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Abstract - Polygors and piecewise line segments are often used to represent planar
curves. Though they are generally easy to compute, lack of slope continuity makes the
curve look unsmooth. On the other hand, B-spline type of fitting can produce smooth
curves, but their equations make optimality difficult to establish. In this paper,
parabolas are used to approximate curves with continuous slopes, except at those points
pre- or post- assigned as corners. An algorithm that provides the least number of
parabolas is derived. Though it takes more computing time, the curves look more

natural than the line fitting, for most objects.

Index Terms - Parabolic approximation, conic representation, digitized curve fitting.

I

I. INTRODUCTION
A typical digitized curve fitting problem can be described as.follows:
Given a set of consecutive n points S={ p; = (xi, yi), i=1,2,..., n} on the XY plane, the
purpose is to find a curve C satisfying a discrepancy requirement d(C, pi) < ¢ for all
i=1,..., n, where ¢ is a given threshold and d(C, p) denotes the distance between curve C

and point p. ' (1.1)

Many methods have been proposed, such as using linear segments (1] - [4], B-splines [5] -
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(8], and comic curves [9]- {10]. While the linear approximation is easy to compute, it
lacks the smoothness required by most natural objects. On the other hand, the B-spline
and conic approximations are smooth but the requirement d{C, p-l) < ¢ is difficult to
justify. Consequently, the optimality of a fitting, such as the minimum number
criterion, becomles very difficult to determine. In this paper, the dynamic programming
method of Dunham(4] for line fitting is extended to piecewise parabolas. Except in some
pre- or post-determined corner points, the fitted curve is continuous in slope and

contains the minimum possible number of parabolas under certain constraints.
II. METHOD
Two terms have {0 be defined first.

Since tanf=tan(w-+4§), mere slope continuity may produce > type unsmooth
connections. Thus, the slope in this paper exists in two forms; one is the directioﬁ vector
V, which distinguishes 8 and w+8 and the other is the usual definition m=tand. The
directional vector V at point p ( the subscript i is omitted for a general description) is
defined as follows: The left vector \_fz is the unit vector pointing to p from the
direction of the longest straight line, formed by p and its previous points, under the
discrepancy requirement (see also {4], §III). Similarly, the right vector \_/;- is the unit
vector defined by the longest straight line from p to the points after p satisfying the

, — :
discrepancy requirement. Thus, V is defined as their average, l.e.,

— v+ ¥, | |
V= —m (2.1)
| Vi + Vyl

2

. . 2 <
We also use the common unit vector notation (a, b), a®+b®=1, to represent V. For

points at the end, the average is replaced by 2 single angle.

Secondly, we define a feasible set of point Py by
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Fk = { pk+1: pk+2: AR Pk-i-_]}’

where j is the largest integer such that it may still be possible to find a parabola to pass
P with slope my, and to saiisfy the discrepancy criterion for 2all the points Py

1

P+

The construction of F) is given in § II1.2.

We find that by a simple example, it is easier t{o-describe the method. All tﬁe
mathematical formulae and derivations are given in the next section. Let S containing
n=12 points be an open curve, i.e., there is no connection bei‘.‘maen-p1 and pp. With each
point py, two indices are assigned; the number index Y1 and the terminal index byv
The index number vy represents the smallest possible number of parabolas from Py to
pn and by denotes ‘the other terminal of the parabola that connects Py and ptk. Let all
vk=0 and tk=0 for all k=1,2, ..., n, before the algorithm starts (Table I (a)). Thg:

algorithm starts with p ;.
1) Change v _;=1 and t__,=n.

2) Repeat the fitting process from P9 Py g: - - - b0 Py comsecutively. At Py, We

fit it with a p:oint in Fp according to the following order:

Higher priorities are given to the points with smaller number indices. For points
with the same number in.dex, higher priorities are given to the points closer to Py - Table
I {b) illustrates the fitting process at point pg. Suppose the feasible set Fe={6, 7, 8, 9}.
Then the fitting priorities are 9, 7, 8, and 6.

