Steiner Problems on Directed Acyclic Graphs

Tsan-sheng Hsu', Kuo-Hui Tsaﬂi, Da-Wes I/Vangﬂt and D. T. Lee*

November 3, 1995

Abstract

In this paper, we consider two variations of the minimum-cost Steiner problem
on a directed acyclic graph G(V, F) with a non-negative weight on each edge of E.
The minimum directed Steiner network problem is defined as follows. Given a set of
starting vertices S C V and a set of terminating vertices T C V, find a subgraph
with the minimum total edge weight such that for each starting vertex s there exists a
path from s to a terminating vertex, and for each terminating vertex ¢, there exists a
path from a starting vertex to ¢. The minimum union paths problem is similar to the
minimum directed Steiner network problem except that we are given a set of hitting
vertices I C V, in addition to the sets of starting and terminating vertices and that we
want to find a subgraph with the minimum total edge weight such that the subgraph
satisfies not only the conditions above, but also that every hitting vertex is on a path
from a starting vertex to a terminating vertex.

We present algorithms for finding optimal solutions to these two problems in time,
respectively, O(n-m + 2I5HTL o3 (n2=2 L pf=1yy and O(K!- (8- k)* - k% - nF=1 4o m),
where n and m denote the number of vertices and edges of the graph, @ = max{|S5/|,|T|},
g = min{|S|,|T|}, and k = || +|T| 4+ |H|. The algorithms can also enumerate all
possible optimal solutions for both problems. Our algorithm for the minimum directed
Steiner network problem can also be used on undirected graphs.

We also give linear time algorithms for some special cases.

'nstitute of Information Science, Academia Sinica, Nankang 11529, Taipei, Taiwan, ROC. E-mail:
{tshsu, tsaikh, wdw}@iis.sinica.edu.tw.

iSupported in part by National Science Council, Taiwan, ROC, under the Grant No. NSC-83-0408-E-
001-021.

*Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL
60208, USA. E-mail: dtlee@dtlee.eecs.nwu.edu. Supported in part by the National Science Foundation
under the Grants CCR-~9309743 and INT-9207212, and by the Office of Naval Research under the Grant No.
N00014-93-1-0272.

1 Introduction

Given a graph GG = (V, F), a non-negative cost on each edge in £, and a set of vertices 7 C V,
the minimum Steiner problem is to find a minimum cost subgraph with a given property
which spans Z. The vertices besides Z in the subgraph are Steiner vertices. For example, the
mintmum Steiner tree problem is one in which the subgraph is a tree. The minimum Steiner
problem has many important applications and has been extensively studied [2, 7, 8, 14, 15].
In one of the latest survey papers [7], more than 300 references are listed. Let S and T be
two subsets of vertices of V. A subgraph G’ of GG is said to be S, T-connected if for each
vertex s € S there exists a path! in G from s to a vertex ¢t € T, and for each vertex ¢t € T
there exists a path in G’ from a vertex s € S to t.

We consider the following two variations of the minimum Steiner problem on directed
acyclic graphs G(V, E') with a non-negative weight on each edge of . The minimum directed
Steiner network problem is defined as follows. Given a set of starting vertices S and a set of
terminating vertices T', we want to find a subgraph G™ with the minimum total edge weight
such that G* is S, T-connected. The minimum union paths problem is a more general version
of the minimum directed Steiner network problem. An additional set of hitting vertices
H C V is specified and the subgraph G* is required to contain H. Note that the minimum
directed Steiner network problem is a special case of the minimum union paths problem,
in which the hitting set H is empty. It can be easily shown that the above two minimum
Steiner problems on directed acyclic graphs are NP-hard by a polynomial transformation
from the exact cover by 3-sets problems (see e.g., the discussion in Chapter 1 of [8]).

Several important applications for solving the minimum Steiner problem on a directed
acyclic graph are mentioned in [11] for the case of finding a minimum Steiner arborescence.
The two problems defined here can be used to solve generalized versions of these problems.
For example, finding a minimum directed Steiner network can be used to design an opti-
mal drainage system for a building, where starting vertices are places to dump wastes and
terminating vertices are sewers. Finding a minimum union paths can be used to design an
optimal system layout for an irrigation and drainage system where starting vertices are water
sources, hitting vertices are places that need water, and terminating vertices are drains.

There are several types of algorithms that can be used to find an exact solution of the
minimum Steiner problem which include dynamic programming [3], 0-1 linear programming
[1], and exhaustive enumeration [9]. Though most of the discussions are on undirected
graphs, they can be easily extended to directed graphs. For example, a typical exhaustive
enumeration algorithm for the minimum Steiner tree problem makes use of the fact that

'In this paper, we refer a path as a sequence of vertices ay, as, ..., ag such that (a;,a;41), 1 <i <k, is a
directed edge pointed from a; to a;41 and a; # a; for all i # j, i.e., every path is a simple path.

