulting (' after the edges in £’ are added to G'. Most of the definitions below can be
found in [2, 8, 12, 13].

Throughout this paper, let G = (A, B, ) denote a bipartite graph.

2.1. The augmentation problem. A {rivial connected component is an isolated ver-
tex. A cut vertex (or cut edge) is one whose removal increases the number of connected
components. A connected graph is biconnected it it has at least three vertices and no cut
vertex. A biconnected component is a maximal subgraph that is biconnected. A graph is fully
biconnected if it either consists of a single vertex or is biconnected. A graph is componentwise
fully biconnected if every connected component is fully biconnected.

A legal edge of GG is an edge in A x B but not in K. A biconnector of G is a set L of
legal edges such that G U L is componentwise fully biconnected. A biconnector is optimal
if it is one with the smallest number of edges. Note that if A = or B = 0, ( is trivially
componentwise fully biconnected. If |[A] =1 and B # 0 (or |B] =1 and A # (), G has no
biconnector. If |A| > 2 and |B| > 2, (G has a biconnector. In light of these observations, the
optimal biconnector problem is the following: given G = (A, B, ) with |A| > 2 and |B| > 2,
find an optimal biconnector of G.

The remainder of this paper assumes that |A| > 2 and |B| > 2.

2.2. Basics. A block in a graph is either the set of a single vertex that is not in any
biconnected component or the set of vertices in a biconnected component. A block with
exactly one vertex is a singular block. Let nc((') denote the number of connected components
in GG. A strict cut vertex is a cut vertex ¢ such that (1) ¢ is not an endpoint of a cut edge,
or (2) ne(G — {c}) — ne(G) > 2. A singular block consisted of a strict cut vertex is a strict
cut block.

DEFINITION 2.1 ([12, 13]). A block is a leaf-block if it either (1) is a singular block
which contains one endpoint of a cut edge or (2) contains exactly one strict cut vertex and
no endpoint of any cut edge. A vertex is demanding if (1) it is the only vertex in a leaf-block
or (2) it is neither a cut vertex nor an endpoint of a cut edge.

We classify the vertices and leaf-blocks of G with the following definitions. A vertex is
of type-A if it is in A. A vertex is of type-B if it is in B. A leaf-block is of type-A if all of its
demanding vertices are in A. A leaf-block is of type-B if all of its demanding vertices are in
B. A block is of type-AB if it has at least one demanding vertex in A and one demanding
vertex in B.

LEMMA 2.2.

1. A biconnected component in a bipartite graph must contain at least two vertices in
A and at least two vertices in B.
2. A nontrivial leaf-block is type-AB.
3. A singular leaf-block is either type-A or type-B.
Proof. Straightforward. 0O
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Let Q' be a set of leaf-blocks in G. A legal pair of € is two distinct elements in €
that are paired according to the following rules. Type-A may pair with type-B or type-AB.
Type-B may pair with type-A or type-AB. Type-AB may pair with all three types.

A corresponding legal edge of G for a legal pair is a legal edge whose two endpoints
are demanding vertices in the blocks. A legal matching of ) is a set of legal pairs of '
such that each element in €' is contained in at most one legal pair. A legal matching of
with the largest cardinality can be obtained by iteratively applying any rule below whenever
applicable:

o If all unpaired elements are type-AB, we pair two type-AB elements.

o If there are one unpaired type-A element and one unpaired type-B element, we pair
a type-A element and a type-B element.

o If there is no unpaired type-B element and there are one unpaired type-A element
and one unpaired type-AB element, we pair a type-A element with a type-AB
element.

o If there is no unpaired type-A element and there are one unpaired type-B element
and one unpaired type-AB element, we pair a type-B element with a type-AB
element.

Q(G) denotes the set of leaf-blocks of . For Q' C Q(G), M (') denotes the maximum
cardinality of a legal matching of €. For a maximum legal matching of €', R(£)’) denotes
the number of elements in ' that is not in the given maximum legal matching. Note that
R(') is the same for any maximum legal matching of €2'.

For all vertices u € GG, D(u, () denotes the number of connected components in X — {u}
where X is the connected component of G containing u. C((G) denotes the number of
connected components in G that are not fully biconnected. B(() denotes the number of
edges in an optimal biconnector of G. The next notation denotes our target size for an
optimal biconnector of G-

o(G) = max{D(u, &) + C(G) — 2, M(AE)) + R(AG)}.

Note that a(G) = O(n), where n is the number of vertices in G.

3. A bc-forest. We construct a forest W((), called the be-forest of G, to organize the
non-strict cut blocks, cut edges, and strict cut vertices in G. Our augmentation algorithm
works with this forest instead of G directly. The construction below is a variant of the bc-
forest given in [8, 19, 12]. Let Y7,...,Y} be the blocks of G that are not strict cut blocks.
Let uy, ..., u. be the strict cut vertices. Let eq,..., e, be the cut edges.

The vertex set of W(G) is {Y1,..., Y.} U{ug,...,u.t U{er, ..., eu}, ie., each non-strict
cut block, strict cut vertex or isolated edge of (¢ is regarded as a vertex in W((). The vertices
in U((G) corresponding to blocks are called the b-vertices, and those corresponding to strict
cut vertices and cut edges are called the c-vertices.