Let the point now considered be xeFk. With points x and Py, and their
corresponding slopes, a unique parabola can be found (§ IHIL1). The -discrepancy

requirement is checked to all the points between py. and x (§ I11.3). If the discrepancy
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requirement is satisfied, save the parabola equation, let v =vx+l, = x, and go to the
point P _3- Otherwise, go to the point with the next priority. The process will stop

because it is always possible to fit Py and Pr11 with a parabola satisfying the siope and

discrepancy requirement.

3) At the end , v denotes the minimum number of parabolas and t, can be used
to trace all the parabolas from 1 to n. In Table I (c), we find that four parabolas are

.necessary to appoximate the set 5. They are from 1 to 4,4 to 7, 7 to 9, and 9 to 12.

Since at every stage k, the least number of parabolas is used to connect Dy and Pn,

1t is obvious that the answer at the last stage gives a minimum number parabola fit:

For a long curve, it is sometimes difficult to avoid corners. In other words, there
are points where a smooth curve fitting is not as natural as a curve with sharp changes
of slopes. While there is no clear-cut definition of a corner {11]-[13], the following

definition is reasonable: Using the notation in (2.1), if
— —
the angle between Vyand V g = a threshold,

then we define p as a corner. Again, the value of the threshold is subjective. We feel w/2
is a reasonable choice. Once there is a corner point, fitting S is the same as fitting two
open curves with one endpoint in common. Moreover, a closed curve with one corner

point can be treated as a open curve. It is straightforward to extend the fitting method

to more than one corner point.

If S is a closed curve without a corner point, finding a minimum set of parabolas is

more time consuming. Let Iy be the set of all the points that contain p as their feasible

point, i.e.,

Ip ={ x| p belongs to Fy }.




Since one parabola has to pass p within the ¢ neighborhood, one of the starting points
has to be in Ip. A minimum set of parabolas can be found exhaustively by trying all the
‘points in Ip as starting points. To save computing time, the I with the minimum
number of points should be chosen. It can be intuitively seen that a "corner” type of
point is a strong candidate for an Ip with the minimum number of elements. For
example, if p is nearly a cormer, then Ip +1 may contain the point p only. Thus, the
exhaustive search in the parabola case does not usually contain as many points as the

exhaustive search in the segment fitting ([4], § II, last paragraph).
IIi. FORMULAE AND DERIVATIONS

I11.1 Fitting a parabola passing two points with given directions:

Let the two points be pl:(xl, yl) a.pd p2:(x2, y.z), with unit directional vectors

(al, bl) and (ag, by) respectively. Using the simple transformation of coordinates,

/
x aq b1 X-X

y ! y=v

we can transform point p; to the origin with direction \71 =(1, 0) and Slopé m;=0. To
simplify tHe notation, we eliminate the primes and still let py=(xg, y9) with direction

\nfzz(ag, by), and slope mo=by/aq. It can be easily shown that the equation for a
parabola satisfying this condition for Dy is of the form

(x + By)? + Ey=0. (3.1)

Suppose m2:,é 0 or y9/x5. Then the unique parabola passing through p; and py with

corresponding slopes m; and my is

B= —yo— ~ <& B= ~2(xy+By,)(1+Bmy)/m,.
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The derivation of B and £ is straightforward. Moreover, the directional requirement ig

satisfied iff (if and only if)

(i) Xg + Byo>0, and
(if) 29 + Bby>0. (3.2)

The proof of (3.2) seems nontrivial. We include a proof in VI.1.