a minimum Steiner tree is a minimum spanning tree on the set of vertices in the solution.
Thus by properly choosing the set of Steiner vertices, we can easily find the solution by
computing a minimum spanning tree. Thus fining an accurate upper bound on the number
of Steiner vertices is crucial in estimating the running time of this type of algorithms. Let
the upper bound be k. Then the time complexity of the algorithm is O(n* - MST(()), where
MST(G) denotes the time complexity of finding a minimum spanning tree of G. A similar
algorithm can be devised to solve the minimum directed Steiner network problem and the
minimum union paths problem in time exponential in k. We shall show that by exploiting
some properties of the solutions to the two problems, we can solve them in time exponential
roughly in %

Some related work for the minimum Steiner problem on directed graphs can be found
in [6, 10, 11, 12, 16]. In particular, Nastansky et al. [11] presented an efficient heuristic
algorithm for solving the minimum Steiner arborescence problem on a directed acyclic graph
by exhaustive enumeration. However, they do not provide any theoretical analysis on the
time complexity of their algorithm, which we believe is exponential in k. Rao et al. [12]
described an approximation algorithm for finding a minimum Steiner arborescence in a rec-
tilinear plane rooted at the origin with the additional constraint that all paths from the root
to the leaves must be shortest.

2 Minimum Directed Steiner Network

Given a directed acyclic graph GG = (V, E') and two non-empty disjoint subsets of vertices S
and T, a directed Steiner network of GG is a subgraph G* of G such that G* is 5, T-connected.
The vertices in S are called starting vertices and those in T are terminating vertices. Any
path in a Steiner network starting from a vertex in S and ending in a vertex in 7' is called
an S-T" path. If the edges in (G are associated with non-negative weights, then a directed
minimal Steiner network with a minimum total edge weight is called a minimum directed
Steiner network® and denoted as MSN(G, S, T'). Note that in a minimum (directed) Steiner
network?®, an S-T' path, except the two extreme vertices, may contain vertices in S or 7.

2Here we consider the Steiner network with the least number of edges among those with a minimum total
edge weight.

3From now on we will omit the word “directed” without any confusion, and minimality of the network is
assumed.

2.1 Preliminaries

Before we describe our algorithm for finding a minimum Steiner network, we examine its
properties. Through these properties, we give a structural description of minimum Steiner
networks. Then we obtain a minimum Steiner network by an efficient enumerative algorithm.

Let SUTUZ be the set of vertices in MSN(G, S, T'), where U is the disjoint set union
operator. The vertices in Z, which contain no vertices in S and T, are Steiner vertices.
Let D(G) be the distance network for a directed acyclic graph ' with non-negative edge
weights, i.e., each edge (u,v) in D(G) is associated with a weight equal to the total weight
of a shortest path from u to v.

Lemma 2.1 Given S and T, the cost of MSN(G, S, T) is equal to the cost of MSN(D(G), S, T).
Furthermore, given MSN(D(G), S, T), MSN(G, S, T) can be constructed in time linear in the
size of G. O

The proof of Lemma 2.1 is quite straightforward. Let P(u,v) denote a maximal path in
MSN(G, S, T) connecting vertices u and v for some u,v € V such that the intermediate
nodes in the path have in-degree and out-degrees equal to 1. The above lemma simply states
that if we replace every such path P(u,v) in MSN(G, S, T') with an edge (u,v) whose weight
is equal to the total edge weight of all the edges in P(u,v), then the resulting network has a
cost equal to MSN(D((G), S, T). Note that the set of Steiner vertices 7 in MSN(G, S, T') can
be partitioned into two sets Z = Z;UZ,, where Z, contains the intermediate vertices of all

such P(u,v) defined above and Z; will be the set of Steiner vertices in MSN(D(G), S, T).

From Lemma 2.1, we know that it suffices to compute a minimum Steiner network
from the distance network of the graph. It is well-known that the computation time of any
algorithm to find a Steiner-tree-like solution is exponential in the number of Steiner vertices
in a general graph by enumerating all possible candidates of Steiner vertices. We will focus
our discussion on finding a minimum Steiner network in a distance network with an aim to
show that in an acyclic graph, the possible candidates for Steiner vertices can be enumerated
more efficiently.

A Steiner vertex in MSN(D(G), S, T) is convergent if its in-degree is greater than 1,
and is divergent if its out-degree is greater than 1. From Lemma 2.1, any Steiner vertex in
a minimum Steiner network of a distance network must be either convergent or divergent.
Note that a vertex may be both convergent and divergent if its in-degree and out-degree are
greater than 1.

Lemma 2.2 Given a directed acyclic graph G with non-negative edge weights and two dis-
joint subsets of vertices S and T, let s € S, t € T, and P be a path from s to t in

4

MSN(D(G), S, T) whose length (number of edges) is greater than 1. Let P = [s,w1, w2, ..., w,, 1],
g > 1. Then there exists b, 0 < b < g, such that exactly one of the following two conditions

is true: (1) w;, 1 < i< b, is convergent and w;, b <@ < ¢, is divergent; (2) w;,1 <1 <b, is
convergent and w;, b+ 1 <1 < g, is divergent.

