Optimal Bi-Level Augmentation for Selectively
Enhancing Graph Connectivity with Applications*

Tsan-sheng Hsuland Ming- Yang Kaot

Abstract

- Our main problem is abstracted from several optimization problems for protecting
information in cross tabulated tables and for imnproving the reliability of communication
networks. Given an undirected graph G and two vertex subsets Hy and Hy, the smallest
bi-level augmentation problem is that of adding to G the smallest number of edges such
that G contains two internally vertex-disjoint paths between every pair of vertices in
H; and two edge-disjoint paths between every pair of vertices in H,. We give a data
structure to represent essential connectivity information of H; and H, simultaneously.
Using this data structure, we solve the bi-level augmentation problem in O(n 4 m)
time, where n and m are the numbers of vertices and edges in G. Qur algorithm can
be parallelized to run in O{log? n) time using n + m processors on an EREW PRAM.
By properly setting &, Hy and Hy, our augmentation algorithm also subsumes several
existing optimal algorithms for graph augmentation.

1  Introduction

The problem of adding the minimum number of edges to make a graph satisfy a given
connectivity requirement is called the smallest augmentation problem. This is a fundamental
problem in graph theory {2, 3] and has applications on improving network reliability [5,
13, 24], on protecting sensitive information in cross tabulated tables 7, 17, 16, 20], and on

*An extended abstract of this paper appears in Proceedings of the Second Inlernational Conference on
Computing and Combinatorics, Springer-Verlag, LNCS#1090, pp. 169-178, 1996.

Tlustitute of Information Science, Academia Sinica, Nankang 11529, Taipei, Taiwan, ROC. E-mail:
tshsu@iis.sinica.edu.tw. Research supported in part by NSC Grant $5-2213-E-001-003.

IDepartment of Computer Science, Duke University, Durham, North Carolina 27706, USA. E-mail:
kao®cs.duke, edu. Research supported in part by NSF Grant CCR-9101385.




drawing planar graphs nicely [14]. This problem has been extensively studied for the cases
of making a whole graph l-edge-connected or L-vertex-connected for various values of k (see
the survey in [9]).

Recently, there have been studies on how to make only a given vertex subset satisfy a
connectivity requirement {4, 25, 28, 29, 30]. This generalization of the smallest augmentation
problem arises naturally from practical applications. For example, in the case of improving
network reliability, a system designer is usually concerned with the connectivity only of
certain critical nodes, instead of all the nodes 1n a system. Thus we are required to improve
the reliability only of those important nodes. In [28], it is mentioned that 2-edge-connecting
or biconnecting a given vertex subset can be done in linear time by adapting linear-time
algorithms for 2-edge-connecting or biconnecting a whole graph, respectively. In [30], a
linear-time algorithm is given to 3-edge-connect a given vertex subset. In [25], an O(A*-n-(n+
k-log A) + m)-time algorithm is given to raise by one the edge-connectivity of a given subset
of I vertices H where X is the edge-connecﬁivity of H, and the input graph is a multi-graph
with n vertices and m edges. When the edge-connectivity of H is equal to that of the input
graph, an O(n-logn + m)-time a.lgofithm is also presented. In [4], the problem of satisfying
edge-connectivity requirements on a specified subset of vertices for undirected graphs and
directed graphs is solved.

In this paper, we further generalize the smallest augmentation problem as follows. Let
R, and R, be two connectivity requiremhents with the following properties:

¢ R, and R, are monotonic with respect to edge additions, i.e., if a graph holds R;, the
same graph augmented with any additional edges also holds R;.

o If R is satisfied, R» is satisfied, i.e., if a graph holds Ry, it also holds Ras.

Let G = (V,E) be an undirected graph with n vertices and m edges. Let Hi &V
and H, C V. The smallest bi-level augmentation problem is that of inserting the smallest
number of edges to G such that in the resulting graph, the vertices in H, satisfy Ry and the
vertices in I, satisfy Ro. This paper focuses on the case where R, is biconnectivity and Ra
is 2-edge-connectivity.

We present a data structure to capture essential connectivity information of M1 and H2
simultaneously. This data structure can be efficiently updated after a new edge is added to
G, and is useful for dynamically maintaining bi-level-connectivity information {19, 22, 31].
Using this data structure, we solve the bi-level augmentation problem in O(n+m) time. Our
algorithm can be parallelized to run in O(log® n) time using n -+ m processors on ail EREW
PRAM. We use the algorithm to solve several optimization problems for protecting sensitive
- formation in cross tabulated tables (see §3.1) and for improving the reliability of critical

2




nodes in communication networks (see §3.2). Furthermore, by properly setting 7, H, and
Hy, our augmentation algorithm also subsumes several existing optimal algorithms for graph
augmentation, including those for 2-edge-connecting a vertex subset [29], 2-edge-connecting
a whole graph [3], biconnecting a vertex subset [29], and biconnecting a whole graph (12, 23].

The main result of this paper is formally stated in the following theorem.

Theorem 1.1 Given G, H, and Iy, the smallest bi-level augmentation problem can be solved
in optimal linear time. '

Before proving this theorem in §4 through §6, we give some key definitions in §2 and
solve application problems with this theorem in §3.

2 Definitions

Let u and v be two distinct vertices in G. I w and v cannot be separated by removing
-any edge in G, then v and v are 2-edge-connected. If every pair of vertices in G are 2-edge-
connected, then G is 2-edge-connected. A set of vertices H is 2-edge-connected, if every pair
of vertices in H are 2-edge-connected. If u and v cannot be separated by removing any single
edge or any single vertex in G, then u and v are biconnected. If every pair of vertices in
are biconnected, then G is biconnected. A set of vertices H is biconnected, if every pair of
vertices in H are biconnected.

A 2-edge-block in G s either (1) a set {u}, where u is a degree-0 or degree-1 vertex, or
(2) a maximal subset of vertices where every pair of vertices are 2-edge-connected. A 2-block
is either (1) a set {u}, where u is a degree-0 or degree-1 vertex, or (2) a maximal subset of
vertices where every pair of vertices are biconnected. A 2-block or 2-edge-block conststing
of exactly one vertex is called trivial.

'An edge whose removal makes the resulting graph contain more connected components
than the original graph is called a cut edge. A vertex whose removal makes the resulting
graph contain more connected components than the original graph is a cut verter. Let nc(G)
denote the number of connected components in G. A striet cut vertex is a cut vertex ¢ such
that (1) ¢is not an endpoint of a cut edge, or (2) ne(G—{c}) —ne(@) > 2. A singular block
consisted of a strict cut vertex is a strict cut 2-block.

Given two subsets of vertices H and H, in G = (V,E), G is bi-level-connected with
respect to Hy and H,, if H, is biconnected and 113 is 2-edge-connected.