If mq equals or nearly equals to Yo /x2, the parabola becomes a straight or nea;rly
a straight line. The continuity of slope at p, is marginal, but should be acceptable.
However, if mg is close to 0 or (3.2) fails, then the parabola is very schewed.
Fortunately, if this happens to two unadjacent points, the parabola should be discarded
and the next candidate from the feasible set should be used. However, if Py is adjacent
to py and is the last resort in Fl, theﬁ we can simply connect p; and py by 2 straight
line. Actually, the only situation the latter occurs is when the left and the right lines
from Pq and py have the same-slope. Moreover, two adjacent points are usually too

close to affect the smoothness.

I11.2 Construction of the feasible set Fk

Using the same argument as IIi.l, we let the point pk::(O, 0) with slope my =0.
Apparently, Piy1 is in Fk' We will add points to Fk by induction. Suppose Prrpr -

.« ey

Pi.pg 2T€ known to be in F)- We wish to know whether Piigy1 20 be added to Fr.
Ideally, one would like to check whether it is still possible to find B and E in (3.1) such
that this parabola can pass through all the points Pyg1r Prggr = and Petoil within
the ¢ discrepancy. However, due to the mathematical difficulties in dealing with E, only

B is examined. Thus, the feasible set may be larger than what is actually needed, but it

is a valid one.

Let the feasible range for B, when the requirement is to pass only two points p;
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and p:l within the discrepancy ¢, be Bij‘ Then it is easy to see that if the set

k4841 i-1
B; (3.3)

is not empty, we may be able to find a parabola passing through Pys o Py g within

e-neighborhoods. Thus, Prigt] belongs to. Fk and we should confinue to check

V Pl g2 else Fk =1 Ppylr -« o Pigg } and Fk contains only these points.

The range Bij can be determined by the following procedure. Define
SUBROUTINE

(B*):

R= | MY, /my; , r=\}—mﬂ/‘M_Yj;

mx; — R-MKJ- if MXj >0
A

mx; - r-MXj otherwise,
" MX; - rm; if mx; > 0
U=

MXi - R-mxj otherwise.

v= mmnin( Imyi-myj - my; , IMYi-ﬁlyj - MYi )

V= ma.x{,[MYJ--_myi - my;, lMYj-MYi - MY, 6;, 65}, where
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5y =MY;/4 i lMYJ./:; e [ FAy;, JMY;]

69 = MY, if MY-le[\]myJ-/tl : \IMYJ./4 ].

The output B is the interval of B determmed by Table II. Note that if my; .=0, then

R=o0, and consequently, if “VI‘{ >0, then u=-oc0, and if mx; <0, U=co.

Before computing Bij by (B*), the parameters MX, MXJ-, etc. are defined from the
coordinates of p,=(x;, y;) and pJ-:(}‘.‘.j, yj):

LXizxi—}-e, sX; = X; € _LXj:‘jTe’ sszgj—e;

LYi:3fi+€’ sy; =¥; — 6 Lszyj—i—e, SY; =Y 6

If LY, > 0 and LY; >0,
then MXiZLXi’ MijLXj, mx;= §X;, MX;= SX;
MY, =LY, MYj:LYj, myizma.x((], syi), myjzrna.x(O,syj)
GO TO (B*), let the output be By;

Else By = ¢. : (3.4a)

Ifsy; <0 and sY; <0,
then MX =—8X;, MX ==5X;, MK;= LX ) X —LX
MY, =-sy;, \/IYJ= SYj myl.—ma.x(D, LYi), myj—-max({), —LYJ.)
GO TO (B¥), let the output be Bo;

Else By = ¢. (3.4b)

The range Bij = B{U By.

Also, if By# ¢ and By # ¢, then Bij is one interval (instead of possibly two). This
fact helps in checking the emptiness of (3.3).




To justify the above algorithm, recall that equation (3.1) passes through (0, 0) with

slope 0. If it also passes through piz(xi, yi) and pjz(xj, yj), then the parameier B

“becomes

X=X

B= Y yJi » Y ==E Yi/Yj . (3.5)

Note that v is defined only when yiyj > 0. In case yiyj < 0, the construction of a
parabola is not possible. The ¢ set outputs in (3.4a,b) are the consequences of this. The
+ sign for v indicates that there are two pérabolas that satisfy the requirernents.
However, it will be shown in §VI.2 that the only valid v for our curve fitting is the

positive one.