Proof: We will prove it by contradiction. Recall that MSN(D(G), S, T) has a minimal
number of edges. Let b be the largest index such that wy,...,w,_1, and wy are convergent in
P. Assume that wyyq # 1 is strictly divergent, i.e., not convergent, and that w, is convergent,
where ¢ > b+ 1. Let H be the resulting graph obtained by removing from P, and hence
from MSN(D(G), S, T), the edge from w,_1 to w,. Note that H remains a Steiner network.
Since the weight of each edge is non-negative, either the cost of H is less than that of
MSN(D(G), S, T) or H has fewer edges. Thus MSN(D(G), S,T) is not optimal, which is a

contradiction. O

The vertex wy in the path P as specified in Lemma 2.2 is referred to as a neutral vertex.
Note that if a vertex is neutral in an S-T' path, then it is neutral in any other S-T' path.

Corollary 2.3 There exists at most one neutral vertex in the path P as specified in Lemma 2.2.
O

A directed graph is an incoming arborescence if it is an isolated vertex or there exists
exactly one root vertex u such that there is exactly one path from any other vertex to u. A
collection of incoming arborescences is an incoming forest. A directed graph is an outgoing
arborescence if it 1s an isolated vertex or there exists exactly one root vertex u such that
there is exactly one path from u to any other vertex in the graph. A collection of outgoing
arborescences is an outgoing forest. A vertex is a leaf in an incoming (outgoing) forest if its
in-degree (out-degree) is zero. A vertex in a forest that is not a leaf is an internal vertex.
Given a minimum Steiner network MSN(D((G), S, T'), let its neutral split network be defined
as follows — for each neutral vertex u in MSN(D(G), S, T), we replace u with two vertices
uy and wuy such that wy inherits all incoming edges of u and wy inherits all outgoing edges of
u. The resulting network is called a neutral split network. It is easy to see that the cost of
the neutral split network is the same as the cost of the original minimum Steiner network.
Figure 1 illustrates a minimum Steiner network, and its neutral split network. The set of
neutral vertices are shown in solid circles, and the others shown in hollow circles.

Lemma 2.4 There are at most | S|+ |T| — 2 Steiner vertices in MSN(D(G), S, T), and the
bound is tight.

Proof: We prove this lemma by induction on |S|+ |T|. This lemma is obviously true when
|S| = 1 and |T'| = 1. For the induction step, observing that adding a vertex to S or T

Figure 1: A minimum Steiner network, the set of neutral vertices shown in solid circles, and
its neutral split network.

creates at most one Steiner vertex in D(('), by converting a vertex in MSN(G, S, T') which is
in Z, into one which is in Z;. To prove that the bound is tight let us construct, as described

below, a graph G such that MSN(D((), S, T') has exactly |S| + |T'| — 2 Steiner vertices.

Let Bg be an incoming arborescence such that the root is u, the set of leaves is S
and the in-degree of each node except the leaves (each of whose in-degree is 0) is 2 and
out-degree is 1, except the root (whose out-degree is 0). For convenience Bg is called an
incoming binary tree. Let By be similarly defined except that it is an outgoing arborescence
(binary tree) and whose root is v and the set of leaves is T'. Then G = BsU By U {(u,v)}
is a graph whose MSN(D(G'), S, T') contains |S| + |T'| — 2 Steiner vertices. O

Lemma 2.5 The neutral split network of a minimum Steiner network MSN(D(G),S,T)
for an acyclic graph G with non-negative edge weights can be partitioned into three disjoint
subgraphs Ny, Ny, and No where (1) N, consists of edges from a vertex in S to a vertex
inT; (2) Ny is an incoming forest where each leaf is a vertex in S, each non-root internal
vertex is a Steiner vertex, and each root is either a Steiner vertex or a vertex in T; (3)
Nour is an outgoing forest where each leaf is a vertex in T, each non-root internal vertex is
a Steiner vertex, and each root is either a Steiner vertex or a vertex in S. There are no
1solated vertices in N;, and Nu:.

Proof: Since (i is acyclic, MSN(D(G), S, T) is also acyclic. Every vertexin MSN(D(G), S, T')
is in an S-T" path in MSN(G, S, T). Thus this lemma follows from Lemma 2.2 and Corol-
lary 2.3. O

Corollary 2.6 The number of arborescences in Ny, (Noyt) is no more than half of the num-
ber of leaves in Ny, (respectively, Noyu:).

Proof: There is no isolated vertex in V;, or N,,;. In each arborescence, there are at least
two leaves. Hence the corollary holds. a

Now we examine properties of the three disjoint subgraphs in a neutral split network.
Let u be a vertex not in the neutral split network of MSN(D(G),S,T). Let N/, be an
incoming arborescence by adding edges to N;, from each root in Ny, to u. Let D(G)" be
the resulting graph obtained by adding the same set of edges to D(G'). The weight of each
added edge is zero.

Lemma 2.7 The graph N}, is a minimum Steiner incoming arborescence in D(G)" and can
be obtained in O(n - m + (* - n'~Y) time, where { > 2 is the number of leaves in N;,, n the
number of vertices in G, m the number of edges in G, and t the number of trees in Ny,.

Proof: It takes O(n-m) time to find the distance network for a directed acyclic graph [13].
Note that the distance network contains O(n?) edges. The minimum spanning arborescence
in a graph with vertices and y edges can be found in O(x -logx + y) time [5]. There are
less than ¢ — ¢ Steiner vertices in a minimum Steiner arborescence. O

It is easy to see that given N! . N;, can be obtained in time linear in the number of

vertices in N;,. It is also true that Ny, is a minimum Steiner incoming arborescence in D(G).

