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ABSTRACT

In this report we propose a new technique for calibrating a camera with very high
accuracy and low computational cost. The geometric camera parameters considered include
camera position, orientation, focal length, radial lens distortion, pixel size and optical axis
piercing point. With our method, the camera parameters to be estimated are divided into two
parts: the radial lens distortion coefficient «, and a composite parameter vector ¢ composed
of all the above geometric camera parameters other than . Instead of using nonlinear
optimization techniques, the estimation of « is transformed into an eigenvalue problem of a
8 X 8 matrix. Our method is fast since it requires only linear computation. It is accurate
, since the effect of the lens distortion is considered and all the information contained in the
calibration points is used. Computer simulation and real experiment have shown that the
performance of our calibration method is better than that of the well-known method

proposed by Tsai[8]. -

I. INTRODUCTION

Jr1 The Importance of Camera Calibration

Camera calibration in the context of three-dimensional machine vision, as defined in
Tsai[8], is the process of determining the internal camera geometric and optical
characteristics (intrinsic parameters) and/or the 3D position and orientation of the camera
frame relative to a certain world coordinate system (extrinsic parameters). To infer 3D

objects using two or more images, it is essential to know the relationship between the 2D
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image coordinate system and the 3D object coordinate system. This relationship can be

described by the following two transformations:

(i) Perspective projection of a 3D object point onto a 2D image point — Given an
estimate of a 3D object point and its error covariance, we can predict its projection (mean and
covariance) on the 2D image. This is useful for reducing the searching space in matching

features between two images, or for hypothesis verification in scene analysis.

(if) Back projection of a 2D image point to a 3D ray —— Given a 2D image point, there is
a ray in the 3D space that the corresponding 3D object point must lie on. If we have two (or
more) views available, an estimate of the 3D point location can be obtained by using

triangulation. This is useful for inferring 3D information from 2D image features.

"For the applications that need the above two transformations, e.g., automatic
assembling, gauging, tracking, robot calibration, trajectory analysis and vehicle guidance, itis
essential to calibrate the camera on-line or off-line. In general, the system performance is
dominated by the accuracy of camera éalibl;ation. The trade-off between the accuracy and the
cost mainly depends on the requirements of the application, and in general, the accuracy is

proportional to the cost.

.2 Existing Techniques for Camera Calibration

Many techniques have been developed for camera calibration because of the strong
demand of applications. These techniques can be classified into two categories: one that
considersiensdistortion [2] [8] [9][10], and one that neglects lens distortion [3116117]1113]- A
typical linear technique that does not consider lens distortion is the one estimating the
perspective transformation matrix H[7]. The estimated H can be used directly for forward

and backward 3D-2D projection. If necessary, given the estimated H , the geometric camera

parameters § can be easily determined [4][5]]6].
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Faig’smethod [2]is a good example of those considering lens distortion. For methods of
this type, equations are established that relate the camera parameters to the 3D object
coordinates and 2D image coordinates of the calibration points. Nonlinear optimization
techniques is then used to search for the camera parameters with an objective to minimize
residual errors of these equations. One disadvantage of this kind of method is that a good

initial guess is required to start the nonlinear search and it is also computationally expensive.

A few years ago, Tsai proposed an efficient two stage technique using the “radial
alignment constraint”[8]. His method involves a direct solution for most of the calibration
parameters and some iterative solution for the remaining parameters. Some drawbacks of
Tsai’s method are pointed out in [9]. Our experience also shows [12] that Tsai’s method can be

worse than the simple linear method of [7] if lens distortion is relatively small.

Recently, Weng presents some experimental results using a two-step method[9]. The
first step involves a closed—-form solution based on a distortion-free camera model, and the
second step improves the camera parameters estimated in the first step by taking into account
lens distortion. This method overcomes the initial guess problem in the nonlinear

optimization, and is more accurate than Tsai’s method according to our experiments.