The edge set of W(() is the union of the sets {(Y;, ¢;) | an endpoint v of ¢; is in ¥; and
v is not a strict cut vertex}, {(u;,e;) | u; is an endpoint of €;}, and {(Y;,u;) | u; € Yi}. In
other words, there is an edge between Y; and u; if and only if u; is a vertex in the block Y;.
There is an edge between Y; and ¢; if and only if one endpoint of e; is in the block Y; and
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this endpoint is not a strict cut vertex. There is an edge between u; and ¢; if and only if v,
is an endpoint of e;. Remark that if a strict cut vertex v forms a block {v} by itself, then
{v} does not appear in the be-forest as a b-vertex. Instead, v appears as a c-vertex in the
be-forest.

By our definition of a be-forest, given any path P between two vertices v and v, P has
a c-vertex if u and v are both b-vertices. If v and v are both c-vertices with degree at least
three, then P has a b-vertex. It is also true that a b-vertex that is no isolated is adjacent to
only c-vertices. The number of vertices in W(() is O(n), where n is the number of vertices
in G.

LEMMA 3.1 ([8]).

1. U((G) is a forest, where the leaves are leaf-blocks in G.

2. Fach connected component in G forms a tree in W(G). Moreover, a connected com-
ponent that is trivial or biconnected forms an isolated vertex in U(G).

3. A leaf-block of G is a b-vertex of degree one in V().

4. For all cut vertices u in G, D(u, ) equals the degree of u in VU(G).

It is obvious to update W((') after adding a legal edge to ¢ between demanding vertices
in two distinct connected components. We simply add a new cut edge to G to connect
the two trees corresponding the two connected components in question. The next lemma
analyzes the case of adding an edge within a connected component.

LEMMA 3.2 ([4, 8, 18]). For simplicity, assume that G is connected. Let Y1 and Ys be
leaf-blocks in . Let e be a legal edge between a demanding vertex in Yy and one in Yy, Let
G''=G U {e}. Let P be the tree path of W(G') between Yy and Ys.

1. The blocks of W(G) on P are merged into a new block Y' in W(G"). All the other
blocks remain the same.

2. The c-vertices of U(G) on P that are of degree two are no longer c-vertices in W(G").
All the other c-vertices remain the same.

3. If a c-vertex is adjacent to a block on P in W((), then it is adjacent to the new block
Y’ in W(G"). All the other edges remain the same.

4. A lower bound on the size of optimal biconnectors.

LEMMA 4.1. G is componentwise fully biconnected if and only if a(G) = 0.

Proof. Straightforward. 0O

The next lemma is useful for bounding the size of an optimal biconnector.

LEMMA 4.2. G has an optimal biconnector L such that the connected components of G
which are not fully biconnected are all contained in the same connected component of GU L.

Proof. Let K be an optimal biconnector of G. If K connects all connected components
of G which are not fully biconnected, then the lemma is true. Otherwise, let X; and X5 be
two connected components of G which are not fully biconnected and are contained in two
different connected components X| and X of G U K, respectively. Let e; = (uy,v1) and
€2 = (ug,v2) be two edges in K with e; € X| and ez € XJ. Such e; and ey exist because
X7 and X, are not fully biconnected in G, but X] and X} are fully biconnected in G U K.
Next, let €] = (uy,vq) and €, = (ug,v1). Then, K" = (K \ {e1,e2}) U {e], €5} is an optimal
biconnector of . Also, K’ connects X| — {e1} and X} — {e2}, which include X; and Xj,.
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The lemma is proven by repeating this endpoint switching process. 0O

A nontrivial connected component is biconnectable if it is neither an isolated edge nor
a biconnected component. To motivate for the lower bound on B((), observe that if G is
made componentwise fully biconnected, then G has neither isolated edges nor biconnectable
components. In light of Lemma 4.2, legal edges should be added to G between demanding
vertices in biconnectable components and isolated edges to merge all isolated edges and
biconnectable components into one biconnectable component. By Lemmas 3.2, legal edges
should be added between demanding vertices to componentwise fully biconnect the resulting
biconnectable component. Note that if (¢ is componentwise fully biconnected, then ()
contains no leaf. Adding a legal edge to G can merge at most two leaf-blocks into a block
that might or might not be a leaf-block. These observations suggest the next theorem.

THEOREM 4.3. B(G) > a(G).

Proof. Note that a(G) = maxueg{D(u,G) + C(G) — 2, M(Q(G)) + R(Q(G))}. We first
prove that B(G) > M(Q(G)) + R(QG)). If G is componentwise fully biconnected, then
IQG)] = M(Q(G)) = 0. Thus, it suffices to prove that adding a legal edge can decrease
M(Q(G)) + R(QG)) by at most one. If the two endpoints in the added legal edge are in
two leaf-blocks that are a legal pair, then M(Q(()) decreases by at most one and R(Q(G))
remains unchanged. Otherwise, either R(2((7)) decreases by at most one and M(Q(G))
remains unchanged or M(Q(()) decreases by one and R(Q(G)) increases by one. We now
prove that B(G) > max,eq{D(u, ) + C(G) — 2}. If GG is componentwise fully biconnected,
then D(u,G) < 1, C(G) = 0, and the lemma holds. Otherwise, let Xy,..., X¢(@) be the
connected components in G that are not fully biconnected. Let v be a vertex such that
D(v,G)+C(G) — 2 = maxyeg{D(u, G) + C(G) — 2}. Then, v must be a cut vertex. Without
loss of generality, assume that v € X;. By Lemma 4.2, G has an optimal biconnector L
such that the connected components X; are all contained in some connected component X’
in GU L. Because the removal of v breaks X7 into D(v, (&) connected components, X' — {v}
contains D(v, ) + C(G) — 1 connected components of ¢ — {v}. Because X’ is biconnected,
X' — {v} is connected and L must contain at least D(v, ) + C(G) — 2 edges. O

5. Determining the optimal biconnector size for a special case. In this section,
we consider the case when the graph is connected with with at least two vertices in A and
two vertices in B. During the discussion, we also assume that |Q(G)| > 3, since otherwise
it is obvious to prove a(G) = M(Q(G)) + R(2(G)). Note that o) = maxyec{D(u,G) —
L M(Q(G)) + R(QG))} for this case. The next theorem is the main result of this section.