Let N! , be an outgoing arborescence by adding edges to N, from u to each root in
Nowt. Let D(G)” be the resulting graph obtained by adding the same set of edges to D(G)

as in the previous construction. The weight of each added edge is zero.

Lemma 2.8 N/ . is a minimum Steiner outgoing arborescence in D(G)" and can be obtained
in O(n - m + 02 - n*=1) time, where { > 2 is the number of leaves in Ny, n the number of
vertices in GG, m the number of edges in GG, and t the number of trees in Nyy;. O

It is easy to see that given N/ ,, N, can be obtained in time linear in the number of vertices

in N! .. It is also true that N,y is a minimum Steiner outgoing arborescence in D(G).

Corollary 2.9 Let l;, be the number of leaves in Ny, and let {,,, be the number of leaves in
Nout-

(1) The number of internal vertices in Ny, is less than (;,.

(2) The number of internal vertices in Ny is less than or equal to {yy.

Proof: The degree of each internal vertex in NN, is at least 2. Thus (1) holds by using a
simple induction argument. Note that the degree of the root in a tree in N,,; could be one.
Thus (2) holds by using a simple induction argument. O

2.2 The Algorithm

Using Lemmas 2.5, 2.7, and 2.8, we can construct a minimum Steiner network as follows.
First we obtain (by exhaustive enumeration) S; C S and 77 C T such that |Sy] = |71] and
construct N, by finding a minimum-cost bipartite perfect matching between S; and 7j in
D(G). We then choose the set of roots R in the neutral split network of MSN(D(G), S, T).
Note that R consists of Ry CV, Ry C (5\ 51), and Rs C (T'\ Ty).

After choosing R, we find a minimum Steiner incoming forest N;, on the set of leaves
S\ (S1UR) and the set of roots R\ Re. By Corollary 2.9, there can be at most |S|— 1[5 —1

Steiner vertices (including vertices in R). We also find a minimum Steiner outgoing forest

8

Nyt on the set of leaves T'\ (77 UR) and the set of roots R \ Rs. By Corollary 2.9, there
can be at most |T'| — |Ty| Steiner vertices (including vertices in R). Note that the sets of
Steiner vertices in Ny, and in N,,; are disjoint. By properly choosing 57, Ty, and R, the
cost of MSN(D(G'), S, T) is equal to the cost of N, U N;, U Nyye. It is also easy to construct
MSN(D(G), S, T) from Ny, Ny, and N,y From the above discussion, we have the following

theorem.

Theorem 2.10 Let o = max{|S|,|T|} and let 3 = min{|S|,|T|}. A minimum Steiner
network MSN(G, S, T) can be constructed in O(n - m 4 25HITI o3 - (no=2 1 n0=1)) time,

where n and m are the number of vertices and edges in GG, respectively.

Proof: Assume without loss of generality that o = |S| and # = |T'], since otherwise we can
reverse the direction of each edge in GG to satisfy this condition. Note that |S;| = |T1| < 3.
Our algorithm first constructs the distance network. Then we enumerates all candidates for
a directed minimum Steiner network in the distance network. Given a candidate, assume

.. . . T
that there are ¢ pairs of vertices in N,. Note that ¢« < 3. There are up to (|f|) (| . |)

4

candidates for the set of vertices in N,. Let |[R| = j. By Corollary 2.6, j < {%J + V;Z'J,

which is no more than o« —:. There are up to (? candidates for the set of vertices R.

Once we pick R, we partition R into Ry, Rz, and R, where Ry = R\ (SUT), R; = RNS,
and Rs = RNT. Thus the set of vertices in N;, is Ry UR3U (S \ Rz2) and the set of vertices
in Nyt is Ry UR2 U (T'\ Rs). Thus our algorithm takes time

0<<A>+ﬁ('5.')('T') (1)@ + o,

4

M

where n is the number of vertices in D((), (A) is the time needed to construct the distance
network from G and is equal to O(n - m) for a directed acyclic graph [13], (B) is the time
needed to find a minimum cost bipartite perfect matching in a bipartite graph with 2 -2
vertices and O(7?) edges and is O((2 - i)*log(2 - i) + (2-17) - ¢*) [4], (C) is the time needed to
find a minimum Steiner incoming forest with j roots, |S|—1 leaves, and up to |[S|—¢—j5—1
internal vertices given D(() , and (D) is the time needed to find a minimum Steiner outgoing
forest with j roots, |T'| — ¢ leaves, and up to |T'| — 7 — j internal vertices given D((G). By
Lemmas 2.7 and 2.8, we know that (C) is O(|S]? - n/¥I=7=3=1) and (D) is O(|T'|? - nlTl==9).
Thus (B)+(C)+(D) = O(a? - (na_i_j_l + nﬁ_i_j)).

Since

(7)gna(7)«BH40H4D»:0@P«wﬁ*+nﬂm.