In this report we develop-a method, which not only has the advantage of the linear
calibration method but also maintains the accuracy of those-considering lens distortion.
Section IT introduces the camera model adopted in this report. Section III describes the new
calibration technique. Section IV presents the results of computer simulation and real

experiment, which show the performance of this method is better than Tsai’s method.

1. CAMERA MODEL

Consider the pinhole camera model with lens distortion, as shown in Fig. 1. Let P be

an object point in the 3D space, and ro = (xo yo zo) be its coordinates, in mini-meters
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Fig. 1 Pinhole camera model with lens distortion, where P is a 3D
object point, ¢ and Q' are its undistorted and distorted image
points, respectively.

OCS —— Object Coordinate System (3D)
CCS —- Camera Coordinate System (3D)
ICS — computer Image Coordinate System (2D)

(mm), with respect to a fixed object coordinate system (OCS). Let the camera coordinate
system (CCS), also in mm, have its x-y plane parallel to the image plane (such that x axis is
paralle} with the horizontal direction of the ima ge, and y axis is parallel with the vertical one),

with its origin located at the optical center aid its z axis aligned w1th the optical axis of the lens
(seeFig. 1). Let rc = (x¢ yc zc)' be the coordinates of the 3D point P with respect to the

CCS. Suppose there is no lens distortion, the corresponding image point of P on the image

plane wouldbe Q (see Fig. 1). However, due to the effect of lens distortion, the actual image
point is Q’. Let s; = (u; v;)’ denote the 2D coordinates (in pixels), with reépect to the

computer image coordinate system (ICS), of the actual image point Q' , where the origin of

ICS islocated at the center of the frame memory coordinate (e.g. the origin of the ICS is right at
(256, 256) for a 512 by 512 image).




" As shown in Fig. 2, the 3D-2D transformation from rp to s; can be divided into the

following four steps:

.1 Translation and rofation from the OCS to the CCS

Up, Vo, ‘ ¢’ 931,1}
O, Oy K f t, 2,13
: Il ] : : Xe : Xo
— | Ur ' O ' _ |ur ' = s -
y H v [ v ” H , 2 4 IR 2

- Tf,r“ - —— D | H}(.; <+ T |—
in - _ _in I ‘in _ _in ] _in
pixels minimeters minimeters minimeters minimeters

Fig. 2 Relation between different transformation matrices

The transformation from rp to r¢ can be expressed as

yc=rsx0 +rsyot+rezo+ 1 (1.1)

Xc=Hxpo+tnrnyotrnzg+h
Zc=rxgtrgyotrozo+is

1 0 .0 rirar3ly

‘ 2 om0 = . o — RC tC — Tars 76 b2
or r; Te To with T¢ l: 0 1 r7 18 To I3 (1.2)

- 0001

where tilde (™) denotes homogeneous coordinates [1], t = (1 # 3) is a translation

vector, and R? is a 3x3 rotation matrix determined by the three Euler angles, ¢, 0,9,

rotating about the z, y, z axes sequentially.

.2 Perspective projection from a 3D object point in the CCS to a 2D image point on the

image plane
Let f be the “effective focal length”, and let sy = (uz vg) be the 2D coordinates (in

mimn) of the undistorted image point Q lying on the image plane. Then, we have
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” (2.1)

xc
Urp = f s Vi
zc
Also, we can express this perspective projection in the homogeneous coordinates as

' 1000
s;=HEfc with HE=[01 0 0 (2.2)
001/0
I3 Lens distortion from Q to Q'

For practical reasons, we consider only the first term of the radial lens distortion, i.e.,

{vF=(1—fc92)V'F 0 ETVE (3.1)
or s = (1-& || S'F]| ) s’z (3-2)

where s'r = (u'r v'p),is the coordinates of the distorted 2D image (in mm>. In this report,
g P

x has the unit of mm=—2.