THEOREM 5.1. There is a legal edge e such that o(G U {e}) = a(G) — 1.

Before we prove this theorem, we give the next corollary.

COROLLARY 5.2. B(G) = a(G).

Proof. Theorem 5.1 can be iteratively applied to add a(G') edges to G so that the af-)
value of the resulting & is zero. By Lemma 4.1, this resulting G is componentwise fully
biconnected. Thus, B(G) < a(G'). The corollary then follows from Theorem 4.3. O

We will prove Theorem 5.1 through a sequence of lemmas in §5.1-§5.4.

DEFINITION 5.3 ([13]).

1. A cut vertex u is massive if D(u,G) — 1 > M(Q(G)) + R(Q(G)).
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2. A cut vertex u is eritical if D(u,G) — 1 = M(Q(G)) + R(QG)).
3. A graph with no massive c-vertex is balanced.
LEMMA 5.4 ([4, 13, 18]). Assume that W(G) has more than three leaves.
1. There is at most one massive vertex.
2. If there s a massive vertex, then there is no critical vertez.
3. There are at most two critical vertices.
4. If there are two critical vertices, then |Q(G)| =2 - M(Q(G)) and R(Q(G)) = 0.
LEMMA 5.5. At least one of the following four cases holds for G.
o Case [. M(QG)) =0.
o Cuase [I. M(QG)) > 0 and there are two critical c-vertices.
o Cuase III. M(QG)) > 0, G is balanced and there is at most one critical c-vertex.
o Case V. M(Q(G)) > 0 and there is one massive c-vertex.
Proof. By definition, either Case I holds or M(2(G)) > 0. The latter case is further
divided by Lemma 5.4. 0O
In §5.1 through §5.4, the proof of Theorem 5.1 is divided into the four cases stated in
Lemma 5.5.

5.1. Case I of Theorem 5.1. This case assumes M(Q(G)) = 0.

LEMMA 5.6. a(G) = |QG)].

Proof. Let u be a vertex in . If u is a noncut vertex, by definition D(u,G) = 1;
otherwise, by Lemma 3.1(4), D(u, ) < |Q(G)|. Then, because (i is connected (i.e., C(G) =
1) and M(Q(G)) =0, a(G) = |QG)|. O

LEMMA 5.7. Theorem 5.1 holds for Case I.

Proof. Let k = |Q(G)]. By Theorem 4.3 and Lemma 5.6, it suffices to construct a
biconnector L of k edges for . Let Y1, ..., Yy be the leaf-blocks in i. Because M(Q(G)) =
0, by the way a legal matching is defined these blocks are all type-A or all type-B. By
Lemma 2.2(2), each block is also singular. Assume without loss of generality that they are
type-A. Then, there is a cut edge (x;,y;) for each ¥; = {y;}. Because we assume there are
at least two type-B vertices in G and M(Q(G)) = 0, there are at least two distinct vertices
u and v among x1,...,r;. We construct an optimal biconnector L as follows:

o Let O, (respectively, Q) be the set of all ¥; with a; = u (respectively, x; # u).

e For each Y; € Q, (respectively, Q,), let e; = (y;,v) (respectively, (y;, u)).

o Let L, (respectively, L,) be the set of all e; associated with the blocks in €, (re-
spectively, €1,,).
o let L=1L,UL,.
Thus |L| = k. To shows that L is an optimal biconnector, it remains to show that L is a
biconnector of (. By Lemma 5.4(1), U(() is a tree. By Lemma 3.1(3), the blocks in O, are
leaves in W((G'). We will prove that G U L has no cut edge or cut vertex.

First we observe that adding edges to G creates neither a new cut edge nor a new cut
vertex. For each cut edge e in G, G — {e} consists of two connected components (G; and G,
where (37 contains a vertex vy in Q, and G5 contains a vertex vy in €,. Note that there are
two internally vertex-disjoint paths between vy and vy in G U L, one being vy, v, vy and the

other being vq, u,v1. Thus v1 and vy are connected in (G'U L) — {e}. Thus e is no longer a
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cut edge in G U L.

For each cut vertex ¢ in G, G — {¢} consists of connected components Gy,Gy, ..., G,.
For each connected component (&; containing a vertex in €1,, we can find another connected
component ; containing a vertex in Q,. By an argument similar to the one given in the
previous paragraph, (¢; and (i; are connected in (G'U L) — {c}. Thus Gy,Gs,...,G, are all
connected in (G'U L) — {¢}. This implies ¢ is no longer a cut vertex in G U L. Thus, L is a
biconnector of GG. 0O

5.2. Case II of Theorem 5.1. This case assumes that M(Q(G)) > 0 and there are
exactly two critical vertices. Let P = uq,...,u; be a path in GG. P is branchless if for all 2
with 1 < ¢ < k the degree of u; in G is two. P is branching if it is not branchless. A subtree
rooted at a child of the root of a rooted tree is a branch of the given tree.

In this case, W(() has a very special shape as described in the next lemma.

LEMMA 5.8 ([18]). Let T be a tree with k leaves such that there are two vertices u and
v each of degree 1 + %

1. The value k ts even.

2. There is a unique branchless path in T that connects u and v.

3. For each leaf, there is a unique branchless path in T that connects the leaf to either
u or v and does not go through the other.