Thus

=1]
Since 5 5
(1) ()55)+
=1 t t =1 t =1 t =1 t
2 (18] T & of
> . o =00e-27).
=1
Thus the overall time complexity is O(n - m + QWSIHITI . 3. (™% + nﬁ_l)). O

By Lemma 2.4, the number of Steiner vertices in a minimum Steiner network can be as
large as |S|+ |7'| — 2. Thus finding a minimum Steiner network by brute force may need to
perform a minimum spanning arborescence computation O(n!**+71=2) times. Following from
Theorem 2.10 a minimum Steiner network can be found by performing a minimum spanning
arborescence computation O(25HITT . max{|S|,|T|} - (nmaxtUSLT=2 4 pmindISLITE=1)) times.

This is a substantial saving in computation time if max{|S|, |7'|} is O(logn).

Remark: We can solve within the same time complexity the strong minimum directed
Steiner network problem in which no S-T path contains vertices in S and T' as intermediate
node. In other words, all starting vertices are of in-degree 0 (sources) and all terminating
vertices are of out-degree 0 (sinks). This problem can be solved by finding MSN(G’, S, T')
where GG’ is obtained by removing all incoming edges to a starting vertex and all outgoing
edges to a terminating vertex.

We can also solve within the same time complexity the minimum Steiner network
problem on an undirected graph in which each S-T" path in the solution is undirected by
applying the algorithm in Section 2.2. In using the algorithm, we find undirected paths
and forests. The correctness of the algorithm which is established in properties proved in
Section 2.1 for the directed case can be applied on undirected graphs as well. Observing
that a solution for an undirected minimum Steiner network contains no cycles. Thus there
is an unique orientation for the undirected solution by orienting edges in every S-T' path
from a vertex in S towards a vertex in T'. All properties in Section 2.1 can be applied on
this oriented solution.

2.3 Algorithm for a Special Case

Note that if min{|S|,|T'|} = 1, then the problem of finding a minimum Steiner network
reduces to the problem of finding a minimum Steiner arborescence. Let (7,j)-minimum

10

O O
Q<Q @H‘<© O Q/Q

Figure 2: All possible configurations for a solution of the (1,2)-minimum Steiner network
problem in the distance network where the starting vertex is s and the set of terminating
vertices is {f1,%2}. The shaded vertex is a Steiner vertex.

Steiner network problem denote the minimum Steiner network problem with ¢ starting ver-
tices and j terminating vertices. In Figure 2, we list the four possible configurations for the
(1,2)-minimum Steiner network problem.

For the minimum Steiner arborescence problem in which max{|S|, |T'|} = 2 we have the
following result which shows that the computation of the distance network can be avoided

when |[SUT| = 3.

Theorem 2.11 If min{|S|,|T|} = 1 and max{|S|,|T|} = 2, then MSN(G,S,T) can be
computed in O(n + m) time (instead of O(n - m) time).

Proof: Note that there are at most one Steiner vertex in MSN(D(G),S,T). Any path
between any two vertices u and v in MSN((G, S, T') is also a shortest path between u and
v in G. Assume without loss of generality that |S| = 1 and |T'| = 2. Our algorithm first
computes the single source shortest path (in) for the vertexin S. Let r(() be the resulting
graph obtained by reversing the direction of each edge in G. We compute the single source
shortest paths (in r(G)) for the two vertices in T'. The above computation takes O(m) time
for a directed acyclic graph.

We distinguish two cases.

Case 1: There is no Steiner vertex.
The cost of a minimum Steiner network is equal to the sum of edge-costs in the two
paths from the vertex in S to the two vertices in T' (Figure 2.(1)), or in the one path
from the vertex in S to the two vertices in T' (Figures 2.(3) and 2.(4)).

Case 2: There is exactly one Steiner vertex u.
Note that u could be a vertex in T and that this case reduces to those shown in
Figures 2.(3) and 2.(4). We can try all possible candidates for u. Whenever we fix a

11

candidate for u, the cost of the Steiner network with only one Steiner vertex u can be
computed in constant time by adding the shortest path distance (in) from the vertex
in S to u, and the costs of the two shortest paths (in r(G)) from the two vertices in T
to u.

One of the above solutions with the minimum cost has the same cost as a minimum Steiner
network. The corresponding network can also be constructed in linear time. O

Remark: We can also solve in linear time the minimum Steiner network problem on an
undirected graph in which each S-T" path in the solution is undirected by using the same
algorithm.

3 The Minimum Union Paths Problem

Given a weighted directed acyclic graph GG = (V| E') and three non-empty mutually disjoint
subsets of vertices S, H, and T', a set of S-H-T union paths of GG is a subgraph G’ of G with
the following properties:

1. For every s € S there is a path in G’ from s to a vertex in T'.
2. For every t € T there is a path in G’ from a vertex in S to .

3. For every h € H there is a path in G’ passing through & which starts from some vertex
in S and ends with some vertex in T

The set of vertices S is referred to as starting vertices; the set of vertices H hitting vertices and
the set of vertices T' terminating vertices. The minimum union paths problem (or minimum
directed Steiner network problem with a hitting set) is to find a set of S-H-T' minimal union
paths in G with a minimum total edge weight,* A set of minimum union paths with the

minimum total edge weight is denoted MUP(G, S, H, T)).