Since thel-:e is a leeway of ¢, the parabola does not have to pass through P; of Ps-
However, it must pass through the two e-neighiborhoods. Due to the technical difficulties
in hgndl'mg circular neighborhoods, two squares (xi:te, yi:I:e) and (xjif, yj:I:e) are
used. Since the squares are larger than the required e-neighborhoods, passing through
the squares are only necessary. Thus, the feasible set so constructed may be larger than
the real ome. Again, it is a valid one. It can be seen that the MX,, MXj efc. in the
algorithm are based on the two squares and the subroutine B® is based on the

maximum and minimun range arguments of B in (3.5) with ¥>0. For example, the

formula for V comes from the complicated maximum minimun structure of the

. ? _ B a 2
denominator, -yyj—yi__yj/tl ( J’)Tl lyj/4 )=,

III.3 Finding the minimum distance between a point and a parabola

The basic idea is to tr.ansform the coordinates so that the parabola is in the
standard form y:ax2. Let the point be (xg, yj)- Then we need to minimize (x—x0)2 +
(v - y0)2 subject to y - ax?=0. A standard Lagrange multipliers method will lead to
solving a cubic equation. The formulas are available in most algebra books. If there is a
single rea.l root, the minimqm distance can be easily obtained by substitution and if

there are three real roots, then three locally minimum distances can be found. The least
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of them is the minimum distance. In case one or more normals from the curve do not
intersect with the particular section of the parabela chosen for fitting, the endpoints of

the parabola are used to compute the minimum distance.
IV. EXPERIMENTAL RESULTS

Three objects; a glass(Fig. 1), an apple(Fig. 2), and a cartoon silhoutte Snoopy
with a baseball bat(Fig. 3) are used to illustrate the minimum number parabola
algorithm. The main purpose is to compare it with ‘the minimum segment

representation [4] in curve quality, computational and storage complexities.

At the very left of each figure is the digitized curves with randomly -generated
uniform errors of 2 pixel length. The middle figures are the minimum segment fitting
with ¢=2, and the right ones are the minimum parabola fit also with e=2. It is
reasonable to say that the parabola fit is more natural. Table III presents the
compa.risoﬁ of the two methods in ferms of the number of segments and computing
time. Note that for the line segments, only two coordinates of the endpoints need to be
stored for rteconstruction, while the parabolas need an additional slope at each end
point. Take the glass for example, it takes 2x20=40 real numbers to saved all the line
segments, but 3x13=39 real numbers to save the 13 parabolas. Which one uses a smaller
number of storage depends on the curve. The line segment representation has some
advantageé, if there are a large number of turns, such as in the Snoopy, but the
parabolas have advantages for smooth curves, such as the glass. The biggest
disadvantage of the parabola fitting is the slowness in computation. The numbers in the
time column are in seconds based on the Turbo Pascal program running on an IBM-AT
with Intel 80287 wmath coprocessor. During the three curve fittings, we did not
encounter any odd situations such as ¥o=0, m2=0 or yz/xg, or directional reversion

between two adjacent points.

V. DISCUSSION AND CONCLUDING REMARKS




This paper has derived an algorithm that uses the minimum number of parabolas
to represent digitized fgures. When compared with the minimum line segment

representation, the trade-off is between picture quality and computational time.

Here are some comments on the two constrainis given to the parabolas used for
fitting; (i) all the parabolas end at a data point, and (ii) the slopes at the parabola
connections are subject to the siopes estimated by (2.1). Without constraint (i), an extra
section irrelevant to the data may be produced just to make the connection smooth. Aﬁ.
example is shown in Figure 4. The same situation can also occur in line approximation
[4] where all lines are forced to end at data points. Constraint (i) does not exist in line
fitting, because slope continuity is not réquired. Since slope estimation is always
sensitive to noise, we can not ﬁhc} a betfer way to estimate the slopes. There may be

some space for future improvement in this respect.