We call the T' in Lemma 5.8 a double star centered at u; and wuy. The two vertices u;
and wuy are critical vertices. We say that a leaf is clung to u; if it is connected to w; through
a path as described in the lemma.

By Lemma 5.4, R(Q(G)) = 0 in this case. The next lemma analyzes how to construct
a maximum legal matching of cardinality M(Q(G)).

LEMMA 5.9. There is a mazimum legal matching of cardinality M(QG)) such that
each pair in it consists of a leaf-block clung to uy and one clung to us,.

Proof. We construct M(Q(G)) as follows. Let by, ... b, bpi41,..o by brygr, ..., by be
the leaves clung to uy, where b;, 1 < ¢ < ry are type-A, b;, 1 <1 < ry are type-AB, and
bi, 1y < v <13 are type-B. Let wy, ... ws , Ws 415, Wsy, Wsyp1,...,Ws, be the leaves clung
to ug, where w;, 1 <1 < sy are type-B, w;, s1 <t < 89 are type-AB, and w;, s3 < 1 < 83
are type-B. By Lemma 5.8, r5 = s3 = (, where 2 - { is the number of leaves in Q(G). We
construct a legal matching @ = {(b;,w;) | 1 < ¢ < 0}, In order for @ to be a legal matching,
we must verify that ry < sy and r9 > sq in order for the pairs to satisfy the matching rule.
Assume that 7y > s5, then there are 1+ (s3—s2+1) > { type-A leaves. Hence R(2((G)) > 0.
This is a contradiction to the assumption. Thus ry < s5. Using an argument that is similar
to the above, we can prove ry > s1. Since @) is a legal matching and |Q| = /, () is a maximum
legal matching. 0O

LEMMA 5.10. Theorem 5.1 holds for Case II.

Proof. We use Lemma 5.9 to find a maximum legal matching. For each pair in the
matching, we find a legal pair. By adding all legal pairs, G is biconnected [4, 18]. The size
of the maximal legal matching is equal to M(Q(G)). O

5.3. Case III of Theorem 5.1. This case assumes that M(Q(G)) > 0, there is no
massive c-vertex, and there is at most one critical c-vertex.
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Let ¢; be a c-vertex in W(() of the largest degree among all c-vertices. The next lemma
identifies the conditions under which adding an edge can decrease the number of leaves in
U(G) by two.

DEFINITION 5.11 ([13]). Let P be the path in W((G') between two leaf-blocks By and
B that are a legal pair. The pair By and By (or the path P) satisfy the leaf-connecting
condition if P has (1) a b-vertex of degree at least four or (2) two vertices each of degree at
least three.

LEMMA 5.12 ([13]). Let G’ be the resulting graph obtained from G after adding a
corresponding legal edge between a legal pair that satisfy the leaf-connecting condition. Then
QG = QGE) =2 and M(QG")) + R(QUG")) = M(QG)) + R(QG)) — 1.

LEMMA 5.13. Assume that W(G) has more than three leaves and is rooted at a vertex r
of degree more than two. Let h be a vertex in W(G) other than r with degree at least three.
If M(QG)) > 0, then there are two leaves wy and wy with the following properties:

o wy and wy are a legal pair;
e the path in V(G) between wy and we passes through h and z, where z is a vertex of
degree at least three and z # h.

Proof. Let T}, be the subtree of () rooted at h. There are three cases.

Case 1. T}, has a type-AB leaf. Let this leaf be wy. Let wy be a leaf in a branch of r
not containing h. Thus w; and wy are the pair we want, i.e., z is .

Case 2. Ty, has both type-A and type-B leaves, but no type-AB leaves. Let wy be a leaf
in a branch of r not containing h. If wy is type-AB or type-A (respectively, type-B), then
let wy be a type-B (respectively, type-A) leaf in T},. Thus w; and w; are the pair we want,
le., z1s 1.

Case 3. T}, has type-A (respectively, type-B) leaves only. Let wq be a leaf in T'. Without
loss of generality, w, is type-A. Since M(Q(G)) > 0, some leaf wy can match with wy. It is
either the case that ws is in a branch of r not containing & or the case that there is a vertex
x # r in the path from A to r such that w; is a descendent of x. In the former case, let
z =r. In the latter case, = is of degree at least three. Thus let z = z. O

LEMMA 5.14. Some legal pair in W(G') satisfy the leaf-connecting condition. Moreover,
if 1 is critical, the path in U(G) between this legal pair also contains c;.

Proof. There are two cases.

Case 1. The degree of ¢; is two. Since |Q(G)| > 3, there is no critical vertex. We root
V() at a b-vertex r of the largest degree. Thus it is either the case that the degree of r is
at least four or the case that the degree of r is three and there is another vertex r’ of degree
at least three. In the former case, using a simple argument we can prove that there must
exist two distinct leaves wy and w, such that they are in different branches of r and they are
a legal pair. This pair satisfy Condition (1) of the leaf-connecting condition. In the latter
case, we use Lemma 5.13 by setting & =/ to find a legal pair that satisfy Condition (2) of
the leaf-connecting condition.

Case 2. The degree of ¢; is greater than two. Since ¢; is not massive, there must exist
another vertex r of degree at least three. We root W(() at r and then use Lemma 5.13 by
setting h = ¢1 to find a legal pair that satisfy Condition (2) of the leaf-connecting condition.
U



OPTIMAL BICONNECTIVITY AUGMENTATION 9

LEMMA 5.15. Theorem 5.1 holds for Case III.
Proof. By Lemma .14, D(¢1, G') = D(ey, G)—1 and M(Q(G"))+R(QG")) = M(QG))+
R(QG))—1. O

5.4. Case IV of Theorem 5.1. This case assumes that M(Q(G)) > 0 and there is
exactly one massive c-vertex.

Let r be the massive cut vertex of G with D(r,G) — 1 > M(Q(G)) + R(Q(G)). For
technical convenience, consider U((7) as a tree rooted at r.