Lemma 3.1 There are at most |S|+|T|+2-|H|—4 Steiner vertices in MUP(D(G), S, H,T)
for |H| > 1.

Proof: We prove this lemma by induction on |S| 4 |T| + 2 - |H|. This lemma is obviously
true when |S| =1, |T| = 1 and |H| = 1. For the induction step, we observe that adding a

“Here we also consider the network with the least number of edges among those that have a minimum
total edge weight.

12

vertex to S or T' creates at most one Steiner vertex and that adding a vertex to H creates
at most two Steiner vertices. Hence the lemma is true. O

Similar to Lemma 2.1 we have the following.
Lemma 3.2 MUP(G,S,H,T) can be constructed from MUP(D(G'), S, H,T) in linear time.

Without loss of generality we may assume that |S| = |T| = 1. To see this we can
augment the given graph by adding two new vertices sg and #y not in V' and the set of edges
E*={(s0,8) | s € S}U{(t,%0) | t € T'} whose cost is an arbitrary positive constant. Let the
augmented graph be denoted by /. From MUP((, {s0}, SUH UT, {to}) we can obtain the
solution MUP(G, S, H,T) by deleting the vertices so and ¢ and all their incident edges.

From here on we assume that both S and T are singleton sets and that we consider

the distance network D(G') of G.

3.1 Preliminaries

Before we present a solution to MUP(D(G),{s}, H,{t}), we first discuss some properties of
an optimal solution. Given MUP(D(G'), {s}, H,{t}), we first observe that s has no incoming
edge and ¢ has no outgoing edge. Let L; denote the subset of vertices in H such that for every
vertex v € L; there is a path from s to v containing at most ¢ vertices in H. Note that when
we traverse any path from s to ¢ in MUP(D(G), {s}, H, {t}), the first vertex in H encountered
is in Ly. Let { be the smallest integer such that Ly = Lyyq. Then MUP(D(G), {s}, H,{t})

has ¢ levels.

According to the definition of L;, we partition H as follows. Let Hy = [and H; =
Li\ Li_q for all 2 <i < (. Let Hy = {s} and let H,q = {t}.

Lemma 3.3 [t is not possible to have a path in MUP(D(G),{s}, H,{t}) from a vertex in
H; to avertex in H;, if i+ 1<y and 3 #(+1. O

A vertex v € H; is backward if there is a path from v to some vertex v’ € H;, 7 <,
without going through any other vertex in H. The vertex v’ is a backward successor of v.
A vertex v € H; is forward if there is a path from v to ¢ without going through any other
vertex in H. The path which makes the vertex forward (respectively, backward) is a forward
(respectively, backward) path. The following lemma states that a vertex cannot be both
forward and backward. Furthermore, there is at most one forward path or backward path.

Lemma 3.4 For any vertex in H there exists at most one forward path or one backward
path, but not both.

13

Figure 3: A set of minimum union paths on the starting vertex set {19}, the hitting vertex
set {1,2,3,4,5,6,7,8,9,10,11,12,13,21,22} and the terminating vertex set {20}. The hitting set
is partitioned into Hy; = {1,2,3,4}, Hy = {5,6,7,8,9,21}, and H; = {10,11,12,13,22}.
Vertex 10 1s a backward vertex whose backward index is 1. Vertex 22 is also a backward
vertex whose backward index is 2. Vertex 9 is a forward vertex.

Proof: If a vertex v is both forward and backward, let P; and P, be its forward and
backward paths, respectively. Let e = (x,y) be the first edge not in P, encountered when
we traverse Py starting from v. Since ¢ has no outgoing edge, e must exist. Let G’ be the
resulting graph by removing the edge e from MUP(D(G),{s}, H,{t}). For any {s}-{t} path
P in MUP(D(G),{s},H,{t}) that passes through the edge e, there is an {s}-{t} path P"in G’
by first traversing P from s to z, then following P, to the backward successor u of v. Finally,
we follow a path from u to . Thus G’ is a set of {s}-H-{t} union paths with a smaller
total edge weight or fewer edges than MUP(D(G),{s}, H,{t}). Thus we know v cannot be

forward and backward.

We now suppose that v has two backward paths P, and P,. Let e be the first edge not
in P, encountered when we traverse P; starting from v. Then by an argument similar to the
one given before we can derive a contradiction. Similarly one can prove that it is impossible
for v to have more than one forward path. a

An example of a set of minimum union paths is shown in Figure 3.

14

Figure 4: The pairwise extension and the split partition graphs of the minimum union paths
shown in Figure 3.

Let Hy (respectively, Hy) be the set of forward (respectively, backward) vertices in H.
Let H] be the set of vertices in H; that is neither forward nor backward. We define a split
extension graph for MUP(D(G),{s}, H,{t}) as follows. For every vertex v € (H; U Hy), we
split v into two vertices u;, and u,,; where u;, inherits all incoming edges and u,,; inherits
all outgoing edges. The rest of the edges and the vertices remain unchanged.