Most of the definitions given here can be found in (1, 8, 11, 12].

3




3 Motivations

By properly choosing G, Hy and H;, we can use our augmentation algorithm to solve several
optimization problems for protecting sensitive information in cross tabulated tables [6, 7, 17,
15, 16, 20] and for improving the reliability of communication networks [5, 13, 24].

3.1 Proteéting sensitive information in cross tabulated tables

To protect sensitive information in a cross tabulated table 7, it is a common practice to
suppress some of the cells in 7. A fundamental issue concerning the effectiveness of this
practice is how a table maker can suppress a small number of cells in addition to the sensitive
cnes so that the resulting 7 does not lealk significant information.

This protection problem can be reduced to various augmentation problems for a bipar-
tite graph B constructed from 7 [6, 7, 17, 15, 16, 20]. The rows and the columns of 7 form
the two vertex sets of B, respectively; B has an edge between row ¢ and column j if and only
if the value of the (4, 7)-th cell in 7 is suppressed [7].

Let U be a set of rows and columns in 7. We say that 7 and U are bi-level protected if
the value of each suppressed cell cannot be uniquely determined and no nontrivial information "
about each row or column in U is revealed. It has been shown [7] that B has a cut edge '
between row ¢ and column j if and only if the value of the (7, 7)-th cell in 7 can be deduced ;
from the published data of 7. Furthermore, a row vertex in B is a cut vertex if and only !
if nontrivial information about that row in 7 is revealed [17). The same holds for columns. |
Therefore, 7 and U are bi-level protected if and only if B has no cut edge and none of the
vertices in U is a cut vertex of B [17]. As a consequence, the problem of suppressing the
minimum number of additional cells to bi-level protect 7 and U is equivalent to that of
adding the minimum number of edges to B such that B has no cut edge and U/ contains no |
cut vertex of B. Note that the newly added edge must preserve the bipartiteness of B. We |
call this graph augmentation problem the bipartite bi-level graph augmentation problem. A ‘
linear-time algorithm for this graph problem can be directly used to bi-level protect 7 and
U in optimal linear time [17].

Theorem 3.1 Given B and U, we can solve the bipartite bi-level graph augmentation prob- 1
lem in linear time in the size of B. 3

is
Prbof. In [10], techniques are developed to find a smallest biconnectivity augmentation while ‘:’J
preserving the bipartiteness of the input graph. Using the above techniques and Theorem 1.1, ro
we can easily derive this theorem. O a




3.2 Improving network reliability

A communication network N can be modeled as a graph G = (V, E), where the graph vertices
are the network nodes and the graph edges correspond to the communication links, For N
to satisfy a given reliability requirement, G often must hold some equivalent connectivity
property [5, 13, 24). We wish to add to N as few new communication links as possible
such that the resulting N meets its desired reliability requirement. Below we discuss several
network reliability requirements for & [5, 13, 24]. For each requirement, we solve the problem
of enhancing the reliability of N by first properly setting Hy and H, and then using our graph
augmentation algorithm to solve the equivalent augmentation problem for 7. The running
time of our algorithms are linear and are as efficient as the best previous known algorithms.

* No single link failure may disconnect the network{3]. The corresponding
graph problem is that of adding edges to 2-edge-connect . We set H=0and H,=V.

* No single link failure may disconnect a given set H of critical nodes[29].
The equivalent graph problem is that of 2-edge-connecting H. We set H; = (§ and Hy,=H.

* No single node failure may disconnect the network([12, 23]. The correspond-
ing graph problem is that of adding edges to biconnect G. We set H=H=V.

* No single node failure may disconnect a given set H of critical nodes[29].
The equivalent graph problem is that of biconnecting H. We set Hy = H, = H.

* A bi-level reliability requirement. Suppose that the communication nodes in N
are assigned two different levels of importance. A certain subset Hj of nodes may not he
disconnected by a single node failure, and another subset H, of nodes may not be discon-
nected by a single link failure. The corresponding graph problem is that of adding edges
to biconnect H; and to 2-edge-connect H, simultaneously. Qur graph augmentation algo-
rithm solves the reliability problem in optimal linear time. This solution is the first known
polynomial-time algorithm for this reliability problem.

4 Prelimina_ries

In this paper, all graphs are undirected. Given a graph G/, an edge subset £’ and a vertex
subset V', &' — V' denotes G’ without the vertices in V' and their adjacent edges. G' — B
1s the graph constructed from @ by removing the edges in E'. G' U E' is the resulting G
+ after the edges in B are added to G'. In a un-rooted tree, a leaf is a degree-1 vertex. In a
rooted tree, a leaf is a degree-1 vertex that is not the root. An isolated vertex in a forest is

a degree-0 vertex.




We now describe several basic properties concerning 2-edge-connectivity.

Lemma 4.1 1. Letu and v be 2-edge-connected in G. Let G' be the graph obtained from
G by adding a set E' of edges. If u and w are 2-edge-connected in G', then v and w

are 2-edge-connected in G'.

2. A vertex is in exactly one 2-edge-block.

9. Let w and v be 2-edge-connected in G. Let G be the graph obtained from G by adding
a set E' of edges. Ifu and w are biconnected in G, then u, v, and w are in the same

2-edge-block

Proof. Tt is well-known that vertices in 9-edge-connected components of a graph can be

defined by the following equivalence relation [8]. Two vertices u and v are in the same
equivalence class if u and v are 2-edge-connected. Hence we can derive all three properties

stated in this lemma. O

4.1 Two-edge-block graphs

We construct a forest 2EBLK(G), called the 2-edge-block graph of G by shrinking vertices
in a 2-edge-block into a vertex [8]. The graph 2EBLK(G) is a forest and it is a tree if & Is

connectec.
L

Given G = (V,E) and H C V, we also construct the specified 2-edge-block graph
$2EBLK(G, H) as follows. Let {¥3,..., Y3} be the set of 9-edge-blocks of G. Let W = {V; |
HNY; # 0}. Let P.p(2EBLK(G)) be the simple path in 2EBLK(G) between two 2-edge-
blocks @ and b if ¢ and b are connected in 2EBLK(G). The graph S2EBLK(G, H) is the
induced subgraph of 2EBLK(G) on the set of vertices W U {Y; | 3a,b € Wsuch that ¥; €

Poo(2EBLK(G))}. .
Intuitively, a leaf in S2EBLK(G, H) is a 2-edge-block containing a vertex in H. Any
(G, H). In addition, a 9-edge-hlock

2-edge-block containing a vertex in H is in S2EBLK
if Bis in a path (in 2EBLK(G))

B containing no vertex in H may be in s2EBLK(G, H),
between two 2-edge-blocks containing vertices in H. A cut edge is in $2BLK(G, H) if its
removal separates two vertices in H. An example of a graplh, its 2-edge-block graph and its

specified 2-edge-block graph is shown in Fig. 1.