LEMMA 5.16. a(G) =D(r,G)—1 > M(QG))+R(QUG)) > D(u, ) for all cut vertices
u in G such that v # r.

Proof. The lemma follows from the assumptions that there is exactly one massive c-
vertex and there is no critical vertex. 0O

Based on Lemma 5.16, to prove Case IV of Theorem 5.1, we will add a legal edge to GG
to reduce D(r, (). Note that adding a legal edge to G never increases M(Q(G)) + R(QUG))
or D(u, ).

LEMMA 5.17. D(r,G) > 4.

Proof. Straightforward. 0O

A branch of T'"is a chain if it contains exactly one leaf in T'.

LEMMA 5.18. Let W((G) be rooted at a non-leaf vertex. Then W(G') contains two leaves
Y] and Y3, and two distinet branches 11 and Ty with the following properties:

1. Ty is a chain.
2.Y i ind and Y5 is in 15,
3. Y1 and Yy form a legal pair.

Proof. By Lemmas 3.1(4) and 5.4, the number of children of r in W(() is greater than
half the number of leaves in W(('). Therefore, at least one branch of r is a chain. Let T} be
such a chain. Let Y7 be the unique leaf of T7. Because M(Q(G)) > 0, U(G) contains a leaf
that is different from Y; and forms a legal pair with Yj. Let Y5 be such a leaf. Let T3 be the
branch of r that contains Y, as a leaf. By choice, Y7, Y5, T} and T; satisty the three desired
properties. 0O

LEMMA 5.19. Theorem 5.1 holds for Case IV.

Proof. Let Y1, Y, T1 and Ty be two leaves and two subtrees of W(() that satisfy
Lemma 5.18. Let e be a legal edge between a demanding vertex in Y; and one in Y;. Let
G' = GG U{e}. Let P be the tree path of U(G) between Y7 and Y;. By Lemma 3.2(1), the
blocks of (G on P are merged into a new block Y’ in . By Lemmas 3.2(2) and 5.17, r
remains a cut vertex in (/. Because T} has only one leaf, by Lemma 3.2(3), it is absorbed
into Ty in W(G"). Thus, D(r,G') = D(r,G')—1. By Lemma 3.2(3), D(v,G') < D(v, () for all
remaining cut vertices v of GG in . Because D(r, (7) is greater than D(u, () for all other cut
vertices u in G, D(r’, ) is at least D(v, (") for all other cut vertices v in GG'. On the other
hand, if T has exactly one leaf, then Y is a leaf in W((G’); otherwise, it is an inner vertex.
In either case, M(Q(G")) + R(QAG")) < M(QUG)) + R(QE)). Thus, a(G') = a(G) — 1.
We repeat this process until the massive cut vertex becomes critical, which is Case III of
Theorem 5.1. O
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6. A tight bound for the general case. Let C;((G) be the number of connected com-
ponents in (¢ that are not biconnected and have two or more vertices each. Let Co(G), C5(G)
and C4((') be the numbers of isolated edges, isolated vertices, and biconnected components,
respectively.

THEOREM 6.1.

1. IfCi(G) =1 and Co(G) = 0, then B(G) = a(G).

2. If C1(G) 4+ Co(G) > 2, then B(G) = a(G).
3. IfC1(G) =0, Co(G)=1, and C4(G)>1, then B(G) =2
4. If C1(G) =0, C2(G)=1, and C4(G)=0, then B(G) =3
5. If C1(G) = 0 and C2(G)=0, then B(G) =

Proof. Case 5 is obvious. The other four cases are proved below.

Case 1. Let (1 be the nontrivial connected component in GG that is not biconnected.
Theorem 5.1 covers the case that (¢; contains at least two vertices in A and at least two
in B. Thus, we assume without loss of generality that (&7 contains exactly one vertex
u € A. Hence Gy is a star centered at u. Let the other vertices in G7 be vi,vq,...,v,.
Then every {v;} is a leaf-block and B(G) = Q(G4). If there is an isolated vertex w € B,
let L = {(w,v1),...,(w,v,)} and G U L is biconnected. If there is a biconnected com-
ponent (1 in G, by Lemma 2.2 (G; contains two vertices wq,wy € B and {(wq,v1)} U
{(wq,v2), (w2, v3),...,(ws2,v,)} is an optimal biconnector.

Case 2. Case 1 proves that if C;(G)) = 1 and Co(G) = 0, then B(G) = a(G). We show by
the following iterative algorithm that by adding one edge at a time carefully, we can reduce
this case to Case 1. We add an edge by one of the following two subcases depending on the
current value of M(Q(G)).

Case 2.1. M(Q(G)) > 0. We can find a legal pair w; and w,. If they are in different con-
nected components, then we add a corresponding legal edge. Let ' be the resulting
graph. Then Ci(G') 4+ C2(G") = C1(G) + C2(G) — 1. Since C(G') = C(G) — 1 and
MQG")) = M(QG)) -1, maxyea{D(u, ")+ C(G") =2, M(QUG"))+ R(QUG"))} =
maxyeq{D(u, G)+C(G) =2, M(Q(G))+R(QUG))}—1. If wy and wy are in the same
connected component, then there is a vertex ws in another connected component
such that w; and w3 are also a legal pair. We then apply an argument similar to
that for the case that w; and w, are in different connected components.