Given a backward vertex u whose backward successor is in H;, its backward index bi(u)
is ¢ — 1. The backward index of a forward vertex is ¢ and the backward index of a vertex
that is neither forward nor forward is co. The level index of u, li(u) = ¢ if u € H;. We
partition edges in the split extension graph for MUP(D(G), {s}, H, {t}) into GoUG1U---UG,
where (7; is the induced subgraph of MUP(D(G), {s}, H,{t}) on the two sets of vertices
H; = H U {upy | bi(u) =i} and H; = H/,; U {u | li(u) = i + 1}. The sets of vertices
Hy,Hy,...,H), Hy,H,,... ,and H, are the pairwise extension of Hy, Hy,... ,and Hyyq.

In Figure 4, we illustrate an example of the pairwise extension of the set of minimum
union paths in Figure 3

Lemma 3.5 G is a minimum Steiner network MSN(G, H;, I,).

Proof: Note that (; is a directed Steiner network in GG for the set of starting vertices H;
and the set of terminating vertices H;. If (G; is not a minimum Steiner network, then let
(% be a minimum Steiner network. We delete edges in G; from MUP(D(G),{s}, H,{t})

and replace them with edges in . We obtain a set of union paths with smaller total edge
weights or fewer number of edges. This is a contradiction. O

15

3.2 The Algorithm

Given a MUP(D(G), {s}, H,{t}), its configuration is the pairwise extension of Hy, Hy,...,and
Hyy1. By Lemma 3.5, we can find a MUP(D(G), {s}, H,{t}) as follows. We first find its
configuration. Then we construct each G; by using the algorithm in Section 2.2 for finding
a minimum Steiner network. Our algorithm finds the correct configuration by enumerating
all possible configurations given H.

Lemma 3.6 There are O(k! - 2% - k*) possible configurations, where k = |H|.

Proof: Let T'(k) be the number of different ways that one can partition a set of k vertices.

T(0) =0 and

"k .
T(k)—;(.) Tk —1).
Thus T'(k) = O(k! - 2%). Given a partition for H, each vertex in H can be either a forward
vertex, a backward vertex, or a vertex that is neither forward nor backward. The backward
index of a backward vertex can also have £ — 1 choices. However, the total number of choices
for any vertex equals to the level number for its partition, which is less than or equal to k.
Thus there are O(k*) pairwise extensions for a partition. Hence the lemma holds. a

Theorem 3.7 MUP(D(G),{s}, H,{t}) can be found in O(k!-(8-k)*- k- n*~L 4+ n-m) time.

where n and m are the numbers of vertices and edges in G, respectively, and k = |H]|.

Proof: Note that |H;| < k and |H;| < k for all 0 <7 < (. Note also that |U_, (H;UH,;)| <
2k+2. Given a partition extension of a partition of H, by Theorem 2.10, the time to compute
all G; is bounded by computing a minimum Steiner network from £ starting vertices to k
terminating vertices, which is O(4% - k* - n*~! +-n-m), where O(n-m) is the time to compute
the distance network. Given (7, the distance network for (¢ needs only to be computed once.
Thus by Lemma 3.6, the theorem holds. O

Theorem 3.8 MUP(D(G), S, H,T) can be found in O(k!-(8-k)*-k*-n*= 1 tn-m) time, where
n and m are the numbers of vertices and edges of G, respectively, and k = |S|+ |H|+|T|.

Proof: By Lemma 3.2 and Theorem 3.7. O

By Lemma 3.1, the number of Steiner vertices in a minimum Steiner network can be as
large as | S|+ |T|+2-|H| —4. Thus finding a minimum Steiner network by brute force may
need to perform a minimum spanning arborescence computation O(n!SI+TI+2:HI=4)
Theorem 3.8 states that by using our algorithm, a set of minimum union paths can be found

times.
by performing a minimum spanning arborescence computation O(k!- (8- k)" - k- n*~1) times

16

N
O\Q/QHO

Figure 5: A possible solution for the (1,2,1)-minimum union paths problem in the distance
network where the starting vertex is s, the terminating vertex is ¢, and the set of hitting
vertices is {h1, h2}. The shaded vertex is a Steiner vertex.

where k = |S|+|T|+|H]|. For afixed k = |S|+|T|+|H| our algorithm runs in O(n-m+n*1)
time, while a naive approach takes O(n - m + n*~'*1H1=3) time. Thus our algorithm runs
asymptotically faster when |H| is a constant greater than 3.

3.3 Algorithm for a Special Case

Let (4,7, k)-minimum union paths problem denote the minimum union paths problem with
¢ starting vertices, j hitting vertices and k£ terminating vertices. In this section, we give
a linear time algorithm to solve the (1,2,1)-minimum union paths problem. Note that the
original algorithm needs to compute a distance network and thus takes at least O(n-m) time.
We will show that the computation of the distance network can be avoided as in Section 2.3
for the (1,2)-minimum Steiner network problem.

We first analyze all possible configurations for a solution for the (1,2)-minimum Steiner
network problem when there is one starting vertex and two terminating vertices. As we shall
show below, the solution for the (1,2,1)-minimum union paths problem can be decomposed
into the union of solutions to two instances of the (1,2)-minimum Steiner network problem.