IL4 Scaling and translation of 2D image coordinates
The transformation from s's (in mm) to s (in pixels) involves (i) scaling from
mini-meters tq pixels, and (ii) translation dug, to misalignment of the sensor array with the’

optical axis of the lens. Hence,

w'r = (ur-up) Oy
{V’F = (1-w) 0, 4D
or =TS8 with T =| 0 1/5, v (4.2)
0 0 1

where J, and §, are the horizontal and vertical pixel spacing (mm/pixel), uy and vy are the
coordinates (in pixels) of the origin of the CCS in the computer image coordinate system.
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Using the above notations for camera parameters, the geometric camera parameters 3

=1[t1 t2 t3 ¢ @ v f x 8, ug vol. The vertical scaling factor 4, is not included here
because it is a known parameter when we use a solid state camera — otherwise, only the ratios

f/6, and f/d, can be determined. Combining (1.1), (2.1), (3.1) and (4.1), we have

Xor7 + yorg + zoro + 13

+yora +zors + 11

1 - 102 us—ug)d, = FoL .

(1= k) —ue)d, = L0108 (5.1)
+ -+ + ¢ .

(1 - ko) (v -vp)d, = fOt TYOIS T 2076 T (5.2)

where 0 = |/6%ur-uo)? + 6%vr-vo)?

111. THE NEW CAMERA CALIBRATION TECHNIQUE

Given a set of 3D calibration points and their corresponding 2D image coordinates, the
problem is to estimate {3, the parameters of bur camera model. Instead of estimating 8
directly, we first estimate the coefficient k and the composite parameters ¢ (as described
following equation(10)), then decompose them into B [4][5][6]. Two similar calibration
algorithms are described in this report; one requires a set of noncoplanar calibration points,
and the other only needs coplandr calibration points. While the former require noncoplanar

calibration points, it is more accurate than the latter.

Our method needs initial guess for ug, vg, and §,, which can be easily set as follows.
Let foumers denote the pixel scanning rate of the camera (e.g., feames = 14.31818 MHz for

PULNiIX TM-745E), and fygirizer denote the pixel scanning rate of the digitizer or frame
grabber (e.g., faigiizer = 10 MHz for ITI Series 151). Let 8, denote the horizontal pixel
spacing of the solid state imager (e.g., 8,/ = 11 gm for PULNiX TM-745E). Then a good

estimate of J, can be obtained by the following equation
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511 = 6uf fcamem . (6)
[ digitizer

The other two parameters (i, Vo) can be temporally set to (0, 0), refer to [8], if no other

reliable informations about them are available. More accurate estimates of the three
parameters can be obtained with our calibration procedure, which can then be used as a

better initial guess iteratively. If the amount of radial lens distortion is small, say
|€| = 0.0008 mm™2, and the computational speed is not of the main concern, then

another two or three iterations can give even higher accuracy according to our experience (see

Fig. 9).

Hereafter, for simplicity, we willuse z, v, x, y, z todenote u;, v, xo, Yo, 2o,

respectively.

II1.1 The new camera calibration technique using noncoplanar calibration points
Rewrite equation (5.1) and (5.2) as

e 71f/dy
Ou
(1—x92)(u—ug)[1ft y z 1]|E§ ='[x y z 1] ngau (7.1)
_ - s .
:" _ l-rT r4f, / dy
(1—ICQ2)(V—Vo)[x y z 1] ;2 =[xyz 1] ;j;g: (7.2)
s 12f/3
From equation (7.1) we have
rif/0u
. r r rof 6y
(-ug)x y z 1j ,t,g ~ kXU -uglx y z 1] rg =[xy z 1] /0 | 8
b e /3.




which leads to

rif /0y + riug

rof /0, + rsu ' 7
ey z 1] r%éu +r2uz + [Fux —wy -uz —u][ié] + K@M -uglx y z 1][521 =0. (9
tlf/du + fup 3 3

