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Abstract

In this paper� we consider two variations of the minimum�cost Steiner problem
on a directed acyclic graph G�V�E� with a non�negative weight on each edge of E�
The minimum directed Steiner network problem is de�ned as follows� Given a set of
starting vertices S � V and a set of terminating vertices T � V � �nd a subgraph
with the minimum total edge weight such that for each starting vertex s there exists a
path from s to a terminating vertex� and for each terminating vertex t� there exists a
path from a starting vertex to t� The minimum union paths problem is similar to the
minimum directed Steiner network problem except that we are given a set of hitting
vertices H � V � in addition to the sets of starting and terminating vertices and that we
want to �nd a subgraph with the minimum total edge weight such that the subgraph
satis�es not only the conditions above� but also that every hitting vertex is on a path
from a starting vertex to a terminating vertex�

We present algorithms for �nding optimal solutions to these two problems in time�
respectively� O�n �m�	jSj�jT j ��� � �n����n����� and O�k
 � �� �k�k �k� �nk���n �m��
where n andm denote the number of vertices and edges of the graph� � � maxfjSj� jT jg�
� � minfjSj� jT jg� and k � jSj � jT j � jH j� The algorithms can also enumerate all
possible optimal solutions for both problems� Our algorithm for the minimum directed

Steiner network problem can also be used on undirected graphs�
We also give linear time algorithms for some special cases�
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� Introduction

Given a graph G � �V�E�� a non�negative cost on each edge in E� and a set of vertices Z � V �
the minimum Steiner problem is to �nd a minimum cost subgraph with a given property
which spans Z� The vertices besides Z in the subgraph are Steiner vertices� For example� the
minimum Steiner tree problem is one in which the subgraph is a tree� The minimum Steiner
problem has many important applications and has been extensively studied 	
� �� �� �
� ����
In one of the latest survey papers 	��� more than ��� references are listed� Let S and T be
two subsets of vertices of V � A subgraph G� of G is said to be S� T �connected if for each
vertex s � S there exists a path� in G� from s to a vertex t � T � and for each vertex t � T

there exists a path in G� from a vertex s � S to t�

We consider the following two variations of the minimum Steiner problem on directed
acyclic graphs G�V�E� with a non�negative weight on each edge of E� The minimum directed
Steiner network problem is de�ned as follows� Given a set of starting vertices S and a set of
terminating vertices T � we want to �nd a subgraph G� with the minimum total edge weight
such that G� is S� T �connected� The minimum union paths problem is a more general version
of the minimum directed Steiner network problem� An additional set of hitting vertices
H � V is speci�ed and the subgraph G� is required to contain H� Note that the minimum
directed Steiner network problem is a special case of the minimum union paths problem�
in which the hitting set H is empty� It can be easily shown that the above two minimum
Steiner problems on directed acyclic graphs are NP�hard by a polynomial transformation
from the exact cover by ��sets problems �see e�g�� the discussion in Chapter � of 	����

Several important applications for solving the minimum Steiner problem on a directed
acyclic graph are mentioned in 	��� for the case of �nding a minimum Steiner arborescence�
The two problems de�ned here can be used to solve generalized versions of these problems�
For example� �nding a minimum directed Steiner network can be used to design an opti�
mal drainage system for a building� where starting vertices are places to dump wastes and
terminating vertices are sewers� Finding a minimum union paths can be used to design an
optimal system layout for an irrigation and drainage system where starting vertices are water
sources� hitting vertices are places that need water� and terminating vertices are drains�

There are several types of algorithms that can be used to �nd an exact solution of the
minimum Steiner problem which include dynamic programming 	��� ��� linear programming
	��� and exhaustive enumeration 	��� Though most of the discussions are on undirected
graphs� they can be easily extended to directed graphs� For example� a typical exhaustive
enumeration algorithm for the minimum Steiner tree problem makes use of the fact that

�In this paper� we refer a path as a sequence of vertices a�� a�� � � � � ak such that �ai� ai���� � � i � k� is a
directed edge pointed from ai to ai�� and ai �� aj for all i �� j� i�e�� every path is a simple path�






a minimum Steiner tree is a minimum spanning tree on the set of vertices in the solution�
Thus by properly choosing the set of Steiner vertices� we can easily �nd the solution by
computing a minimum spanning tree� Thus �ning an accurate upper bound on the number
of Steiner vertices is crucial in estimating the running time of this type of algorithms� Let
the upper bound be k� Then the time complexity of the algorithm is O�nk �MST �G��� where
MST �G� denotes the time complexity of �nding a minimum spanning tree of G� A similar
algorithm can be devised to solve the minimum directed Steiner network problem and the
minimum union paths problem in time exponential in k� We shall show that by exploiting
some properties of the solutions to the two problems� we can solve them in time exponential
roughly in k