Lemma 4.2 ([8, 29]) The graph S2EBLK(G, H) is a forest, and S2EBLK(G, H) is an 180
lated vertex if there are two edge-disjoint paths between every pair of vertices in H. Further-

more, S2EBLK(G, H) 1s « tree if and only if H is in a connected component of G.

6

=
9. return

The 2-edge-h
a total of Jine

. LGL B b
101' B with re




) (3

Figure 1: The i11puf graph is shown in (1) where vertices in a 2-edge-block are grouped into
a dashed circle. Its 2-edge-block graph is shown in (2) where rectangles are 2-edge-blocks

and circles are cut edges. Its specified 2-edge-block graph on the set of vertices that are
colored grey is shown in (3).

Lemma 4.3 Given G = (V,E) and H C V, we can construct its specified 2-edge-block graph
S2EBLK(G, H) in linear time.

Proof. Let P be the simple path in the rooted tree between two vertices u and v. Note
that if w is on P, then w is an ancestor of either u or v. By using this observation, we give
the following algorithm to construct S2EBLK(G, H).

L. let F' = 2EBLK(G);

2. for each 2-edge-block B in F, decide whether it contains a vertex in /;

3. remove trees in F that do not contain any Z-edge-block with a vertex in & ;
4. for each remaining tree T in F do the following:

(a) root T' at a 2-edge-block that contains a vertex in H;

(b} removing a vertex v and all adjacent edges from 7" if in the subtree of T rooted
at u, there is no 2-edge-block containing a vertex in H;

5. return the resulting forest as S2EBLK(G, H)

3
The 2-edge-block graph can be constructed in linear time [8]. The rest of the operations take

» a total of linear time. Hence the lemma holds. 0O

Let B be a 2-edge-block in S2EBLK(G, H). The 2-edge-connectivily demanding vertex
for B with respect to S2EBLK(G, H), EDEM(G, H, B) is (1) the (only) vertex in B if B is

RS ]

7




O———

trivial or (2) a vertex in B that is not an endpoint of any cut edge in S2EBLK(G, H). If B is
a leaf or an isolated vertex in S2EBLK(G, H), then the 2-edge-connectivity demanding vertex
for B is different from the demanding vertex for any other 2-edge-block in $2EBLK(G, H). By
adding an edge to connect a demanding vertex in a 2-edge-block B that is a leaf (respectively,
isolated vertex) in $2EBLK(G, H) and a vertex that is not in B, B is no longer a leaf
(respectively, isolated vertex).

In the following lemma, let ¥ and Y2 be Q—edge-blocks that are leaves in S2EBLK(G).
Let € be an edge between a demanding vertex in Yy and one in ;. Let P be the tree path

of S2EBLK(G) between Y] and Yo.

Lemma 4.4 ([3, 8, 12]) 1. The 2-edge-blocks of S2EBLK(G) on P are collapsed into a
new 2-edge-block in S2EBLK(G U {e}). All the other 2-edge-blocks remain the same.

2. If P contains two vertices of degrees ot least three or one vertex of degree at least
four, then the number of leaves in S2EBLK(G U {e}) is equal to the number of leaves in

S2EBLK(G) minus two.

Lemma 4.5 Let £ be the number of degree-1 vertices in S2EBLK(G, H) and let g be the
number of isolated vertices in S2EBLK(G, H). We need to add at least ¢ + [£/2] edges to G
in order for H to be 2-edge-connected, if ¢+ £ > 1. Furthermore, we can add a set of edges

with the above cardinality to make H 2-edge-connected.

Proof.  Similar to the proof for augmenting all vertices to meet the 2-edge-connectivity

requirement [3]. O

4.2 Two-block graphs

We construct a forest 2BLK(G), called the 2-block graph of G, to organize the 2-blocks
‘that are not strict cut 2-blocks, cut edges, or strict cut vertices in . The 2-block graph
constructed below is a minor variation of the be-forest given in (8, 11, 27]. Let {Y1,..., Yi}
be the set of 2-blocks that are not strict cut 2-blocks of G. Let {us,...,uc} be the set of

strict cut vertices. Let {ej,...,e,} be the set of cut edges.

The vertex set of 2BLK(G) is {¥a, ..., Y5} U {1, ue} U{er, ..., €u}, ic., each not-
strict cut 2-block, strict cut vertex or cut edge of G is regarded as a vertex in 2BLK(G).
The vertices in 2BLK(G) corresponding to non-strict cut 2-blocks are b-vertices, and those
corresponding to cut vertices and cut edges are c-vertices. The edge set of IBLK(G) is the
union of the sets {(¥i,¢;) | an endpoint v of e; is in ¥; and v is not a strict cut vertex},

8

Figy
dash
strict
on th

{(Ui, e
betwe(
and e;
vertex,
that if

2-blgek

Gi
S2BLE((
HNY;
bif ¢ an,
of 2Brx(
Intuitive]

Conta‘ininé‘
vertex in
containing
Separates 1
2-block gra

Lemma 4.,
l/?,e:“e are tﬂ;
???'0.}‘61 ]-[ 3’-.5’ |

Proof.  The
2-edge-block




-

2) @)

Figure 2: The input graph is shown in (1), where vertices in a 2-block are grouped into a
dashed circle. Its 2-block graph is shown in (2), where rectangles are 2-blocks that are not
strict cut 2-blocks, and circles are strict cut vertices or cut edges. Its specified 2-block graph
on the set of vertices that are colored black is shown in (3).

{(ui, ;) | u; is an endpoint of ¢}, and {(¥;, u;) | u; € ¥;}. In other words, there is an edge
between ¥; and u; if and only if u; is a vertex in the block Y;. There is an edge between ¥;
and ¢; if and only if one endpoint of €; is in the block Y; and this endpoint is not a strict cut
vertex. There is an edge between u; and e; if and only if u; is an endpoint of e;. Remark
that if a strict cut vertex v forms a block {v} by itself, then {v} does not appear in the
2-block graph as a b-vertex. Instead, v appears as a c-vertex in the 2-block graph.

Given G = (V, E) and H C V, we can also construct the specified 2-block graph
S2BLK(G, H) as follows. Let {11,...,Y3} be the set of 2-blocks in G. Let W = {Y; |
HNY; #0}. Let Fus(2BLE(G)) be the simple path in 2BLK(G) between two 2-blocks ¢ and
b if @ and b are connected in 2BLK(G). The graph S2BLK(G, H) is the induced subgraph
of 2BLE(G, H) on the set of vertices W U {Y: | 3a,b € Wsuch that ¥, € Pup(2BLK(G))}.
Intuitively, a leaf in $2BLK(G, H) must be a 2-block containing a vertex in H. A 2-block
containing a vertex in H must be in 82BLK(G, H). In addition, a 2-block B containing no
vertex in H may be in $2BLK(G, H), if B is in a path (in 2BLK(G)) between two 2-blocks
containing vertices in H. A cut edge or a strict cut vertex is in S2BLK(G, H) if its removal
separates two vertices in H. An example of a graph, its 2-block graph and its specified
2-block graph is shown in I'ig. 2.