In Figure 2, we list the four possible configurations for the (1,2)-minimum Steiner
network problem. It is easy to see that the solution for the (1,2,1)-minimum union paths
problem can be obtained by the union of solutions to two (1,2)-minimum Steiner network
problems. For example, the solution in Figure 5 is a combination of type (1) in Figure 2 and
type (2) in Figure 2 (directions of edges reversed). Note that if the first part of the solution
is type (3) or (4) in Figure 2, then we only have to find a path from a hitting vertex to the
terminating vertex to form a solution we need.

Thus to find the solution for the (1,2,1)-minimum union paths problem with one start-
ing vertex s, two hitting vertices h; and hsy, and one terminating vertex ¢, we first find

MSN(G,{s}, {h1, ha}). By Theorem 2.11, this can be done in linear time. According to the

17

discussion in Section 3.1, the set H of hitting vertices can be partitioned into up to 2 levels.
When all hitting vertices are partitioned into two levels with exactly one vertex in each level,
then there exists neither a backward vertex nor a forward vertex.

We distinguish two cases.

Case 1: The hitting vertices are in the same level.
This corresponds to the case when MSN(G, {s},{h1, h2}) is either type (1) or (2) in
Figure 2. Let r(G) be the resulting graph obtained from G by reversing the direction of
each edge in (. We find MSN(r(G), {t}, {h1, h2}). Since both MSN(r(G), {t}, {h1, h2})
and MSN(G, {s}, {h1, ha}) are optimal solutions and (i is acyclic, no vertex other than
hy and hy can appear in both MSN(r(G),{t}, {h1, ha}) and MSN(G, {s}, {h1, ha}).

If MSN(r(G),{t},{h1, ha}) is either type (1) or (2) in Figure 2, then the solution we
want is MSN(G, {s}, {h1, b2 })Ur(MSN(r(G), {t}, {h1, ha})). E MSN(r(G), {t},{h1, ha})
is either type (3) or (4) in Figure 2, without loss of generality, let hy be the vertex with
in-degree 0 in r(MSN(r(G), {t},{h1, ha})). A shortest path from s to hy together with
r(MSN(r(G), {t},{h1, h2})) is the solution we want.

Case 2: The two hitting vertices are in different levels.
This corresponds to MSN(G, {s}, {h1, ha}) is either type (3) or (4) in Figure 2. Without
loss of generality, let iy be the hitting vertex whose out-degree is 0 in MSN(G, {s}, {h1, ha}).
We wrap up the computation by finding a shortest path from h; to ¢.

Hence we have the following theorem.
Theorem 3.9 The (1,2,1)-minimum union paths problem can be solved in linear time. O

Remark: When |H| is small, the above enumerative approach by analyzing the partition of
H is an effective way to find a solution for the minimum union paths problem.

4 Concluding Remarks

We have described an enumerative approach to two variations of the minimum-cost Steiner
problem on a directed acyclic graph with non-negative edge weights. Properties of the
solutions were presented and exploited to obtain algorithms more efficient than the naive
methods for these two problems. Whether or not additional properties of the graph can be
utilized to improve the time complexity of the algorithms for computing optimal solutions
remains to be seen.

18

References

1]

2]

[10]

[11]

[12]

[13]

[14]

Y. P. Aneja. An integer linear programming approach to the Steiner problem in graphs.

Networks, 10:167-178, 1980.

G. Dahl. Directed Steiner problems with connectivity constraints. Discrete Applied
Math., 47:109-128, 1993.

S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1:195-207,
1972.

M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network

optimization algorithms. Journal of the ACM, 34(3):596-615, 1987.
H. N. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan. Efficient algorithms for finding

minimum spanning trees in undirected and directed graphs. Combinatorica, 6(2):109—

122, 1986.

S. L. Hakimi. Steiner’s problem in graphs and its applications. Networks, 1:113-133,
1971.

F. K. Hwang and D. 5. Richards. Steiner tree problems. Networks, 22:55-89, 1992.

F. K. Hwang, D. 5. Richards, and P. Winter. The Steiner Tree Problem. Annals of
Discrete mathematics 53. North-Holland, 1992.

E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart,
and Winston, New York, 1976.

S. Martello and P Toth. Finding a minimum equivalent graph of a digraph. Networks,
12:89-100, 1982.

L. Nastansky, S. M. Selkow, and N. F. Stewart. Cost-minimal trees in directed acyclic
graphs. Zeitschrift fur Operations Research, pages 59-67, 1974.

S. K. Rao, P. Sadayappan, F. K. Hwang, and P. W. Shor. The rectilinear Steiner
arborescence problem. Algorithmica, pages 277-288, 1992.

R. E. Tarjan. Data Structures and Network Algorithms. STAM Press, Philadelphia, PA,
1983.

S. Voss. Worst-case performance of some heuristics for Steiner’s problem in directed
graphs. Information Processing Letters, 48:99-105, 1993.

19

[15] P. Winter. Steiner problem in networks: A survey. Networks, 17:129-167, 1987.

[16] R. T. Wong. A dual ascent approach for Steiner tree problems on a directed graphs.
Math. Programming, 28:271-287, 1984.

20