�
�

Some related work for the minimum Steiner problem on directed graphs can be found
in 	�� ��� ��� �
� ���� In particular� Nastansky et al� 	��� presented an e�cient heuristic
algorithm for solving the minimum Steiner arborescence problem on a directed acyclic graph
by exhaustive enumeration� However� they do not provide any theoretical analysis on the
time complexity of their algorithm� which we believe is exponential in k� Rao et al� 	�
�
described an approximation algorithm for �nding a minimum Steiner arborescence in a rec�
tilinear plane rooted at the origin with the additional constraint that all paths from the root
to the leaves must be shortest�

� Minimum Directed Steiner Network

Given a directed acyclic graph G � �V�E� and two non�empty disjoint subsets of vertices S
and T � a directed Steiner network of G is a subgraph G� of G such that G� is S� T �connected�
The vertices in S are called starting vertices and those in T are terminating vertices� Any
path in a Steiner network starting from a vertex in S and ending in a vertex in T is called
an S�T path� If the edges in G are associated with non�negative weights� then a directed
minimal Steiner network with a minimum total edge weight is called a minimum directed
Steiner network� and denoted as MSN�G�S� T �� Note that in a minimum �directed� Steiner
network�� an S�T path� except the two extreme vertices� may contain vertices in S or T �

�Here we consider the Steiner network with the least number of edges among those with a minimum total
edge weight�

�From now on we will omit the word �directed� without any confusion� and minimality of the network is
assumed�
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��� Preliminaries

Before we describe our algorithm for �nding a minimum Steiner network� we examine its
properties� Through these properties� we give a structural description of minimum Steiner
networks� Then we obtain a minimumSteiner network by an e�cient enumerative algorithm�

Let S ��T ��Z be the set of vertices in MSN�G�S� T �� where �� is the disjoint set union
operator� The vertices in Z� which contain no vertices in S and T � are Steiner vertices�
Let D�G� be the distance network for a directed acyclic graph G with non�negative edge
weights� i�e�� each edge �u� v� in D�G� is associated with a weight equal to the total weight
of a shortest path from u to v�

Lemma ��� Given S and T � the cost of MSN�G�S� T � is equal to the cost of MSN�D�G�� S� T ��
Furthermore� given MSN�D�G�� S� T �� MSN�G�S� T � can be constructed in time linear in the
size of G� �

The proof of Lemma 
�� is quite straightforward� Let P �u� v� denote a maximal path in
MSN�G�S� T � connecting vertices u and v for some u� v � V such that the intermediate
nodes in the path have in�degree and out�degrees equal to �� The above lemma simply states
that if we replace every such path P �u� v� in MSN�G�S� T � with an edge �u� v� whose weight
is equal to the total edge weight of all the edges in P �u� v�� then the resulting network has a
cost equal to MSN�D�G�� S� T �� Note that the set of Steiner vertices Z in MSN�G�S� T � can
be partitioned into two sets Z � Z� ��Z�� where Z� contains the intermediate vertices of all
such P �u� v� de�ned above and Z� will be the set of Steiner vertices in MSN�D�G�� S� T ��

From Lemma 
��� we know that it su�ces to compute a minimum Steiner network
from the distance network of the graph� It is well�known that the computation time of any
algorithm to �nd a Steiner�tree�like solution is exponential in the number of Steiner vertices
in a general graph by enumerating all possible candidates of Steiner vertices� We will focus
our discussion on �nding a minimum Steiner network in a distance network with an aim to
show that in an acyclic graph� the possible candidates for Steiner vertices can be enumerated
more e�ciently�

A Steiner vertex in MSN�D�G�� S� T � is convergent if its in�degree is greater than ��
and is divergent if its out�degree is greater than �� From Lemma 
��� any Steiner vertex in
a minimum Steiner network of a distance network must be either convergent or divergent�
Note that a vertex may be both convergent and divergent if its in�degree and out�degree are
greater than ��

Lemma ��� Given a directed acyclic graph G with non�negative edge weights and two dis�
joint subsets of vertices S and T � let s � S� t � T � and P be a path from s to t in






MSN�D�G�� S� T � whose length �number of edges� is greater than �� Let P � 	s�w�� w�� � � � � wq� t��
q � �� Then there exists b� � � b � q� such that exactly one of the following two conditions
is true� ��� wi� � � i � b� is convergent and wi� b � i � q� is divergent	 �
� wi� � � i � b� is
convergent and wi� b� � � i � q� is divergent�

Proof� We will prove it by contradiction� Recall that MSN�D�G�� S� T � has a minimal
number of edges� Let b be the largest index such that w�� � � � � wb��� and wb are convergent in
P � Assume that wb�� �� t is strictly divergent� i�e�� not convergent� and that wa is convergent�
where a � b � �� Let H be the resulting graph obtained by removing from P � and hence
from MSN�D�G�� S� T �� the edge from wa�� to wa� Note that H remains a Steiner network�
Since the weight of each edge is non�negative� either the cost of H is less than that of
MSN�D�G�� S� T � or H has fewer edges� Thus MSN�D�G�� S� T � is not optimal� which is a
contradiction� �

The vertex wb in the path P as speci�ed in Lemma 
�
 is referred to as a neutral vertex�
Note that if a vertex is neutral in an S�T path� then it is neutral in any other S�T path�

Corollary ��� There exists at most one neutral vertex in the path P as speci�ed in Lemma 
�
�
�

A directed graph is an incoming arborescence if it is an isolated vertex or there exists
exactly one root vertex u such that there is exactly one path from any other vertex to u� A
collection of incoming arborescences is an incoming forest� A directed graph is an outgoing
arborescence if it is an isolated vertex or there exists exactly one root vertex u such that
there is exactly one path from u to any other vertex in the graph� A collection of outgoing
arborescences is an outgoing forest� A vertex is a leaf in an incoming �outgoing� forest if its
in�degree �out�degree� is zero� A vertex in a forest that is not a leaf is an internal vertex �
Given a minimum Steiner network MSN�D�G�� S� T �� let its neutral split network be de�ned
as follows � for each neutral vertex u in MSN�D�G�� S� T �� we replace u with two vertices
u� and u� such that u� inherits all incoming edges of u and u� inherits all outgoing edges of
u� The resulting network is called a neutral split network� It is easy to see that the cost of
the neutral split network is the same as the cost of the original minimum Steiner network�
Figure � illustrates a minimum Steiner network� and its neutral split network� The set of
neutral vertices are shown in solid circles� and the others shown in hollow circles�

Lemma ��� There are at most jSj� jT j � 
 Steiner vertices in MSN�D�G�� S� T �� and the
bound is tight�

Proof� We prove this lemma by induction on jSj� jT j� This lemma is obviously true when
jSj � � and jT j � �� For the induction step� observing that adding a vertex to S or T

�



Figure �� A minimum Steiner network� the set of neutral vertices shown in solid circles� and
its neutral split network�
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creates at most one Steiner vertex in D�G�� by converting a vertex in MSN�G�S� T � which is
in Z� into one which is in Z�� To prove that the bound is tight let us construct� as described
below� a graph G such that MSN�D�G�� S� T � has exactly jSj� jT j � 
 Steiner vertices�

Let BS be an incoming arborescence such that the root is u� the set of leaves is S
and the in�degree of each node except the leaves �each of whose in�degree is �� is 
 and
out�degree is �� except the root �whose out�degree is ��� For convenience BS is called an
incoming binary tree� Let BT be similarly de�ned except that it is an outgoing arborescence
�binary tree� and whose root is v and the set of leaves is T � Then G � BS � BT � f�u� v�g
is a graph whose MSN�D�G�� S� T � contains jSj� jT j � 
 Steiner vertices� �

Lemma ��� The neutral split network of a minimum Steiner network MSN�D�G�� S� T �
for an acyclic graph G with non�negative edge weights can be partitioned into three disjoint
subgraphs Nu� Nin� and Nout where ��� Nu consists of edges from a vertex in S to a vertex
in T 	 �
� Nin is an incoming forest where each leaf is a vertex in S� each non�root internal
vertex is a Steiner vertex� and each root is either a Steiner vertex or a vertex in T 	 ���
Nout is an outgoing forest where each leaf is a vertex in T � each non�root internal vertex is
a Steiner vertex� and each root is either a Steiner vertex or a vertex in S� There are no
isolated vertices in Nin and Nout�

Proof� SinceG is acyclic� MSN�D�G�� S� T � is also acyclic� Every vertex in MSN�D�G�� S� T �
is in an S�T path in MSN�G�S� T �� Thus this lemma follows from Lemma 
�
 and Corol�
lary 
��� �

Corollary ��	 The number of arborescences in Nin �Nout� is no more than half of the num�
ber of leaves in Nin �respectively� Nout��

Proof� There is no isolated vertex in Nin or Nout� In each arborescence� there are at least
two leaves� Hence the corollary holds� �

Now we examine properties of the three disjoint subgraphs in a neutral split network�
Let u be a vertex not in the neutral split network of MSN�D�G�� S� T �� Let N �

in be an
incoming arborescence by adding edges to Nin from each root in Nin to u� Let D�G�� be
the resulting graph obtained by adding the same set of edges to D�G�� The weight of each
added edge is zero�

Lemma ��
 The graph N �
in is a minimum Steiner incoming arborescence in D�G�� and can

be obtained in O�n �m � �� � n��t� time� where � � 
 is the number of leaves in Nin� n the
number of vertices in G� m the number of edges in G� and t the number of trees in Nin�
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Proof� It takes O�n �m� time to �nd the distance network for a directed acyclic graph 	����
Note that the distance network contains O�n�� edges� The minimum spanning arborescence
in a graph with x vertices and y edges can be found in O�x � log x � y� time 	��� There are
less than �� t Steiner vertices in a minimum Steiner arborescence� �

It is easy to see that given N �
in� Nin can be obtained in time linear in the number of

vertices in Nin� It is also true that Nin is a minimum Steiner incoming arborescence inD�G��

Let N �
out be an outgoing arborescence by adding edges to Nout from u to each root in

Nout� Let D�G��� be the resulting graph obtained by adding the same set of edges to D�G�
as in the previous construction� The weight of each added edge is zero�

Lemma ��� N �
out is a minimum Steiner outgoing arborescence in D�G��� and can be obtained

in O�n �m � �� � n��t� time� where � � 
 is the number of leaves in Nout� n the number of
vertices in G� m the number of edges in G� and t the number of trees in Nout� �

It is easy to see that given N �
out� Nout can be obtained in time linear in the number of vertices

in N �
out� It is also true that Nout is a minimum Steiner outgoing arborescence in D�G��

Corollary ��� Let �in be the number of leaves in Nin and let �out be the number of leaves in
Nout�
��� The number of internal vertices in Nin is less than �in�
�
� The number of internal vertices in Nout is less than or equal to �out�

Proof� The degree of each internal vertex in Nin is at least 
� Thus ��� holds by using a
simple induction argument� Note that the degree of the root in a tree in Nout could be one�
Thus �
� holds by using a simple induction argument� �

��� The Algorithm

Using Lemmas 
��� 
��� and 
��� we can construct a minimum Steiner network as follows�
First we obtain �by exhaustive enumeration� S� 	 S and T� 	 T such that jS�j � jT�j and
construct Nu by �nding a minimum�cost bipartite perfect matching between S� and T� in
D�G�� We then choose the set of roots R in the neutral split network of MSN�D�G�� S� T ��
Note that R consists of R� 	 V � R� 	 �S n S��� and R� 	 �T n T���

After choosing R� we �nd a minimum Steiner incoming forest Nin on the set of leaves
S n �S��R� and the set of roots RnR�� By Corollary 
��� there can be at most jSj�jS�j��
Steiner vertices �including vertices in R�� We also �nd a minimum Steiner outgoing forest

�



Nout on the set of leaves T n �T� � R� and the set of roots R n R�� By Corollary 
��� there
can be at most jT j � jT�j Steiner vertices �including vertices in R�� Note that the sets of
Steiner vertices in Nin and in Nout are disjoint� By properly choosing S�� T�� and R� the
cost of MSN�D�G�� S� T � is equal to the cost of Nu �Nin �Nout� It is also easy to construct
MSN�D�G�� S� T � from Nu� Nin� and Nout� From the above discussion� we have the following
theorem�

Theorem ���
 Let � � maxfjSj� jT jg and let � � minfjSj� jT jg� A minimum Steiner
network MSN�G�S� T � can be constructed in O�n � m � 
jSj�jT j � �� � �n��� � n����� time�
where n and m are the number of vertices and edges in G� respectively�

Proof� Assume without loss of generality that � � jSj and � � jT j� since otherwise we can
reverse the direction of each edge in G to satisfy this condition� Note that jS�j � jT�j � ��
Our algorithm �rst constructs the distance network� Then we enumerates all candidates for
a directed minimum Steiner network in the distance network� Given a candidate� assume

that there are i pairs of vertices in Nu� Note that i � �� There are up to

�
jSj
i

��
jT j
i

�

candidates for the set of vertices in Nu� Let jRj � j� By Corollary 
��� j �
j
��i
�

k
�
j
��i

�

k
�

which is no more than � � i� There are up to

�
n

j

�
candidates for the set of vertices R�

Once we pick R� we partition R into R�� R�� and R�� where R� � Rn �S �T �� R� � R
S�
and R� � R
T � Thus the set of vertices in Nin is R� �R� � �S nR�� and the set of vertices
in Nout is R� �R� � �T n R��� Thus our algorithm takes time

O��A� �
�X

i��

�
jSj
i

��
jT j
i

�
��iX
j��

�
n

j

�
	�B� � �C� � �D����

where n is the number of vertices in D�G�� �A� is the time needed to construct the distance
network from G and is equal to O�n � m� for a directed acyclic graph 	���� �B� is the time
needed to �nd a minimum cost bipartite perfect matching in a bipartite graph with 
 � i
vertices and O�i�� edges and is O��
 � i�� log�
 � i� � �
 � i� � i�� 	
�� �C� is the time needed to
�nd a minimum Steiner incoming forest with j roots� jSj � i leaves� and up to jSj � i� j� �
internal vertices givenD�G� � and �D� is the time needed to �nd a minimumSteiner outgoing
forest with j roots� jT j � i leaves� and up to jT j � i � j internal vertices given D�G�� By
Lemmas 
�� and 
��� we know that �C� is O�jSj� � njSj�i�j��� and �D� is O�jT j� � njT j�i�j��
Thus �B���C���D� � O��� � �n��i�j�� � n��i�j���
Since �

n

j

�
� nj�

�
n

j

�
��B� � �C� � �D�� � O��� � �n��i�� � n��i���
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Thus
��iX
j��

�
n

j

�
��B� � �C� � �D��� � O��� � �n��i�� � n��i���

Since
�X

i��

�
jSj
i

��
jT j
i

�
�

�X
i��

�
�

i

�
�X
i��

�
�

i

�
and

�X
i��

�
�

i

�
� 
��

�X
i��

�
jSj
i

��
jT j
i

�
� O�
� � 
���

Thus the overall time complexity is O�n �m� 
jSj�jT j � �� � �n��� � n������ �

By Lemma 
�
� the number of Steiner vertices in a minimumSteiner network can be as
large as jSj� jT j � 
� Thus �nding a minimum Steiner network by brute force may need to
perform a minimum spanning arborescence computation O�njSj�jT j��� times� Following from
Theorem 
��� a minimum Steiner network can be found by performing a minimum spanning
arborescence computation O�
jSj�jT j � maxfjSj� jT jg � �nmaxfjSj�jT jg�� � nminfjSj�jT jg���� times�
This is a substantial saving in computation time if maxfjSj� jT jg is O�log n��

Remark� We can solve within the same time complexity the strong minimum directed
Steiner network problem in which no S�T path contains vertices in S and T as intermediate
node� In other words� all starting vertices are of in�degree � �sources� and all terminating
vertices are of out�degree � �sinks�� This problem can be solved by �nding MSN�G�� S� T �
where G� is obtained by removing all incoming edges to a starting vertex and all outgoing
edges to a terminating vertex�

We can also solve within the same time complexity the minimum Steiner network
problem on an undirected graph in which each S�T path in the solution is undirected by
applying the algorithm in Section 
�
� In using the algorithm� we �nd undirected paths
and forests� The correctness of the algorithm which is established in properties proved in
Section 
�� for the directed case can be applied on undirected graphs as well� Observing
that a solution for an undirected minimum Steiner network contains no cycles� Thus there
is an unique orientation for the undirected solution by orienting edges in every S�T path
from a vertex in S towards a vertex in T � All properties in Section 
�� can be applied on
this oriented solution�

��� Algorithm for a Special Case

Note that if minfjSj� jT jg � �� then the problem of �nding a minimum Steiner network
reduces to the problem of �nding a minimum Steiner arborescence� Let �i� j��minimum

��



Figure 
� All possible con�gurations for a solution of the ���
��minimum Steiner network
problem in the distance network where the starting vertex is s and the set of terminating
vertices is ft�� t�g� The shaded vertex is a Steiner vertex�

Steiner network problem denote the minimum Steiner network problem with i starting ver�
tices and j terminating vertices� In Figure 
� we list the four possible con�gurations for the
���
��minimum Steiner network problem�

For the minimumSteiner arborescence problem in which maxfjSj� jT jg � 
 we have the
following result which shows that the computation of the distance network can be avoided
when jS � T j � ��

Theorem ���� If minfjSj� jT jg � � and maxfjSj� jT jg � 
� then MSN�G�S� T � can be
computed in O�n �m� time �instead of O�n �m� time��

Proof� Note that there are at most one Steiner vertex in MSN�D�G�� S� T �� Any path
between any two vertices u and v in MSN�G�S� T � is also a shortest path between u and
v in G� Assume without loss of generality that jSj � � and jT j � 
� Our algorithm �rst
computes the single source shortest path �in G� for the vertex in S� Let r�G� be the resulting
graph obtained by reversing the direction of each edge in G� We compute the single source
shortest paths �in r�G�� for the two vertices in T � The above computation takes O�m� time
for a directed acyclic graph�
We distinguish two cases�

Case �� There is no Steiner vertex�
The cost of a minimum Steiner network is equal to the sum of edge�costs in the two
paths from the vertex in S to the two vertices in T �Figure 
������ or in the one path
from the vertex in S to the two vertices in T �Figures 
���� and 
��
���

Case �� There is exactly one Steiner vertex u�
Note that u could be a vertex in T and that this case reduces to those shown in
Figures 
���� and 
��
�� We can try all possible candidates for u� Whenever we �x a

��



candidate for u� the cost of the Steiner network with only one Steiner vertex u can be
computed in constant time by adding the shortest path distance �in G� from the vertex
in S to u� and the costs of the two shortest paths �in r�G�� from the two vertices in T
to u�

One of the above solutions with the minimum cost has the same cost as a minimum Steiner
network� The corresponding network can also be constructed in linear time� �

Remark� We can also solve in linear time the minimum Steiner network problem on an
undirected graph in which each S�T path in the solution is undirected by using the same
algorithm�

� The Minimum Union Paths Problem

Given a weighted directed acyclic graph G � �V�E� and three non�empty mutually disjoint
subsets of vertices S� H� and T � a set of S�H�T union paths of G is a subgraph G� of G with
the following properties�

�� For every s � S there is a path in G� from s to a vertex in T �


� For every t � T there is a path in G� from a vertex in S to t�

�� For every h � H there is a path in G� passing through h which starts from some vertex
in S and ends with some vertex in T �

The set of verticesS is referred to as starting vertices� the set of verticesH hitting vertices and
the set of vertices T terminating vertices� The minimum union paths problem �or minimum
directed Steiner network problem with a hitting set� is to �nd a set of S�H�T minimal union
paths in G with a minimum total edge weight�� A set of minimum union paths with the
minimum total edge weight is denoted MUP�G�S�H� T ��

Lemma ��� There are at most jSj� jT j�
 � jHj�
 Steiner vertices in MUP�D�G�� S�H� T �
for jHj � ��

Proof� We prove this lemma by induction on jSj � jT j� 
 � jHj� This lemma is obviously
true when jSj � �� jT j � � and jHj � �� For the induction step� we observe that adding a

�Here we also consider the network with the least number of edges among those that have a minimum
total edge weight�

�




vertex to S or T creates at most one Steiner vertex and that adding a vertex to H creates
at most two Steiner vertices� Hence the lemma is true� �

Similar to Lemma 
�� we have the following�

Lemma ��� MUP�G�S�H� T � can be constructed from MUP�D�G�� S�H� T � in linear time�

Without loss of generality we may assume that jSj � jT j � �� To see this we can
augment the given graph by adding two new vertices s� and t� not in V and the set of edges
E� � f�s�� s� j s � Sg�f�t� t�� j t � Tg whose cost is an arbitrary positive constant� Let the
augmented graph be denoted by �G� From MUP� �G� fs�g� S �H � T� ft�g� we can obtain the
solution MUP�G�S�H� T � by deleting the vertices s� and t� and all their incident edges�

From here on we assume that both S and T are singleton sets and that we consider
the distance network D�G� of G�

��� Preliminaries

Before we present a solution to MUP�D�G�� fsg�H� ftg�� we �rst discuss some properties of
an optimal solution� Given MUP�D�G�� fsg�H� ftg�� we �rst observe that s has no incoming
edge and t has no outgoing edge� Let Li denote the subset of vertices inH such that for every
vertex v � Li there is a path from s to v containing at most i vertices in H� Note that when
we traverse any path from s to t in MUP�D�G�� fsg�H� ftg�� the �rst vertex inH encountered
is in L�� Let � be the smallest integer such that L� � L���� Then MUP�D�G�� fsg�H� ftg�
has � levels�

According to the de�nition of Li� we partition H as follows� Let H� � L� and Hi �
Li n Li�� for all 
 � i � �� Let H� � fsg and let H��� � ftg�

Lemma ��� It is not possible to have a path in MUP�D�G�� fsg�H� ftg� from a vertex in
Hi to a vertex in Hj � if i� � � j and j �� � � �� �

A vertex v � Hi is backward if there is a path from v to some vertex v� � Hj � j � i�
without going through any other vertex in H� The vertex v� is a backward successor of v�
A vertex v � Hi is forward if there is a path from v to t without going through any other
vertex in H� The path which makes the vertex forward �respectively� backward� is a forward
�respectively� backward� path� The following lemma states that a vertex cannot be both
forward and backward� Furthermore� there is at most one forward path or backward path�

Lemma ��� For any vertex in H there exists at most one forward path or one backward
path� but not both�

��



Figure �� A set of minimum union paths on the starting vertex set f��g� the hitting vertex
set f��
���
������������������
����
��

g and the terminating vertex set f
�g� The hitting set
is partitioned into H� � f�� 
� �� 
g� H� � f�� �� �� �� �� 
�g� and H� � f��� ��� �
� ��� 

g�
Vertex �� is a backward vertex whose backward index is �� Vertex 

 is also a backward
vertex whose backward index is 
� Vertex � is a forward vertex�

Proof� If a vertex v is both forward and backward� let Pf and Pb be its forward and
backward paths� respectively� Let e � �x� y� be the �rst edge not in Pb encountered when
we traverse Pf starting from v� Since t has no outgoing edge� e must exist� Let G� be the
resulting graph by removing the edge e from MUP�D�G�� fsg�H� ftg�� For any fsg�ftg path
P in MUP�D�G��fsg�H�ftg� that passes through the edge e� there is an fsg�ftg path P � in G�

by �rst traversing P from s to x� then following Pb to the backward successor u of v� Finally�
we follow a path from u to t� Thus G� is a set of fsg�H�ftg union paths with a smaller
total edge weight or fewer edges than MUP�D�G�� fsg�H� ftg�� Thus we know v cannot be
forward and backward�

We now suppose that v has two backward paths P� and P�� Let e be the �rst edge not
in P� encountered when we traverse P� starting from v� Then by an argument similar to the
one given before we can derive a contradiction� Similarly one can prove that it is impossible
for v to have more than one forward path� �

An example of a set of minimum union paths is shown in Figure ��

�




Figure 
� The pairwise extension and the split partition graphs of the minimum union paths
shown in Figure ��

Let Hf �respectively� Hb� be the set of forward �respectively� backward� vertices in H�
Let H �

i be the set of vertices in Hi that is neither forward nor backward� We de�ne a split
extension graph for MUP�D�G�� fsg�H� ftg� as follows� For every vertex u � �Hf �Hb�� we
split u into two vertices uin and uout where uin inherits all incoming edges and uout inherits
all outgoing edges� The rest of the edges and the vertices remain unchanged�

Given a backward vertex u whose backward successor is in Hi� its backward index bi�u�
is i � �� The backward index of a forward vertex is � and the backward index of a vertex
that is neither forward nor forward is �� The level index of u� �i�u� � i if u � Hi� We
partition edges in the split extension graph for MUP�D�G�� fsg�H� ftg� into G��G��� � ��G�

where Gi is the induced subgraph of MUP�D�G�� fsg�H� ftg� on the two sets of vertices
H i � H �

i � fuout j bi�u� � ig and H i � H �
i�� � fuin j �i�u� � i � �g� The sets of vertices

H��H�� � � � �H�� H��H�� � � � � and H� are the pairwise extension of H��H�� � � � � and H����

In Figure 
� we illustrate an example of the pairwise extension of the set of minimum
union paths in Figure �

Lemma ��� Gi is a minimum Steiner network MSN�G�H i�H i��

Proof� Note that Gi is a directed Steiner network in G for the set of starting vertices H i

and the set of terminating vertices H i� If Gi is not a minimum Steiner network� then let
G�

i be a minimum Steiner network� We delete edges in Gi from MUP�D�G�� fsg�H� ftg�
and replace them with edges in G�

i� We obtain a set of union paths with smaller total edge
weights or fewer number of edges� This is a contradiction� �

��



��� The Algorithm

Given a MUP�D�G�� fsg�H� ftg�� its con�guration is the pairwise extension ofH��H�� � � � � and
H���� By Lemma ���� we can �nd a MUP�D�G�� fsg�H� ftg� as follows� We �rst �nd its
con�guration� Then we construct each Gi by using the algorithm in Section 
�
 for �nding
a minimum Steiner network� Our algorithm �nds the correct con�guration by enumerating
all possible con�gurations given H�

Lemma ��	 There are O�k� � 
k � kk� possible con�gurations� where k � jHj�

Proof� Let T �k� be the number of di�erent ways that one can partition a set of k vertices�
T ��� � � and

T �k� �
kX

i��

�
k

i

�
� T �k � i��

Thus T �k� � O�k� � 
k�� Given a partition for H� each vertex in H can be either a forward
vertex� a backward vertex� or a vertex that is neither forward nor backward� The backward
index of a backward vertex can also have ��� choices� However� the total number of choices
for any vertex equals to the level number for its partition� which is less than or equal to k�
Thus there are O�kk� pairwise extensions for a partition� Hence the lemma holds� �

Theorem ��
 MUP�D�G�� fsg�H� ftg� can be found in O�k� � �� �k�k �k� �nk���n �m� time�
where n and m are the numbers of vertices and edges in G� respectively� and k � jHj�

Proof� Note that jH ij � k and jH ij � k for all � � i � �� Note also that j��
i�� �H i�H i�j �


k�
� Given a partition extension of a partition ofH� by Theorem 
���� the time to compute
all Gi is bounded by computing a minimum Steiner network from k starting vertices to k

terminating vertices� which is O�
k �k� �nk���n �m�� where O�n �m� is the time to compute
the distance network� Given G� the distance network for G needs only to be computed once�
Thus by Lemma ���� the theorem holds� �

Theorem ��� MUP�D�G�� S�H� T � can be found in O�k�����k�k �k��nk���n�m� time� where
n and m are the numbers of vertices and edges of G� respectively� and k � jSj� jHj� jT j�

Proof� By Lemma ��
 and Theorem ���� �

By Lemma ���� the number of Steiner vertices in a minimumSteiner network can be as
large as jSj� jT j�
 � jHj � 
� Thus �nding a minimum Steiner network by brute force may
need to perform a minimum spanning arborescence computation O�njSj�jT j���jHj��� times�
Theorem ��� states that by using our algorithm� a set of minimum union paths can be found
by performing a minimum spanning arborescence computation O�k� � �� � k�k � k �nk��� times

��



Figure �� A possible solution for the ���
����minimum union paths problem in the distance
network where the starting vertex is s� the terminating vertex is t� and the set of hitting
vertices is fh�� h�g� The shaded vertex is a Steiner vertex�

where k � jSj�jT j�jHj� For a �xed k � jSj�jT j�jHj our algorithm runs in O�n�m�nk���
time� while a naive approach takes O�n � m � nk���jHj��� time� Thus our algorithm runs
asymptotically faster when jHj is a constant greater than ��

��� Algorithm for a Special Case

Let �i� j� k��minimum union paths problem denote the minimum union paths problem with
i starting vertices� j hitting vertices and k terminating vertices� In this section� we give
a linear time algorithm to solve the ���
����minimum union paths problem� Note that the
original algorithm needs to compute a distance network and thus takes at least O�n�m� time�
We will show that the computation of the distance network can be avoided as in Section 
��
for the ���
��minimum Steiner network problem�

We �rst analyze all possible con�gurations for a solution for the ���
��minimumSteiner
network problem when there is one starting vertex and two terminating vertices� As we shall
show below� the solution for the ���
����minimum union paths problem can be decomposed
into the union of solutions to two instances of the ���
��minimum Steiner network problem�

In Figure 
� we list the four possible con�gurations for the ���
��minimum Steiner
network problem� It is easy to see that the solution for the ���
����minimum union paths
problem can be obtained by the union of solutions to two ���
��minimum Steiner network
problems� For example� the solution in Figure � is a combination of type ��� in Figure 
 and
type �
� in Figure 
 �directions of edges reversed�� Note that if the �rst part of the solution
is type ��� or �
� in Figure 
� then we only have to �nd a path from a hitting vertex to the
terminating vertex to form a solution we need�

Thus to �nd the solution for the ���
����minimum union paths problem with one start�
ing vertex s� two hitting vertices h� and h�� and one terminating vertex t� we �rst �nd
MSN�G� fsg� fh�� h�g�� By Theorem 
���� this can be done in linear time� According to the

��



discussion in Section ���� the set H of hitting vertices can be partitioned into up to 
 levels�
When all hitting vertices are partitioned into two levels with exactly one vertex in each level�
then there exists neither a backward vertex nor a forward vertex�
We distinguish two cases�

Case �� The hitting vertices are in the same level�
This corresponds to the case when MSN�G� fsg� fh�� h�g� is either type ��� or �
� in
Figure 
� Let r�G� be the resulting graph obtained from G by reversing the direction of
each edge inG� We �nd MSN�r�G�� ftg� fh�� h�g�� Since both MSN�r�G�� ftg� fh�� h�g�
and MSN�G� fsg� fh�� h�g� are optimal solutions and G is acyclic� no vertex other than
h� and h� can appear in both MSN�r�G�� ftg� fh�� h�g� and MSN�G� fsg� fh�� h�g��

If MSN�r�G�� ftg� fh�� h�g� is either type ��� or �
� in Figure 
� then the solution we
want is MSN�G� fsg� fh�� h�g��r�MSN�r�G�� ftg� fh�� h�g��� If MSN�r�G�� ftg� fh�� h�g�
is either type ��� or �
� in Figure 
� without loss of generality� let h� be the vertex with
in�degree � in r�MSN�r�G�� ftg� fh�� h�g��� A shortest path from s to h� together with
r�MSN�r�G�� ftg� fh�� h�g�� is the solution we want�

Case �� The two hitting vertices are in di�erent levels�
This corresponds to MSN�G� fsg� fh�� h�g� is either type ��� or �
� in Figure 
� Without
loss of generality� let h� be the hitting vertex whose out�degree is � inMSN�G� fsg� fh�� h�g��
We wrap up the computation by �nding a shortest path from h� to t�

Hence we have the following theorem�

Theorem ��� The ���
����minimum union paths problem can be solved in linear time� �

Remark� When jHj is small� the above enumerative approach by analyzing the partition of
H is an e�ective way to �nd a solution for the minimum union paths problem�

� Concluding Remarks

We have described an enumerative approach to two variations of the minimum�cost Steiner
problem on a directed acyclic graph with non�negative edge weights� Properties of the
solutions were presented and exploited to obtain algorithms more e�cient than the naive
methods for these two problems� Whether or not additional properties of the graph can be
utilized to improve the time complexity of the algorithms for computing optimal solutions
remains to be seen�
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