Lemma 4.6 The graph S2BLK(G, H) is a forest and S2BLK(G, H) is an isolated verter if
there are two internally veriez-disjoint paths between every pair of vertices in H. Further-
more, H is in a connected component of G if and only if S2BLK(G, H) is a tree.

Proof.  The proof of this lemma is similar to the proof of Lemma 4.2 for the specified
2-edge-block graph. O




Lemma 4.7 Given G = (V,E) and H C 'V, we can construct the specified 2-block graph
s2BLK(G, H) in linear time.

Proof. Similar to the proof of Lemma 43. O

Let B be a 2-block in $2BLK(G, H). The biconnectivity demanding vertex for B with
respect to $2BLK(G, H), vDEM(G, B, H), is (1) the (only) vertex in B if B is trivial or (2)
a vertex in B that is not a cut vertex or an endpoint of a cut edge in s2BLK(G, H). If B is
a leaf or an isolated vertex in $2BLK(G, H), its biconnectivity demanding vertex is different
from the demanding vertex of any other 2-block in s2BLK(C, H).

In the following lemma, let ¥ and Y, be 2-blocks that are leaves 1n $2BLK(G). Let e
be an edge between a demanding vertex in Y, and one in Y3. Let G' = GU {e}. Let P be
the tree path in $2BLK(G) between ¥} and ¥;. The next lemma analyzes the case of adding

an edge within a connected component.

Lemma 4.8 ([3, 8, 23]) When an edge is added between demanding vertices of two 2-blocks
that are leaves in S2BLK(G), we can apply the following operations to obtain the resulting
2-block graph from the original specified 2-block graph.

L The 9_blocks on P are merged into a new 2-block Y' in s2BLK(G U {e}). All the other
2-blocks remain the same.

9. The c-vertices on P that are of degree two are no longer c-vertices in S2BLK(G'U {e})-
All the other c-vertices remain the same.

3. If a c-vertez is adjacent to a 9-block on P in S2BLK(QG), then it is adjacent to the new
2-block Y in $2BLK(G U {e}). All the other edges remain the same.

Temma 4.9 Let £ be the number of degree-1 vertices in s2BLK(G, H) and let g be the number
of isolated vertices in s2BLK(G, H). If g+{ > 1, then we need to add at least max{c—1,¢+
[¢/2]) edges to G in order for H to be biconnected, where ¢ is the mazimum number of trees
in the resulting graph of $2BLK(G, H) obtained by removing a strict cut vertex. Furthermore,
we can add a set of edges with the above mentioned cardinality to make H biconnected.

+

Proof. -Similar to the proof in {3, 12] for augmenting all vertices to meet the biconnectivity

requirement. [

10

~ Give
¢

bi:‘IEX

or cut
edges
cut ve
an isol
contair
in SBIB
2-block
chosen -

In:
cut edge
f]rg. We
only ver
make B
We add ¢

doing so,

An ¢




Figure 3: The input graph is shown in (1), where vertices in 2 2-block are grouped into a
dashed circle. Its specified bi-level-block graph for biconnecting the set of vertices that are
colored black and for 2-edge-connecting the set, of vertices that are colored black or grey is
shown in (2). In (2), rectangles are 2-blocks, and circles are strict cut vertices or cut edges.

5 The specified bi-level-block graph

Given an undirected graph G = (V, E) and two subsets of vertices Hy and H, such that H;, C
H; C 'V, we construct the specified bi-level-block graph SBIBLK(G, Hy, Hy) to represent the
bi-level-connectivity nformation. The graph SBIBLK(G, Hy, Hy) is a subgraph of 2BLK(G)

A 2-hlock containing a vertex in Hy remains in SBIBLK(G, Hy, Hy). A strict cut vertex
or cut edge separates two vertices in H; or in H; also remains in SBIBLK((, Hy, Hy). All cut
edges in S2EBLK(G, Hy) remain in SBIBLK(G, Hy, ;). Let S be the set of remaining strict
“cut vertices and endpoints of remaining cut edges. For each 2-edge-block B that is a leaf or
an isolated vertex in S2EBLK(G, H,), BN H, = §, and B n H, # 0, we pick a 2-block in B
containing exactly one vertex in S to remain in SBIBLK(@, Hy, Hy). A 2-block also remains
n SBIBLK(G, Hj, H,) if it is in a path (in 2BLK(G)) between two previous chosen remaining
2-blocks. The SBIBLK(G, H,, H,) is the induced subgraph of 2BLK(G) on the above set of
chosen vertices.

Intuitively, in the specified bi-level-block graph, we preserve all the cyi vertices and
cut edges information in order for G to reach bi—level—connectivity with respect to H, and
;. We preserve all 2-blocks containing vertices in Hy. Given a 2-edge-block W containing
only vertices in H,, one of its 2-blocks B is in the spectfied bi-level-block graph. Once we
make B to biconnect with a 2-block in a 2-edge-block W', W also 2-edge-connects with I,
We add edges to the bi-level-block graph such that all of its 2-blocks are biconnected. By
doing so, we make sure that H is biconnected and at the same time H, is 2-edge-connected.

An example of a graph and its specified bi-level-block graph is given in Fig, 3.

11




Lemma 5.1 (1) The specified bi-level block graph can be constructed in lineqr time. (2)
For each connected component W containing a vertex in H,, sBIBLK(W, Hy, Hy) is a tree.
Furthermore, if W is bi-level-connected with respect to H; and Hy, then SBIBLK(W, Hy, H,)
is an isolated vertex. (3) The graph S2BLK(G, Hy) is a subgraph of SBIBLK((Y, Hy, Hy).
Furthermore, the graph SBIBLK(G, Hy, Hy) equals to S2BLK(G, Hy) if Hy, = H,.

Proof.
Part (1): We construct SBIBLK(W, Hy, Hy) using the following algorithm.

1. construct s2BLK(G, H1), $2BLK(G, Hy), and S2EBLK(G, H,);
2. let F' = 2BLK(G);

3. for each 2-block W; in F, decide whether it contains a vertex in Hy; let this set of
2-blocks be By;

4. for each 2-edge-block W, that is degree-0 or degree-1 in S2EBLK(G, H;) and WoN H; =
0, pick a 2-block in W, that is degree-0 or degree-1 in $2BLK(G, Ha); let this set of
2-blocks be By;

3. remove trees in F that do not contain any 2-block with a vertex in Hy U Hy;
6. for each remaining tree 7' in F do the following:

(a) root T at a 2-block that contains a vertex in H, U Hy;

(b) removing a vertex u and all adjacent edges from 7" if in the subtree of T rooted
at u, there is no 2-block in By U By;

7. return the resulting forest as SBIBLK(G, Hl,Hg);

From Lemmas 4.3 and 4.7, all the the above steps can be computed in linear time. Thus
this part of the lemma lLolds.