Case 2.2. M(Q(G)) = 0. Thus C3(G) = 0. Without loss of generality, all leaves are type-A.
We can find a vertex z in a type-A leaf-block and a type-B vertex y in another con-
nected component. Let G be the resulting graph after adding the edge (x,y). Then
C(G")=C(G) -1 and R(Q(G")) = R(QG)) — 1. Thus maxyec{D(u, ')+ C(G") —
2, M(QUG"))+R(QUG"))} = maxyea{D(u, G)+C(G) =2, M(QG))+R(Q(G))} —1.
In both cases, we combine two connected components into a connected component
with more than two vertices. Thus it is impossible that C;(G) = 0 and Co(G) = 1.

Note that by adding edges one by one at a time according to the above steps. We will
eventually reach the point that C;(G) = 1 and C2(G) = 0 in the current G. Thus we can
apply Case 1 to wrap up the proof.

Case 3. Let G’ be a biconnected component in GG. Let r and ¢ be two vertices in G’,
where r is type-A and ¢ is type-B. Let (', ¢') be the isolated edge of G. We choose L =
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{(r, ), (r',¢)}, which is obviously an optimal biconnector of G.

Case 4. Let (r, ¢) be the isolated edge and let r’ and ¢ be two isolated vertices such that
r and 1’ are type-A, and ¢ and ¢ are type-B. We choose L = {(r, ), (r',¢), (+', )}, which
is clearly an optimal biconnector of G. 0O

7. Computing an optimal biconnector in linear time. Since ¥((') can be com-
puted in linear time [1, 3, 5], so can «((). To find an optimal biconnector, we can iteratively
add one legal edge at a time to reduce a(() by one. With a naive implementation, this
process may take quadratic time to find an optimal biconnector. However, with the data
structure presented below, we can find an optimal biconnector in linear time. It is obvious
to compute in linear time an optimal biconnector for Cases 3 through 5 of Theorem 6.1. For
Cases 1 and 2, if C1(G') > 1, these two cases can be reduced in linear time to the case that
Ci(G) =1 and C;(G) =0 for 2 < ¢ < 4. It is also easy to compute an optimal biconnector
in linear time for Cases I, Il and IV of Theorem 5.1. For the rest of the section, we assume
Case IIT of Theorem 5.1.

Given two blocks in W((), their corresponding path is the tree path in W(() that contains
those two blocks. The linear time algorithm in [18] uses the fact that W(() is rooted at an
internal b-vertex. FEach time an edge e is added, it is added between leaf-blocks whose
corresponding path P passes through the root. Thus W(G U e) can be computed from U(G)
by local operations in O(|P|) time. Note that if P passes the root, then the new root of
V(G U e) is the new block created by merging all blocks in P.

Unfortunately, the key step of our algorithm as given in the proof of Lemma 5.14 (which
uses Lemma 5.13) cannot guarantee that P passes through the root because we have to find
specified leaf-blocks satistying the matching rules in addition to satisfying the leaf-connecting
condition. We will prove in the following sections that we can satisfy the requirement of P
passing the root, if we reroot W(() while finding the legal edge to be added. In order to
have a linear-time implementation, the total amount of time used for rerooting and finding
two endpoints of the legal edge to be added must be also linear. Below, we describe a data
structure and also a new proof for Lemma 5.14 to achieve all of the above goals.

7.1. Data structure. A vertex u in U((G) is pure-A if it is a type-A leaf or all leaves
in the subtree rooted at u are type-A. We similarly define a pure-B vertex. A vertex u in
V() is hybrid if it is neither type-A nor type-B. Note that a branch of a hybrid vertex may
or may not contain a type-AB leaf.

We use the following data structure to represent U(() as a tree rooted at a given non-
leaf b-vertex. The siblings of a vertex are doubly linked from left to right. In this list,
hybrid vertices whose branches contain type-AB leaves appear first. Hybrid vertices whose
branches contain no type-AB leaves appear next. These vertices are followed by the pure-A
vertices and then the pure-B vertices. Fach vertex has two values: (1) a flag indicating
whether it is pure-A, pure-B, or hybrid and (2) the number of leaves in the subtree rooted
at it. Each hybrid vertex also keeps the number of type-AB leaves in the subtree rooted
at it. Each vertex maintains five pointers: (1) a parent pointer, (2) a child pointer to the
leftmost pure-A child, (3) a child pointer to the leftmost pure-B child, (4) a pointer to the
leftmost hybrid child who has a branch containing a type-AB leaf and (5) a pointer to the
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leftmost hybrid child whose branches contain no type-AB leaf. Each pointer is null if no
such vertex exists. In addition to the above pointers, each vertex also has a pointer to the
leftmost child and one to the rightmost child.

Given W((), we can construct the above data structure and root W(() at a given non-
leaf b-vertex all in linear time. This construction and rooting process is called ordering. The
resulting U(() together the data structure is called an ordered tree.

Using the ordered tree data structure, we can walk down the tree from a vertex v toward
one of its child pointers. If there is a leaf with a certain type (i.e., type-A, -B, or -AB) in a
subtree rooted at a vertex v. Using one of the 5 child pointers, we can walk down the tree
to find such a leaf with the given type. We can walk up the tree from the vertex v through
its parent pointer. We can walk down the tree from a vertex v toward one of its dependents
u by first find the path P between uw and v by walking up through the parent pointer until
v is encountered. Then we follow P to walk down the tree. All of the walking operations
mentioned above take time linear in the distance (number of vertices and edges) traversed.