Similarly, from (7.2) we have

ref /6, + rg

r5f{0y + r3vg I < 5 8|
[k y z 1] v /6, + rove +-w -wy -z v]l?% + kQ*v-vo)x y z 1]];;] =0. (10)
tf [0y + tavg 3 £

rjf/du + rqug ref/ 6, + rwvg
raf /8y + rsug rsf/ 8y + revg 8 1
= P, = = = .
Let Py rif /8y + roug|’ 2 ref/6, + rovp!’ P3 = |ry)s and ¢ 11:3
1f/0u + t3uo tof 0y + tavg 3

Then using (9) and (10), for all 2D-3D pairs, we have

J;j_};jz.ji(‘)OOO Py
000O0xyz 1| P2

--------
--------

=ty - Uy —ug; =~
—VXj —Vy; —Vgj —Vi| 3

L @ u0ej (- uolepy; (@i uolejz; (-1 H w

3 3
Wi-voers ©i-voed; (vi-voefz (-volef 0

with

Q)?' = 5ﬁ(uj— u())2 + d%(vj'—va)z .

Define




%%2%10000 B o |"E W -
0000xy 21 “VR VY VR Y
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.......

(- u0)gPy (4~ uo)oyj (- uo)ofz (j-uo)ef

C s
wi-voor i-voed (vj-vaeiz (v-vo)e}

1]

1]

P [11:;]/ |Ps] and q =P3/[P3]. (12)

In practice, the image center (uﬁ, i)g) is _relat:ively small comparing to almost all the
image feature poin.ts (u ;,vj), and the estimafé 'of. d, obtained by eqﬁation (6) is usually quite
accurate. Therefore, in the following computation we can use some initial estimates of ug, vp
and J, in the matrix C asif they were the true values. The perturbation of the matrix C caused

by the estimation error in &y, vp and 8y is negligibie in general, since « is usually very small

and the perturbation of the matrix C times « in equation (11) is trivial. In other words, the
less the amount of the radial lens distortion is, the better the performance of the proposed

technique will have.

Since the 2D observation noise always exists, equation (11) will not be exactly zero, i.e.,

AAp+Bq+1ch=e;é0. (13)

Hence, the parameters to be estimated, £ and ¢ (or equivalently, «, p, and q ) can

be computed by minimizing the following criterion E with respect to «, p, and q:

E =} Ap + Bq + «Cq |7,

subject to the constraint: || q [?= 1.

To minimize E, we form the Lagrangian
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L =|Ap + Bq + «Cq [P + 41 q ), (14)

and set 3L/dp = 0, 3L/dq = 0, 3L/04 = 0 and aL/9x = 0, which yields

19L

~2" = A'Ap + A'B ‘Cq = |
o p + ABq + kA'Cq = 0 (15)
1 3L t I3 l t
) —Z—E = B'Bq + «*C'Cq + B'Ap + «C Ap + kC'Bq + «B'Cq-Aq = 0. (16)
1oL _ i t tct
_z_%quAp+qC‘Bq+fchCq=0. (17)

From equation (15), we have

P = - [(A'A)A'B + x(A'A)AC]q . (18)

Substituting (18) into (14), (16) and (17), we have

L =q[D-21q +4, (19)
1L
~ = = [p-Mq =0, 2
23q ~ D~ Hla=0 (20)
14L _
e qf«T + S/2]q = 0, _ (21)
where D = [T + 48 + R|, (22.1)
R = B'B-BAAA)A'B, T = C'C-CAAAYIAC, (22.2)
and S = C'B- C'A(A'A)'A’B + B'C - B'A(A'A)1A'C. (22.3)

Notice that A is the eigenvalue of D, and that L |&_g&.g2-q = 4,1e., the minimal
p ]

1K

residual error is Apin = min{eigenvalues of D}. Givena &, Dis uniquely determined and so
is the minimal residual error, Ayin(x) . When there is no 2D observation error and the initial

estimates of ug, vy and &, are accurate, the minimal residual error, Amin, is equal to zero.
Then from (20), we have