Parts (2) and (3): Straightforward. -0

Let B be a 2-block in SBIBLK(G, Hy, Hy). A demanding vertez for B with respect to

Hy and H; is either (1) the (only) vertex in B if B is trivial, or (2) a vertex in B that is not
a strict cut vertex in $BIBLK(G, Hy, H;) or an endpoint of a cut edge in SBIBLK(G, H;, Ha).
It is easy to see that if B is a leaf or an isolated vertex in SBIBLK(G, H1, H;), then B has
a demanding vertex that is different from the demanding vertex of any other 2-block in
SBIBLK((, Hy, Hz). By adding an edge to connect a demanding vertex in a 2-block B that is
a leaf (respectively, 1solated vertex) and a vertex not in B, B is no longer a leaf (respectively,
1solated vertex). '
12

<

Int¢
m G

a E ra;
8raph
I Ower

(

Nc(spy
a verte:
ta.ining
Connect,
of conne
each con
SC( c, G’, }

W A thy




Lemma 5.2 Let B be a 2-block that is leaf or an isolated vertez in SBIBLK(G, Hy, H,)
and BN H, = . Let W be the 2-edge-block where B is contained. Then (1) The 2-edge-
block W is a leaf or an isolated vertez in S2EBLK(G, Ha). (2) A demanding vertez for B in
SBIBLK(G, Hy, Hy) is also a demanding vertez for W in S2EBLK(G, H,).

Proof.  Note that part (1) easily follows from the fact that a 2-block that is a leaf or an
isolated vertex in SBIBLK(G, H1, H,) is chosen within a 2-edge-block that is a leaf or an
isolated vertex in S2EBLK(G, Hy). Part (2) follows from the fact that a demanding vertex
in B is not an endpoint of a cut edge in S2EBLK(G, H5). Thus it is also a demanding vertex
for W in S2EBLK(G, H,). O

In the following corollary, let W be a 2-edge-block in G such that W N Hy = 0 and
WNH, #0. Let B be a 2-block in W that is also in SBIBLK(G, Hy, H,). Let u be a vertex
m W and let v be a vertex in B. Let w be a vertex in G.

Corollary 5.3 Ifv and w are biconnected in G, the resulting graph of G obtained by adding
edges, then u, v, and w are 2-edge-connected in G,

Proof. By Lemmas4.1 and 5.2. 0O

6 Our augmentation algorithm

"In this section, let @ be an undirected graph and let #; and H, be two subsets of vertices

in &

We first establish a lower bound on the number of edges needed to add in order for
a graph to be bi-level-connected. This lower bound is based on the specified bi-level-block
graph. We then give an algorithm that adds exactly the number of edges as given in the
lower bound.

Given a graph G, let NC(G) be the number of connected components in (7. Thus

NC(SBIBLK(G, Hy, H,)) is the number of connected components in SBIBLK(G, 4, Hs). Given .

a verteX ¢ € S2BLK(G, H;), let F. be the connected component in SBIBLK(G, H,, ;) con-
taining ¢. Let K, = F, — c}. We partition K, into K[ and K! where K consists of
connected components in which there is a 9-block with a vertex in Hy and K consists
of connected components in which there is no 2-block with a vertex in H;. Note that

"each connected component in K{ contains a 2-block with a vertex in Hy \ Hy. We define

s¢(c, Gy Hy, Hy) = NC(K(). We further define LE(c, G, Hy, H,) to be the number of 2-blocks
in K that are leaves in SBIBLK((, Hy, Hy). The cut constraint for a vertex ¢ € S2BLK(G, H;)

13




is cole, G, Hy, Hy) = sc(c, G, Hy, Ha) + [éﬁf%ﬂ] + NG(SBIBLK(G, Hy, Hy)) — 1. For
convenience, if a cut vertex ¢ ¢ S2BLK(G, Hy), then ccle, G, Hy, Hs) is the degree of ¢ 1n
SBIBLK(G, H1, Ha).

The degree constraint DG(G, H1, Hz) = maX gop1K(6,m) cc(e, G, Hy, Hy)—1. The leaf
constraint LC(G, Hy, II;) = g+ [£/2}, where ¢ and £ are the numbers of isolated vertices and
degree-1 vertices in $2BLX(G, M1, H,), respectively. A graph is bi-level-balanced with respect
to H, and H, if there is no cut vertex ¢ € SBIBLK(G, Hy, Hz) with cc(c, G, Hi,Hy)—1>
LC(G, Hy, H). Note that removing ¢ might not separate two vertices in Hi, instead, it might
separate two vertices in Hy. The following corollary states the relation between the degree
constraint and the leaf constraint.

Corollary 6.1 Assume that SBIBLK(G, Hy, Ha) is connected. Let ¢; and ¢y be two cut ver-:

tices in SBIBLK(G, Hi, H). Then (32, co(e;, G, Hy, Hy)) — 1 < £, where £ 15 the number of
leaves in SBIBLK(G, Hy, Ha). '

Proof. Let ¢ = ¢ — Y2 LE(¢;, G, Hy, Ha). As a corollary of [12, Lemma 3.1}, & 2>
(52, s¢(ci, G, Hy, Ha)) — 1. Thus £ > (Zi; co(e G, Hy, H,))—1. O :

Lemma 6.2 If g+ € > 1, we need to add at least max{Dc(G, Hy, Hz),L(G, Hy, Ha)} edges
to (¢ such that in the resulting graph Hy is biconnected and Hy is 2-edge-connected.

Proof. Note that a tree with more than one vertex contains at least two leaves. Thus if
¢+ (<1, then ¢ =1and {=0. Hence G is bi-level-connected with respect to Hy and H.

We first prove the first component of the lower bound. Let NC(SBIBLK(G, H1, Ha)) =
p1 + pa, where there are p; connected components in SBIBLK(G, Hy, Ho) with a vertex in Hi.
For the first component of the lower bound, note that removing a vertex ¢ € $2BLK(G, Hi)
separates G into sc(c, G, Hy, Ha)+p1—1 connected components where each of them contains
a vertex in Hy. In order for Hj to be biconnected, we need to add at least sc(c, G, Hy, Hz) +
p — 2 edges to connect these sC(c, G, Hi, H;)+4p; — 1 connected components. In addition, in

_order for Hy to be 2-edge-connected, we need to add two edges to each of the p, connected
components in SBIBLK(, Hy, H,) where each of them contains a vertex in Hy. Each 2-block
that is a leaf in K corresponds to an 9-edge-block that is a leaf in S2EBLK(G, H,), to which
we must add an edge. Thus we also need to add an additional of [w.\ + py edge.
Hence given a vertex ¢ € $2BLK(G, H1), we need to add at least cc(c, G, Hy, Hy) edges.