LEMMA 7.1. Let e be a legal edge in G whose endpoints are in leaf-blocks wy and wq. If
the path P between wy and wq in the ordered tree W((G) passes through the root of the tree,
then we can order V(G U {e}) in O(|P]) time.

Proof. By Lemma 3.2, all blocks in P are merged into the root. Let this newly created
block be the new root. We can keep track of the flag and pointers of each vertex, except its
parent pointer, all in O(|P]) time. Since a parent pointer of a vertex points to its parent as
before in W((G') or to the root of the resulting ordered tree, we can update the parent pointers
of the vertices in P only. The order of each sibling link can be properly updated in O(|P])
time. By keeping track of the current root, we can order W(G' U {e}) in O(|P|) time. O

7.2. Rerooting and path finding.

LEMMA 7.2. Let T be an ordered tree rooted at r. Let v’ be another vertex in T'. Let P
be the path in T from r to r'. Given P, we can order T to be rooted at r' in O(|P|) time.

Proof. The proof is straightforward. 0O

LEMMA 7.3. The vertices wy, wz, and z of Lemma 5.13 can be found in O(|P]) time in
an ordered W(('), where P is the tree path between wy and ws.

Proof. We consider the same three cases as in the proof of Lemma 5.13.

Case 1. This case is straightforward.

Case 2. We can find wq by first walking up W(G) from A until we reach the root. Then
we walk down W(() from a branch different from the one we walk up. Thus ws can be any
leaf in this branch. A type-A (respectively, type-B) leaf w; can be found by walking down
V(@) from h and chooses the leftmost (respectively, rightmost) child pointer each time we
walk down.

Case 3. We can find wy by walking down W((G') from h using an arbitrary child pointer.
We walk up U(G) from h until we reach the root. Either we find z on the way up or z = r.
The rest of the proof is straightforward. 0O

Note that in Case 3, rerooting W(() at z is needed if the root is a b-vertex and we
require the corresponding path between the two found leaves to pass the root. Note also
that rerooting happens only when the current root is pure-A or pure-B.
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7.3. Choosing alegal pair in Lemma 5.14. We now give another proof for Lemma 5.14
on an ordered ('), which may have to be rerooted. The rerooting process will be performed
only if necessary. For ease of description, we split Lemma 5.14 into two lemmas which cor-
responds to the two cases in its proof.

LEMMA 7.4. Lemma 5.14 holds for an ordered W(G) if each c-vertex is of degree two.

Proof. Let r be the current root of the ordered tree. The vertex r is a b-vertex. Note
that the degree of every c-vertex is two. Since W((') has at least four leaves, there is no
critical vertex. There are three cases.

Case 1. The root r is of degree at least four. The leftmost and the rightmost leaves are
the desired legal pair. This pair satisfy Condition (1) of the leaf-connecting condition.

Case 2. The root r is of degree three. Let h be the root of a branch of r that is not a
chain. Since W((') has at least four leaves, there exists a vertex h # r whose degree is at
least three. We use Lemmas 5.13 and 7.3 to find the desired legal pair.

Case 3. The root r is of degree two. If both branches of r are not chains, then the
leftmost and the rightmost leaves are a legal pair. This pair satisfy Condition (2) of the
leaf-connecting condition. If one branch of r is a chain, then let v’ be the first vertex of
degree at least three when we walk down W(() from r through the branch of r that is not
a chain. Since the degree of every c-vertex is two, the vertex r’ is a b-vertex. We reroot
V(@) at r’. We reroot U(G') at . We can now reduce this case to either Case 1 or Case 2
depending on the degree of the new root . 0O

Let T be the original rooted tree. Let T" be the rerooted tree obtained in Case 3. Note
that the rerooting operation performed in Case 3 moves the root from r to r’, where every
vertex in the corresponding path between r and 7’ is of degree 2. Let T,/ be the subtree of T
rooted at r’. Let T be the subtree of 1" rooted at r. It is true that whenever this rerooting
operation is performed, T, contains more than one leaf and 7! is a chain.

LEMMA 7.5. Lemma 5.1/ holds for an ordered W(G') if the degree of some c-vertex is
greater than two.

Proof. Let ¢; be a c-vertex of the largest degree among all c-vertices. Let r be the
current root of W((G). If there is a critical vertex in W((), then ¢; is that vertex. The vertex
r is a b-vertex. Let T be the branch of r containing ¢;. Let P, , be the corresponding path
in T' between two vertices x and y. There are three cases.

Case 1. The degree of r is at least three. If ¢; is a hybrid vertex, we use Lemmas 5.13
and 7.3 by setting h = ¢; to find a legal pair. No rerooting is needed. Otherwise we have
the following three subcases. Assume without loss of generality that ¢; is pure-A. Let y be
the first non-pure-A vertex encountered on the way walking down V() from r to ¢;. Since
¢p is pure-A, y € P, .,. The degree of y is at least three.

Case 1.1. There is a branch Ty of r, Ty # T}, containing a leaf that is not type-A. We can
find a leaf in Ty and a leaf in 7} to form a legal pair. This pair satisfy Condition (2)
of the leaf-connecting condition.

Case 1.2. Every branch of r other than T} is pure-A and y is a b-vertex. If y is a b-vertex,
we reroot W(() at y and use Lemmas 5.13 and 7.3 by setting h = y to find a legal
pair.

Case 1.3. Every branch of r other than T} is pure-A and y is a c-vertex. If y is a c-vertex, we
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reroot W((G) at y’ where y' is the first b-vertex encountered by walking down W(()
from y towards ¢;. The vertex 3 is in P, ., because there is a b-vertex between two
c-vertices whose degrees are more than two. We find an arbitrary leaf w; in the
subtree rooted at ¢;. We can find another leaf w, in the subtree rooted at y such
that wy and wy are a legal pair. The leaves w; and wq satisfy Condition (2) of the
leaf-connecting condition. The path between them passes through ¢; and r.