~11 -
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T[D-0lq = [ + «T8 + T'R|g = 0. 23)

It follows that

xlxq) = [— TR “T'IS][A%] - (24)

and «q) = [0 1][,:{1] . (25)

It is now obvious that « is the real eigenvalue of K where K = [_ ,191R _ '1{1 S] ,

since x[qul _ K[&[] : (26)

But in practice, no real « can be found by solving the eigenvalues of K, i.e., we will
usually obtain a complex (impractical) « that makes the residual error equal to zero. In our
experience, we can choose to use the real part of the eigenvalue with the smallest absolute
imaginary part as an estimate of «, denotedas & . Of course, we canuse & as the initial guess,
and perform the one dimensionatnonlinear search to find the optimal « . However, since the
£ is accurate:: enough; the nonlinear search shows little gain according fo our experience.

Therefore, we omit the nonlinear search in the calibration procedure. Once £ is

| determined, the vector q can be obtained by selecting the eigenvector corresponding to the

smallest eigenvalue of the matrix [IEQT + &S + R].

Substituting q into (18), we then have p. Using the fact that the nine r/s, in ‘the
definition of Py, P, and P3 are components of a rotation matrix, we can decompose the vectors

p and q, and obtain the parameters Rg, tl; Iy, t3, foug,vp and &, given O, , refer [5] and [6],
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111.2 The new camera calibration technique using coplanar calibration points.
When only coplanar calibration points are available, the whole calibration procedure is

similar to the one that uses noncoplanar calibration points. But the decomposition of the

parameters should be done carefully since the estimated results are more sensitive to noise.

Without loss of generality, we can choose the x -y pl-ane of the OCS to be the plane where the

calibration plane lies on, and all z’s in equation (7) vanish, thus

7] [r1f/ 0y
(1-kgHDu-uge y 1|78 | =[x y 1]|rf/0, (27.1)
- |73 ] 11/,

77 r4f/5,
(1-xd-volx y 1] | = ey 1)|rsf/3, (27.2)
| 73] t:£/6,

Similar to section I11.1, we define

-,
=0
n

rof [0, + rsug|, Pg = |rsf/0, + rgvol, Pg =
tlf/au -+ t3tg tgf/av + t3vp

rif/u + rug raf /0y + rivg 7
-

i and we have

\ 1000 P‘f N -L'tf'TCj —L.zyj —‘u,- pC
j 00 Oijj 1 =V =V =vif3

------

. (- ugolx; (j—uo)opy; (u;’-ucn)é??-2 pC _ 0 (29)
(i-voeR (vi~vo)od; (vj-vo)o! ?

To estimate the parameters of camera, the procedures similar to section III.1 are

repeated, except that the definitions of matrix A, B, C should be replaced by

~13 -




Gy LO0OI oo |-u -wy -y

AC =
000xy 1f VR VY VP
€ = (uj-ﬁo)@%tj (w5~ 10)07y; (uj— )3

~ -~ ~ Py ~ ~ »
©j-Y0)0% (i-0)dd; (j-vo)o?

and the decomposition procedure should be modified as follows. Suppose that the estimated

composite  parameters are P} = t3'[a1 a2 @3], P =1t3[as as ag]’ and
P;C = t3'[a7 ag 1}, where a;,i = 1...8, are real numbers. Substituting these values into

the definitions of P{, P§ and P§ , i.e. equation (28), we have the following eleven equations of
2 3 q

eleven unknowns:ry, ry, r4, 75, 7, 73 1, t, 3, Oy and f,

[r1 = (a1-amg)duts/f
rz = (a2 - agup)dyts/f
1 = (a3 -up)o,ts/f
ra = (a4—app)dyts/f
rs = (as—agvp)Oyts/f