We then prove the second component of the lower bound. Assume that W is a 2-block
in G. T W is degree-0, then W is in a connected component which needs to add at least two

14

isc

al
1)._ k

<

der

com
Do




more edges to Q—édge—connect (or biconnect) vertices in W with vertices in other connected
compontents. Thus we need to add two edges to each 2-block that is degree-0.

We now assume that W is degree-1. If Wn H, # 0, then there is exactly one cut vertex
or one cut edge whose removal separates a vertex m W and a vertex in \ W. Let this cut
vertex or cut edge be d. Let Gy be the connected component in ¢ — {d} that contains a
vertex in W. We need to add an edge to Gy in order for vertices in H; to be biconnected. If
W N H =0, then Wn H, # #. Furthermore, W is in a 2-edge-block By, with By N =10
and W N Hy £ §. The 2-edge-block By is degree-1 in S2EBLK(@, H;). Assume that Bw is
adjacent to the cut edge e in S2EBLK(G, H>) and let Gy be the connected component that
contains By in G — {e}. We need to add at least one edge to Gw in order for vertices in H,
to be 2-edge-connected. Given two 2-blocks W, and W, that are both degree-1, it is clear
that Gy, N Gw, = 0. From the above, we can conclude that we need to add at least one
edge for each 2-hlock that is degree-1.

By the above discussion and and the fact that an edge has two endpoints, the second
component of the lower bound holds. O

6.1 SBIBLK(G, Hi, H,) is disconnected

We first consider the case when vertices in A 1 U H; are in several connected components in

G.

Lemma 6.3 I SBIBLK(G, Hy, Hy) is disconnected, then we can add r — I edges to G in
linear time such that in the resulling graph (&, DC(G', Hy, H;) = DC(G, Hy, Hy) — (r—1),
Lo(G, Hy, Hy) = Lo(G, Hy, Hy) — (r ~ 1) and vertices in Hy are in the same connected
component in G', where r = NC({SBIBLK(G, Hy, Hy)).

Proof. By Lemma 5.1.(2), there are r trees in SBIBLK(G, Hy, H,). * We number trees in
SBIBLK(G, Hy, Hy) consecutively from 1 to r. Note that if a tree is not an isolated vertex,
then there are at least two distinct degree-1 vertices. If the ith tree, 1 <4 < r, 1s not an
1solated vertex, then let B; and L; be two distinet degree-1 vertices in it. If the 7th tree is
an isolated vertex W , then let B; = I, = W. Note that both R; and Li, 1 <1< r, are
2-blocks. We add the set of r — | edges B’ = {(uiv:) |1 <4< r} to G, where u; and v; are
demanding vertices of ;i and L, respectively.

, In the resulting graph G/ by adding E’, all vertices in H; are in the same connected
component. Tor a cut vertex ¢, ¢C(e, G, Hy, H) = ccle, G, Hy, Hy) — (r — 1). Thus
DC(G,,_[L]I,HQ) = DC(G, flrl,ffg) -~ (?‘ — 1)

15




If » > 1, then there is no isolated vertex in SBIBLK(G', Hy, H;). The number of leaves in
SBIBLK(G', Hy, Hy) is 2- ('r-l'—q) less than that of SBIBLK(G, Hi, Hz), where ¢ is the number i
of isolated vertices in SBIBLK(G, Hy, Hz). Thus L&(G', Hy, Hy) = LC(G, Hy, Hy) — (r —1). . ‘
Hence the lemma holds. O !

6.2 SBIBILK(G, Hl,HQ) is connected, but not bi-level-balanced

If sBIBLK(G, Hy, H,) is cbnnected, then LC(G, Hy, Hy) = [£/2}, where { is the number of
degree-1 vertices in SBIBLK(G, Hy, H,). For a cut vertex ¢ € $2BLK(G, Hy), cC(c, G, Hy, Hy)

equals to the degree of c in $2BLK(G, Hy) plus [E(CG;H—‘HJI

Given a vertex v in a tree T', a v-chain is a path in T from v to a leaf, in which every
internal vertex is degree-2 in T [23]. In the following two lemmas, let é = DC(G, Hy, Ha) —

1 — Le(G, Hy, Hy).

Lemma 6.4 (1) There can be at most one cut vertez ¢ € SBIBLK(G, Hy, Hy) with cc(c, G, Hy, Ha)— !
1 > 1c(G, Hy, Hy). Furthermore, (2) if ¢ ¢ S2BLK(G, H), then there are 26 + 2 dis- i
|

tinct c-chains in SBIBLK(G, Hy, Hy) in which each of them contains o vertex in Hy. (8) If . I
¢ € S2BLK(G, H,), then there are 2-§ +1 distinct c-chains in SBIBLK(G, 1, Hy) where each | u
of them contains a vertexr in Hy. ! N
. | be
Proof. Assume that there are two vertices ¢; € SBIBLK(G, Hy, H;), ¢ € {1,2}, such that ]
cele;, G, Hy, Hy) — 1 > Le(G, Hy, Hy). We first consider the case when ¢; € $2BLK(G, Hy)
and ¢; € $2BLK(G, H;). Let £ be the number of degree-1 vertices in SBIBLK(G, H;, H;). Then f 6..
£> 52 (sc(ei, G, Hi, Hy)+LE(c;, G, Hy, Hy))—1. This violates the fact that cc(e;, G, H1, Ha)—
1 = sc(¢, G, Hy, Ha) + [W] ~-1> [g] Thus there is at most one vertex ¢ € Not
s2BLK(G, H) with cc(e, G, Hy, Ha)—1 > LO(G, Hy, H,). The cases when ¢; ¢ S2BLK(G, H1) ! Lo(t
or ¢; & $2BLK(G, Hy) can he proved using an approach similar to the above. :

Thus we may assume there is only one cut vertex ¢ with cc(e, G, Hy, Ho} — 1 > ' i,;l;
LC(G, Hy, Hy). Part (2) is proved in [23]. We now assume that ¢ € S2BLK(G, Hy). Let ; P
x be the number c-chains containing a vertex in Hy. Then £ > 2 - sc(c, G, Hy, H2) + g
LE{c, G, Hy, Hy) ~— =. However, 2 - ¢C(¢, G, Hi, Hy) — 2 - § 2> £. Thus we can deduce the .‘ Proof
fact that z > 2.6 +1. 0O ' )

vertex

. ' the deg

Lemma 6.5 Let G be a graph such that SBIBLK(G, Hy, Hy) is connected, but is bi-level 1<
unbalanced with respect to Hy and H,. Let ¢ € SBIBLK(G, Hy, Hy) be the vertez with . Lo(G,
NC(e, G Hy, Hy) — 1> 1C(G, Hy, Hy). (1) If e € $2BLK(G, Hy), then-we can add 2 - § edges on the :
to G in linear time such that in the resulting graph G, Lo(G', Hy, Hy) = LC(G, Hy, Ha) — 6, 1 the a

16




and G' is bi-level-balanced with respect to Hy and H,. (2) If ¢ € S2BLK(G, Hy), then we

can add 2+ § edges to G in linear time such that in the resulting graph G', De(@, Hy, Hy) =
DC(G, Hy, Hy) — 26, and & is bi-level-balanced with respect to Hy and H,.