VI. PROOFS

V1.1 Proof of (3.2)

The main idea of our proof is to add directional information to a curve following
the order it should be drawn. One of the easiest way to do this is to represent the curve
In a parametric form such as: (i) (£(t), g(t)), teR. If we fix the drawing sequence from
t=—co to ﬁ,.:+oo, then (ii} (f(-t), g(-t))} will produce the same curve drawn in the
reverse order. The two derivatives (£'(t), g'(t)), and (~f/(~t), —g'(-t)) reveal the two
possible directions at any given point (with the same slope). Thus, with given order of

the point sequence one has to choose one of the two representations (i) or (ii).

To parametrize (3.1), we rotate the coordinate systern by the angle 8= tan’lB,

with a uniquely determined |6|<7/2. Then point Py becomes

]

( Xo+By, Y9~Bxy ), (6.1)

J1+82 J1+B%




the directional vectors (1, 0) of p; and (ag, by) of p, become

L 1 _B
O ( J1ep? | 1482 ) e

. (a2-§-Bb2 by-Ba, )

JisB2 {1482 (52
respectively, and equation (3.1) becomes
<2 + Dx + Fy = 0, with
D= Esiné/(1+B2), and F= Ecosf/(1+B2). (6.3)

Let the drawing sequence for t be from -co to +co. Then the two parametric

representation of (6.3) are

2

( t: - tLFDt' ): (6.4&)
2 i
(-, - D), - (6.4b)

By (8.2) (i) and the derivatives of (6.4a, b), we know that (6.4a) is the representation
with the right direction at pj. Since py is drawn after Py the x-coordinate of {6.1) has
to be >0. This verifies (3.2) (i).

. Note that in general, two directions (0;1, ﬁl) and (oo, ﬁg) with the same slope are
identical iff aqa9>0, or oy=an=0, and ,81/32>0. Thus, in order for the direction at
Py to be consistent, we need the sign consistency of (6.2) (i) and the derivative of

(6.42). This is the same as (3.2) (ii). (3.2) is proven.




VI.2 Proof of v>0 in (3.5).

No matter which parabola is chosen in (3.5), the point (0, 0) cuts the parabola
into two parts. The parabola constructed by the minus « puts Py and p; on the two
different sides of (0, 0), while the one by the positive v puts the two points on the same

side. Since the former violates the sequence in S, the only valid v is the positive one.

To see this, note that the slope at p=(x, y) on the parabola (3.1) is

-2
Bar (6. 5)

mP:

and the slope of the major axis of the parabola is my=-1 /B. The two parts separated
by (0, 0) are

Partl={ p on (3.1) | mp is between 0 and my }, and

.Part2={ p on (3.1) but not in Partl}. ¢

The proof of p; and B being on the same part iff v>0, depends on two similar cases;
B<0 and B>0. First, suppose B<0. Then my >0 and p beleng to Part 1 iff 0<-B< x/y,

ie., p; and Dy belong to the sarrie part iff (B+x;/y;) (B-{—xj/yj) > 0, which is equivalent
to

1 A >0
Yin i~ 'TYj ’

Since yiyj>0, we must have v>0. Identical result can be proven for B>0.

REFERENCES

{1} T. Pavlidis and S. 1. Horowitz, ”"Segmentation of plane curves,” /EEE Trans. Comput.,
vol C-23, pp. 860-870, Aug. 1974.




[2] J. Sklansky and V. Gonzalez, "Fast polygonal approximation of digitized curves,”
Pattern Recognition, vol. 12, pp. 327-331, 1980.

(3] R: Bellman, "On the approximation of curves by line segments using dynamic
programming,” Commun. ACM, vol. 4, p.284, 1961.