{ 2= (a6-vo)outs/f (30)
Fy = aqt3
rg = asi3

r+r+r=1
-BAr+r=1

. (Firs trgs +rarg = 0

where the last three equations are the constraints of a rotation matrix. Substituting the first

eight equations fo the last three, we have

(@1 - amuo)? (as—apyp)? a3 | [@uts/f)? 1
(a2 - agug)? (as - agvg)? a || G| = [ 1 :l . (31)
(a 1—= a7ug)(a2 — agugp) (614 - a7v0)(a5 - agvy) ang t%

By solving equation (31), 3, &, and f can be found, since they are known to be positive

numbers. Knowing the three values of t;, '8, and f , all the extrinsic parameters in equation
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(30) can be easily obtained. Finally, the last column of the rotation matrix can be obtained by

calculating the cross product of the first two columns, i.e.,

73 r 2
fel=|ra| X |7s54. (32)
79 r7 rg

IV. EXPERIMENTAL RESULTS

In this section, we will show some experimental results obtained by both computer
simulations and real experiments. To evaluate the accuracy of the camera calibration for 3D

vision application, it is necessary to define certain kinds of error measure. The measure used
in this report is the 3D angular error, i.e, the angle < POP’ showninFig. 3, where P isthe 3D
test point, O is the estimated lens center, and OP' is the 3D ray back projected from the
observed 2D image of P using the estimatéd camera parameters. A 3D angular error of

0.005° is roughly equivalent to “1 part in 10000, because #an(0.005°) = 1/10000 .

For convenience, let Br., f7, and Sy denote the estimate of § obtained respectively
by our algorithm, Tsai’s two-stage algorithm[8], and Weng’s two-step nonlinear algorithm

1 Front Fmage Optical Axis
: Plane P

P
.-b 3D object point

Estimated Lens Center The 3D Angular Error (in degrees)

The 2D Prediction Error (in pixels)
Fig. 3 The definition of 3D angular error.
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(only radial lens distortion is considered)[9]. To compute fr, and Sr, itis required that uy

and vy are knowna priori. In the experiment we can set the initial value for uy and vy to be
zero, and the initial value for 8, is 8, - feamera/Tuigitizer » fOT the reasons explained in section
III. The image size is 480 x 512 pixels. In the simulation, the synthetic camera is assumed to
have the true focal lengthf = .25 .85 mm, and J, = 15.66 um, §, = 13 um (the initial value
for g, issetto be &, - feamera/faigitizer = 11 pm*14.31818 MHz/10 MHz, which introduces

about 0.58% error for §,). We also assume the 3D positions of the calibration points are

known exactly, and the only source of measurement error is the error in estimating the image
coordinates of the cahbratlon pomts 1.e., the 2D observatlon error. Each data shown in Figs.

4,5and7- 15 isan average of ten random trials. Let ¢’ denote thie standard deviation of the

2D observatlon error.

IV.1 Performance of different techniques using noncoplanar calibration points.

The first experiment is to determine a proper number of calibration points. In the
computer simulation, it is assumed that a camera with small radial lens distortion (eg. £ =
0.0003, which corresponds to roughly 2 to 3 pixels near the four corners of the image) is to be
calibrated, and o is assumed to be 0.1 pixel. Fig. 4 shows how the 3D angular error decreases.
as the number of calibration points, N, , increases. When theA riumber of calibration points
is greater than fifty, it shows little gain to increase Neaip - Therefore, we choose to use
Neaip = 60 in the following experiments. Fig. 5 shows the results-obtained from a real
experiment. With a PULNiX TM-745E camera, and an ITT Series 151 frame grabber, we
took 21 images of a moving calibration plate having 25 calibration points on it, which is
mounted on a translation stage. One image was taken each time the translation stage was

moved toward the camera for 25 mm. A typical image is shown in Fig. 6. Thus we have

21 x 25 = 525 pairs of 2D-3D coordinates of control points, We randomly choose N,
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Noncoplanar Calibration points
Computer Simulation: ¢ = 0.1 piel, « = + 0.0003 mm™

Br: Tsai's method
Bre: Our method
Bn: Nonlinear method

A AR

3D angular error (in degrees)