Proof.  Part (1): By (2) in Lemma 6.4, there are at least 2 - 6 -+ 2 c-chains. If o ¢
S2BLK(G, H,), then every 2-block in each c-chain of SBIBLK (G, Hy, Hy) does not contain a
vertex in fy. Thus there is a 2-edge-block W in S2EBLK({, H;) whose degree is equal to
DC(G, Hy, Hy) and ¢ € W, Each c¢-chain in SBIBLK(G, Hy, Hy) corresponds to a W-chain
in S2EBLK(G, H,). Hence there are 2 - § + 2 W-chains in S2EBLK(G, Hy). We number
2.6+ 2 of the W-chains consecutively from 1 to 2. § +2 letv, 1 <5<2.§ + 2, be
a demanding vertex of the leaf in the ith W-chain. We add the set of new edges E' =
{(viviss) |1 < < 6} to G. Let &' = GU B, By Lemma 4.4, 2-edge-blocks in the first
26 W-chains are collapsed into a new 2-edge-block together with W. Thus the number of
¢-chains in SBIBLK((¥, Hy, Hy}is 2- 6 less than the number of e-chains in SBIBLK(G, Hy, H>)
and L(G", Hy, Hy) = LC(G, Hy, Hy) — 6. Thus CCle, &', Hy, Hy) — 1 = LC(G, Hy, H,). For
any cut vertex ¢’ # ¢, co(e, ¢, Hy, Hy) = ce(d, G, Hy, Hy). From Corollary 6.1, we know
that ce(¢, G, Hy, 3) — 1 <1¢(G, Hy, Hy) — 6. Thus G is bi-level-balanced.

Part (2): By (3) in Lemma 6.4, we can find 26 + 1 ¢-chaing with a vertex in H;. Let
U be a demanding vertex in the Jeaf of the ith c-chain. We add the set of new edges
B = {(uyuip1) | 1 < ¢ < 2.6} After adding £’ to @, the resulting graph is bi-level-
balanced. [ .

6.3  SBIBLK(G, Hy, Hy) is connected and bi-level-balanced i

Note that in this case, for every cut vertex ¢ ¢ SBIBLK(G, Hy, Hy), d(c, G Hy, Hy) -1 <
LC(G, Hy, Hy), where d(e, G, Hy, H,) is the degree of ¢ in SBIBLK(G, Hy, H,).

Lemma 6.6 If SBIBLK(G, Hy, Hy) is connected and bz’—level—balanced, then we can add LC(@, Hy, Hy)
edges in linear time to G such that in the resulting graph G', H, is biconnected and H, is
2-edge-connected,

Proof. Note that in this case, DC(QG, H,, Hy) < 1e(@, Hy, Hy). Furthermore, for every cut I
vertex ¢ € SBIBLK((, Hy, Hy), d(e, G, Hy, H)—1< LC(G, Hy, Hy), where d(c, G, Hy, Hy) is
the degree of ¢ in SBIBLK(G, Hy, H3). From §4.3 in (12], we know that if de, G, Hy, Hy) — !
1 £ 1o(@G, Hy, ), for all cut vertex ¢, then we can biconnected the graph using exactly |
' LO(G, Hy, H,) edges. We thus can apply the smallest biconnectivity augmentation algorithm
on the specified bi-level-block graph SBIBLK((, Hy, Hy). Whenever there is an edge added
in the algorithm between two 2-blocks, we add a corresponding edge hetween demanding

17




vertices of these two 2-hlocks. The number of edges added js exactly Lo(G, Hy, Hy) and the
running time of the algorithm is linear. :

In the resulting graph, every pair of vertices in H; are biconnected. Let w; and uy be

two vertices in H,. If both u; and Uz are in Hy, then they are biconnected. Thus they are
also 2-edge-connected.

Assume that it is not the case that both ur and w, are in H,. If ui, ¢ € {1,2}, is
in Hy\ Hl, then w; is in a 2-edge-block W; and there is a 2-block B; in W; that is in
SBIBLK(G, H;, Hy). Hu;,ie 11,2}, isin Hi, then u;isin a 2-block B;. Note that u; 15 2-edge-
connected to every vertex in B; in this case. Note also that the
algorithm biconnects every vertex in B, and every vertex in B
are 2-edge-connected. Thus H, is 2-edge-connected. 0

biconnectivity augmentation
. By Lemma, 4.1, uy and Uy

6.4 Proof of Theorem 1.1

edges and it runs in linear time.

Our algorithm first adds edges to connect SBIBLK(G, Hy, H,). We then add edges to
balance SBIBLK(G, H, Hy). Finally, we add edges to bi-level-connec

t G. Our algorithm is
» as follows,

: 2

L. If sBIBLK(G, Hy, Hy) is disconnected, then we add edges according 6 Lemma, 6.3 to .- o
connect the graph. - e

2. I sBIBLK(G, H], Hy)is bi-level-unbalanced, then we add edges according to Lemma 6.5 : e
to balance the graph. tec

3. Otherwise, we use the smallest biconnectivity augmentation algorithm to make Hy

biconnected and H; 2-edge-connected according to Lemma 6.6, : j:f::
Lemmas 6.6 makes sure that in the resulting graph H, is biconnected and H; is 2-edge- !
connected. According to Lemmas 6.3, 6.5, and 6.6, the number of edges added is : Proa{
max{Dc(G, H;, ), Le(G, Hy, H>)}. Thus by Lerama, 6.2, we know that this s the smallest algori

" number of edges to add to G to make the resulting graph bi-level-connected with respect to . Proces
H; and H,. discon;
Mentat

18




By Lemmas 4.3, 4.7, and 5.1.(1), we can build the specified 2-edge-block graph, 2-block
graph and bi-level-block graph in linear time. By Lemmas 6.3, 6.5, and 6.6, our algorithm
runs in linear time given the above three graphs. Thus our overall algorithm runs ip linear

Remark: Our augmentation algorithm can be efficiently implemented on an EREW
PRAM to run in O(log®n) time using n + m processors by first showing the specified bi-
level-block graph can be constructed in the same complexities and then using the result in
[12].