Case 2. The degree of r is two and the branch T% of r not containing ¢; is not a chain.

Let T., be the subtree rooted at ¢;. We have three subcases.

Case 2.1. Ty is not a chain and ¢; i1s hybrid. We can find a legal pair w; and wy where
wy € T, and wy € T,. This pair satisfy Condition (2) of the leaf-connecting
condition.

Case 2.2. Ty is not a chain, ¢; is pure (assume without loss of generality is pure-A), and T
is non-pure-A. This case is similar to Case 2.1.

Case 2.3. Ty is not a chain, ¢; is pure (assume without loss of generality is pure-A), and T
is pure-A. Thus there is a non-pure-A vertex in P, . and the degree of this vertex
is at least three. We reroot W(() at y or y’ where y and y’ are defined in Case 1.2
and Case 1.3. We also apply the same method to find a legal pair as given in Case
1.2 or Case 1.3.

Case 3. The degree of r is two and the branch T, of r not containing ¢; is a chain. We
first walk down W((G) from r to ¢; and find the first vertex v whose degree is at least three.

Case 3.1. v # ¢; and v is a b-vertex. We reroot W(() at v. We can apply the method given
in Case 1 to find a legal pair.

Case 3.2. v # ¢; and v is a c-vertex. We reroot W(() at the first b-vertex encountered when
walking down W(() from v towards ¢;. Such b-vertex exists since there is a b-vertex
between the corresponding path of two c-vertices whose degrees are at least three.
We can apply the method given in Case 2 to find a legal pair.

Case 3.3. v = ¢;. Let w be a child of ¢; with where the subtree rooted at w is not a chain.
Such a vertex w exists because ¢; is not massive. We reroot V() at w. We can
apply the method given in Case 2 to find a legal pair.

COROLLARY 7.6. The path between the legal pair found in Lemmas 7./ and 7.5 passes
through the root of W((G) after rerooting if necessary.

Proof. Straightforward. 0O

We define a rerooting operation to be the process of moving the root (if needed) from
its current root before applying the proot of Lemma 5.14 to find a legal pair to its new root
after finding a legal pair. We define a rerooting step to be the rerooting of a tree from its
current root r to a child w of r. We say the above rerooting step begins from r and stops at
w. Given w, a rerooting step can be done in constant time. Note that to reroot a tree from
its current root r to a new root r’, we may consider this as the process of applying rerooting
steps along the path between r and 7’. In order to bound the total time of rerooting during
the execution of finding all legal pairs, the following lemma bounds the number of rerooting
steps.

LEMMA 7.7. Let T be the input be-forest. During the entire execution of our algorithm
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for finding all legal pairs, the rerooting steps are applied O(q) times, where ¢ is the number
of vertices in T.

Proof. Assume that we need to perform a rerooting from r to r’. Let the path between
r and " be r = wy,wy,...,wp_1,wy = 1. Note that r and r’ are both b-vertices. Thus
wy_1 18 a c-vertex. We decompose a rooting operation into a sequence of rooting steps w;
to wy, we to ws, ..., wr_1 to wr. Those rerooting steps are classified into two categories.
The first category consists of those rerooting steps from w; to wsyy, 1 < s < k — 3. The
second category consists of the rerooting steps from wy_5 to wi_; and from wi_y to wy.
We collect all rerooting operations performed during the entire execution of finding all legal
pairs. Those rerooting operations are decomposed into rerooting steps. All rerooting steps
are classified into the above two categories. We will analyze the number of rerooting steps
in each category.

For a rooting step from w to w’ in the first category, the following observations are
useful. Let T be the rooted tree before the rerooting step and let T be the rooted tree after
the rerooting step. Either the vertex w is a pure vertex in T" or the subtree of T” rooted at
w is a chain. Before the rerooting step the vertex w’ is neither pure-A nor pure-B in T'. The
subtree rooted at ' in T is also not a chain. After the rerooting step, a pure-A (respectively,
pure-B) vertex in T remains pure-A (respectively, pure-B) in T". Given any vertex v, no
rerooting step in the first category stops at v twice. Thus the total number of rerooting steps
in the first category is O(q), where ¢ is the number of vertices in the be-forest of the given
graph.

Note that for each legal pair found, we apply the rerooting operation once. For each
rerooting operation, there are two rerooting steps in the second category. Note that we found
only O(q) legal pairs. Thus the total number of rerooting steps in the second category is
O(g). O

THEOREM 7.8. Given a bipartite graph with n vertices and m edges, an optimal bicon-
nector can be computed in O(n + m) time.

Proof. 1t takes O(n+m) time in total to first construct W(() and then maintain it while
adding edges [18]. By Lemma 7.1 and Corollary 7.6, each update of the ordered W(() takes
time linear in the length of the path between the chosen legal pair. Thus by Lemmas 7.3,
7.4, 7.5, and 7.7, using the data structure of [18] to maintain the degrees of c-vertices, it
takes O(|P|) time in total to find a legal pair each time we are in Case III of Theorem 5.1.
It also takes O(|P|) time to update W((G'). After each update, the size of W((') decreases by
|P|. Eventually, U(() is an isolated vertex. Since the size of W((F) is linear in the size of
(G, the total time spent in Case III of Theorem 5.1 is linear. We have already shown that
Cases I, I, and IV can be processed in linear time. Hence we prove the theorem. 0
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