]

0 . T T | T [ T T T T T T _ T
0 20 4o 60 80 100 120 1ho 160 150 200
~ Number of calibration points
Fig. 4 3D angular error versus the number of calibration points
Noncoplanar Calibration points

0.014 Real Experiment

0.0124

0.010 | %f- ' Br: Tsai's method

' Bre: Our method

vt Nonlinear method

e A L o bt

3D angular error (in degrees)

0 20 40 60 80 100 120 140 160 180 200

Number of calibration points
Fig. 5 3D angular error versus the number of calibration points

points from the 525 2D-3D pairs to calibrate the camera and use all remaining points to test

the calibrated parameters. Since the 3D coordinates of the test points used in the real
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Fig. 6 A typical image of the calibration plate containing 25
calibration points used in the real experiment.

experiment also contain errors, the computed 3D angular errors are larger than those from the

computer simulation.

Next simulation shows the deterioration of the three calibration techniques as the 2D
observation errors increase'(see Fig. 7). The 3D angular error of Tsai’s technique is always
greater than the other two. This i;partially because, each 2D-3D pair of the calibration points
contributes only one equation when using the radial élignment constraint[8], wlﬁle the other
two techniques use both the horizontal and vertical components of the perspective projection
relation and each 2D-3D pair contributes two equations in the minimization. Another reason
is that the Tsai’s algorithm[8] does not estimate the image center. While the image center
could be estimated via a separate procedure depicted in [9], we had not implemented that
image center estimation algorithm. Instead, we showed that, given the same guess for image
center, our method has better performance than that of Tsai’s ﬁlethod. When given more

accurate image center, both Tsai’s and our techniques obtain better results, but our method
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Noncoplanar Calibration points
Computer Simulation: N, = 60, « = -+ 0.0003 mm>

0.020

0.015- o

3D angular error (in degrees)

0.010-
_MMM'
_ ,,.,M“M : Tsai's method
™ ' Bt Our method
0.005] o ) Bre: Our metho
esstnss Bx 1 Nonlinear method
0 T | T I T | T I T | T I T | 13 I T | T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Standard deviation of 2D observation noise (in pixels)
Fig. 7 3D angular error versus the 2D observation noise

still perform better than Tsai’s does. Sometimes, our method even has better performance

than Weng’s method, because Weng’s method can be trapped in a local minimum.

In the third experiment, we set the 2D observation error ¢ = 0.1 and the number of

calibration points Ny = 60, and observe how the 3D angular error varies versus the radial
lens distortion coefficient, as shown in Fig. 8. Notice that both Tsai’s ( Br) and our method

(Bre) degrade:' when « becomes larger. This is caused by being given a wrong image center.
Also, Fig. 8 displays a phenomenon that we have predicted in section I, i.e., our technique
will have better performance when the radial lens distortion is smaller. When the givenimage
center is not accurate and x > 0, our technique tends to over-estimate the «. Thus for a
positive and large K; (rare in practice though), our technique may give a worse estimate than

those given by others if the initial estimate for the image center is not good enough. However,

in the application of computer vision, we often choose to use a standard lens (lel =0)ora

wide anglelens (« < 0),rather thanalenswith « > 0. Therefore, the proposed technique is
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Fig. 9 3D angular error versus the radial lens distortion coefficient

suitable for most 3D computer vision applications requiring high accuracy. Using our

method, the calibration procedure can be executed iteratively by substituting the originally
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given image center (ug,vg) and d, with the newly estimated ones. The first three iterations

are shown in Fig. 9. Notice that the performance of the nonlinear method that typically needs
40-100 iterations is sometimes even worse than that obtained after the second (or the third)

iteration of our method.