7  Parallel implementations

In this section, we give eficient parallel implementations for our graph augmentation algo-

rithm on an EREW PRAM.,

Lemma 7.1 Given G, Hy and Hz, we can construct the specified 2-edge-block graph, the
spectfied 2-block graph and the specified bi-level-block graph in O(log’n) time using n + m
processors,

Proof. Tt takes O(log®n) time using n + m processors to coustruct the 2-edge-block forest
and the 2-block forest (18, 21]. To construct the specified 2-edge-block (respectively, 2-
block) forest we need to root each tree in the forest. We also need to check, for each vertex
v in the rooted tree, whether there is a 2-edge-block (respectively, 2-block) contalning a,
vertex of H, (respectively, Hi) in the subtree rooted at v. These operations can be done
using efficient techniques for Fuler tour and range-minimum queries in O(log?n) time using
-k m processors [26]. The specified hi-level-hlock graph can be constructed using similar
techniques. 0O

Theorem 7.2 Given G, Hy and Hy, we can add the minimum number of edges to bi-level-
connect G with respect to Hy and Hy in O(log®n) time using n + m processors.

Proof. By Lemma 7.1, we can construct key data structures used In our augmentation
algorithm in O(log? n) time using n -+ m processors. Then, it takes O(1) time and n 4+ m
Processors to implement our augmentation algorithm when the specified bi-block graph is
disconnected and bi-level-unbalanced. If the specified bi-level-graph is balanced, our aug-
mentation algorithm takes O(log® n) time using n + m processors [12]. O

19




References

[1] B. Bollobds. Graph Theory: An Introductory Course. Springer-Verlag, New York, 1979.
(2] N. Christofides and C. A. Whitlock. Network synthesis with connectivity constraints
— a survey. In Operational Research ‘81, pages 705-723, 1981.

[3] K. P. Eswaran and R. E. Tarjan. Augmentation problems. SIAM J. Comput., 5(4):653-
665, 1976.

[4] A. Frank. Augmenting graphs to meet edge-connectivity requirements. STAM J. Disc.
Math., 5(1):25-43, February 1992.

(5] H.Frank and W. Chou. Connectivity considerations in the design of survivable networks.
IEEE Trans. on Circuit Theory, CT-17(4):486-490, December 1970.

[6] D. Gusfield. Optimal mixed graph augmentation. SIAM Journal on Computing, 16:599—
612, 1987.

[7] D. Gusfield. A graph theoretic approach to statistical data secuuty STAM Journal on
Computing, 17:552-571, 1988.

 [8] F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1969.

[9] T.-s. Hsu. Graph Augmentation and Related Problems: Theory and Practice. PhD
' thesis, University of Texas at Austin, October 1993.

(10] T.-s. Hsu and M. Y. Kao. Optimal augmentation for bipartite componentwise biconnec-
tivity in linear time. In Proc. 7th International Symp. on Algorithms and Computation,
1996, to appear.

[11] T.-s. Hsu and V. Ramachandran. A linear time algorithm for triconnectivity augmenta-
tion. In Proc. ?ch Annual IEEE Symp. on Foundations of Comp. Sci., pages 548-559,
1991.

[12] T.-s. Hsu and V. Ramachandran. On finding a smallest augmentation to biconnect a
graph. SIAM J. Comput., 22(5):889-912, 1993,

[13] S. P. Jain and K. Gopal. On network augmentation. IEEE Trans. on Reliability, R-
" 35(5):541-543, 1986.

[14] G. Kant. Algorithms for Drawing Planar Graphs. PhD thesis, Utrecht Unlver51ty, the
Netherlands, 1993.

20




[15]
[16]
[17]

(18]

[25]
[26]

[27]
[25]

M. Y. Kao. Linear-time optimal augmentation for componentwise bipartite-
completeness of graphs. Information Processing Letters, pages 59-63, 1995.

M. Y. Kao. Total protection of analytic invariant information in cross tabulated tables.
SIAM Journal on Computing, 1995. To appear.

M. Y. Kao. Data security equals graph connectivity. SIAM Journal on Discrete Math-
ematics, 9:87-100, 1996.

R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines.
In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, pages 869-941.
North Holland, 1990.

J. A. La Poutré and J. Westbrook. Dynamic two-connectivity with backtracking. In

Proc. 5th Annual ACM-SIAM Symp. on Discrete Algorithms, pages 204-212, 1994.

F. M. Malvestuto, M. Moscarini, and M. Rafanelli. Suppressing marginal cells to protect
sensitive information in a two-dimensional statistical table. In Proceedings of ACM
Symposium on Principles of Database Systems, pages 252-258, 1991.

V. Ramachandran. Parallel open ear decomposition with applications to graph bicon-
nectivity and tricomnectivity. In J. H. Reif, editor, Synthesis of Parallel Algorithms,
pages 275-340. Morgan-Kaufmann, 1993.

M. Rauch. Improved data structures for fully dynamic biconnectivity. In Proc. 26tk
Annuval ACM Symp. on Theory of Computing, pages 686-695, 1994.

A. Rosenthal and A. Goldner. Smallest augﬁlentations to biconnect a graph. SIAM J.
Comput., 6(1):55-66, March 1977.

K. Steiglitz, P. Weiner, and 1. J. Kleitman. The design of minimum-cost survivable
networks. IEEER Trans. on Circuit Theory, CT-16(4):455-460, 1969.

S. Taoka and T. Watanabe. Minimum augmentation to k-edge-connect specified vertices
of a graph. In ISAAC’9/, volume LNCS #834, pages 217-225. Springer-Verlag, 1994.

R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm. SIAM J.
Comput., 14:862-874, 1985. '

W. T. Tutte. Connectivity in Graphs. University of Toronto Press, 1966.

T. Watanabe, Y. Higashi, and A. Nakamura. An approach to robust network construc-
tion from graph augmentation problems. In Proc. of 1990 IEEE Int’l Symp. on Circuits
and Systems, pages 2861-2864, 1990.

21




[29] T. Watanabe, Y. Higashi, and A. Nakamura. Graph angmentation problems for a
specified set of vertices. In Proc. Ist Annual Int’l Symp. on Algorithms, volume LNCS

#450, pages 378-387. Springer-Verlag, 1990.

[30] T. Watanabe, S. Taoka, and T. Mashima. Minimum-cost augmentation to 3-edge-
connect all specified vertices in a graph. In Proc. of 1998 IEEE Int’l Symp. on Circuits
and Systems, pages 23112314, 1993.

[31] J. Westbrook and R. E. Tarjan. Maintaining bridge-connected and biconnected compo-
nents on-line. Algorithmica, 7(5/6):433-464, 1992.