[4] J. G. Dunham, "Optimum uniform piecewise linear approximation of planar curves,”
IEEE Trans. Pattern Anal. Mach. Intell., vol PAMI-8, pp. 67-75, 1086.

[5] D. A. Ballard and C. M. Brown, Computer Vision, Prentice -Hall, Englewood Cliffs,
N.J., 1982, | |

(6} T. Pavlidis, Algorithms for Grahpics and Image Processing, Comput. Sci., Rockville,
Md, 1982.

(7] O. Lozover and K. Preiss, ” Automatic gereration of cubic B-spline representation for a
general digitized curve,” Eurographics (J. L. Encarnacao, Ed.), pp. 119-126, 1981.

[8] M. C. K. Yang, C. Kim, K. Cheng, C. Yang, and S. S. Liu, ”Automatic curve fitting
with quadratic B-spline functiohs and its applications to _computer-assisted
animation,” Comput. Vision, Graphics, Image Proc., vol. 33, pp. 346-363, 1986.

[9] T. Pavlidis, ”Curve fitting with conic splines,” ACM Trans. on Graphics, vol. 1, pp. 1-
31, Jan. 1983. 7

{10] G. Farin, ”Curvature continuity and offsets for piecewise comics,” ACM Trans. on
Graphics, vol. 8, pp. 89-99, April 1989.

[11] L. S. Davis, »Understanding shape: angles and slides,” /EEE Trans. Computers. vol .
C-26, pp. 236-242, March, 1977.

[12] K. Rangarajan, M. Shah, and D. Van Brakcle, ”Optimal corner detection,” Comput.
Vision, Graphics, Image Proc., vol 48, pp. 230-245, 1989.

[13] J. A. Noble, "Finding corners,” Image and Vision Computing, vol 6, pp. 121-128, May,
1988.




Legends for the Figures.

Figure 1. Digitized curve, Minimum Number (MN) Segment Line Fitting, and MN

parabola Fitiing for a Glass (segments separated by colors)

Figure 2. Digitized curve, MN Segment Line Fitting, and MN parabola Fitting for an

Apple

Figure 3. Digitized curve, MN Segment Line Fitting, and MN parabola Fitting for a

Cartoon, Snoopy with a baseball bat

Figure 4. Example of the Flaw When Floating Curves ( Eundpoints of Each Curve -

Section May End Anywhere) Are Used in Digitized Curve Fitting




TABLE I. AN EXAMPLE FOR MINIMUM NUMBER OF PARABOQLIC FITTING

(a) In the Beginning

k= 1 . 2 3 4 5 7 8 g 10 i1 12

=0 0 0 0 0 0 0 0 0 0 0

= 0 0 0 0 0 0 0 0 0 0 0
(b) For poinit 3

k= 1 2 3 4 5 7 s 8 10 1 12

v = 0 0 ¢ 0 0 | 2 2 1 2 1 0

tk- 0 0 0 0 ] 9 9 1211 12 0
(c) At ihe end of the proce;s

k= 1 2 3 4 5 7 3 g 10 11 12

n= 4 4 4 3 3 2 2 1 2 1 0

i‘.L= 4 4 6 7 7 9 9 12 11 12 0
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TABLE II. TEE INTERVAL RANGE OF B

u>0 u< 0 < U U <o

>0 (8-, ) (4, ) (%, )
V=0 (B, w) | (~o0, o) (=00, ~~)
v<0<V (=00, ©0) (=00, ) (=00, o0)

v=0 (-0, =) | (~o0, ) (=, )
V<0 (- | G- | =)
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TABLE TII. COMPARISONS OF LINE AND PARABOLIC FITTINGS

Object Size{corner) Line Fit Parabola Fit
Number Time Number i‘ime
Glass 194 (0) 20 4.99 13 444 .5
Apple 146 (2) 21 -2.58 14 - ' QQT.T
Snoppy 266 (5) 49 3.73 44 210'36.
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