The forth simulation shows how Tsai’s method and our method degrade as the error of

the given image center becomes large. In this simulation, the true image center is

(Rcenterc0s(), Rcentesin(a)) , and the a priori given image center is set to (0,0) . Each data
: point shown in Figs. 10 and 11 is the average of forty random trials, ten for each angle of

a ==x45 + 135. Notipg t_h_at when the given image center is less accurate, both Tsai’s (fr)
| and our m_ethdd (BL <) de grade'"m.or‘e when « becomes Iargef. If we use the true image center

for the simulation, then the two curves corresponding to Ar and By, will be quite flat.
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Fig. 10 3D angular error versus the radial lens distortion coefficnegt: )
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Fig. 11 3D angular error versus the radial lens distortion coefficient

IV.2 Performance of different techniques using coplanar calibration points.

In section II1.2 we have proposed a method for calibrating a camera using coplanar
calibration points. Since the calibration technique using coplanar calibration points
(coplanar technique, for short) behaves quite differently comparing to that using noncoplanar
one (noncoplanar technique, for short), we discuss the experiments about coplanar

techniques in this section. We set the 2D 6bscrvation error ¢ = (.1 and the number of
calibration points Nz = 60 for the following experiments. It should be emphasized that
both Tsai’s and our coplanar techniques do not estimate the image center, but our method

gives an estimate of J,, while Tsai’s method does not.

We first show that our coplanar technique is more sensitive to the given image center

comparing to Tsai’s coplanar technique. In this simulation, the true lmage center is
(Rentercos(@), Riemersin(a)), while the image center given to the algorithm is (0,0). Each

data point shown in Figs. 12 - 14 is the average of forty random trials, ten for each angle of
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Fig. 13 3D angular error versus the radial lens distortion coefficient
using Tsai’s method with true §,

a =+ 45, + 135. Fig. 12 and Fig. 13 are the results obtained by using the true &, ; Fig. 14
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and Fig. 15 are obtained by using equation (6) as an estimate, which has the relative error
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about 0.58%, of J,. Notice that our coplanar technique is more robust when the given

estimate of the horizontal pixel spacing d, is not exactly the true value, while Tsai’s method is
more robust to the deviation of the given estimate of the image center (ug, vg). The former is
because we estimate §,, and the latter is because what we obtain from our linear calibration

procedure are the composite parameters. The composite parameters are the redundant

-

combination, of the real parameters, which means an erroneous combination of these
parameters can still make a good fit between experimental observations and model

prediction[8}].

Also, it is interesting to notice that the Tsai’s coplanar technique has the performance
which is almost equal to the Tsai’s noncoplanar technique, if the given &, is accurate (see Fig.
13). However, the performance of Tsai’s coplanar technique is sensitive to the accuracy of the

given , (see Fig. 15,2 0.58% error of 8, will induce a large error on the calibration result).
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[1]
[2]

Each curve in Fig. 16 is an average of the four curves in each of the four figures from Fi g.
12 to Fig. 15. This figure shows that, unless we have an a very precise estimate of Oy [10], it is

better to use our calibration technique even when only coplanar calibration points are

available.

V. CONCILUDING REMARKS

In this report, we have described a ‘new camera calibration technique which is
computationally fast and can achieve very high calibration accuracy for 3D computer vision
applications. Our method is fast since it requires only linear computation and dces not
require any iterations. With a SPARCstation, the computation for the calibration can be done
within a fraction of second. Moreover, our method can achieve very high accufacy for 3D
estimation (i.e. small 3D angular error) because the effect of the lens distortion is considered
and all the information contained in the calibration points are used. We have shown that our
new noncoplanar calibration method can achieve the 3D angular error of 0.005°, or the
accuracy of 1 part in 10000 in 3D measurement. This means that we will make only 0.1mm
of error in 3D position estimation when the object is one meter away from the camera. For
practical reasonable lens distortion, our linear method is good enough for almost all the 3D
applications, and further nonlinear iteration is not necessary. Also, it may not worth the
efforts to increase the calibration accuracy using nonlinear minimization techniques unless

we can increase the accuracy of 2D feature extraction accordingly.
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