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Abstract : _

The use of statistical analysis in line detection is necessary because of noises induced
by signal amplification, and random variations due to the microtexture of the object
surface. In this paper , we first derive two likelihood ratio tests for detecting a line in both
gray level and binary images. These tests have some invariance properties. We also present
some experimental results of detecting a line in the simulated image and also an edge line
in the real image to demonstrate the usefulness of the tests. Then extensions of these tests
to detect a parametric curve or a general shape are discussed in detail. Finally, a cBmplete

analysis of Bayesian approach to line detection , particular in normal distributed case, is

carried out successfully, and practical considerations of the whole theory are discussed with

a conclusion that the theory is realistic and can be applied in many practical situations,

and in some cases better than Hough transform.




Indez terms — Line detection ‘and estimation , Simulation , Likelihood ratio test ,

Bayesian analysis , normal and binomial distributions .




1. INTRODUCTION

Line detection plays an important role in image analysis. If the imagé background is
fairly uniform with little variations and the signal of a line is significant , then we can filter
the image and use some heuristic methods ( e.g. the Hough transform ) to detect a line.
But when the image background is pretty complicated ( e.g. just like a wire passing
through a forest ) then detecting a line is a difficult problem and it is a challenging
research topic. When the image background is not very complicated but corrupted by
noises, which can be modelled statistically, then we can develop a statistical line detection
theory and this is what concerned in this paper.

The use of statistical analysis for line detection is necessary because of noises
induced by' signal amplification, and random variations due to the microtexture of the
object surface. In a recent paper by Hunt, Nolte and Ruedger [1], the authors try to
develop a statistical detection theory on line detection and relate it to _Hough transform.
However, the model they have developed is clearly incoxﬁplete and not adequate in the case
of normally distributed observations. Hence the explanation they made for the
relationship between the statistical detection theory and the Hough transform is
uﬁsatisfactory. We know that- the Hough transform has a serious quantization problem
when the image is associated with noises and is not capable of detecting short line segments
when noises are present. Therefore a ﬁgorous statistical theory of line detection is needed.
Here we try to develop a theory based both on the likelihood ratio test and Bayesian
analysis. |

The likelihood ratio tests are in general consistent [2] and yield sensible good tests.
Unfortunately, the likelihood ratio tests we developed here for line detection are clearly not
 uniformly most powerful anri also not consistent , but they are reasonable and have
intuitive meanings and some invaﬁance properties. The power of these tests depend heavily

on the mean difference between the line and the Background, and also the variance of the
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noise. These tests are similar to Hough transform in that all possible line segments need to
be computed, but there are differences when compared to Hough transform , for example ,
complicated statistics are computed, other than just counting the number in each cell. A

statistical decision rule is given to decide if a line exists or not, wheréas the Hough
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transform can not make a decision like this because of noise corruption. A good survey of
Hough transform is given by Ilingworth and Kittler [3]. In this paper , we also conduct
some experiments for line detection both in simulated images and real images and the
results are quite successful. This shows that the likelihood ratio tests are reliable.
Extensions to detecting a .general curve or general shape are discussed in detail.
These reveal that our method is similar to template matching for images taken with
negligible noises and unstable lighting condition , where the correlation coefficient is used
as a matching criterion. Subsequently, a detail analysis of Bayesian approach to inference a
line is given and a complicated decision rule is derived for the case of normal (Gaussian)
observations . Finally, practical considerations and discussions of the whole theory given
here are presented and a conclusion is drawn that the theory is realistic and can be applied

in many practical situations, and in some cases better than Hough transform .

2. THE LIKXELIHOOD RATIO TESTS FOR DETECTING A LINE

Suppose we are given an image containing noises and only a straight line passing
through it. We try to develop a statistical model to detect and locate the line. The problem

" will be discussed in two cases : the gray level case and the binary case.

1. The gray level case. Let the image { Xj; | i=1,...,m ; j=1,..,n } has an

uniform background added by Gaussian white noises (i.e. independent identically normally
distributed data), and a line (white or black or gray) passing through it. Let ejj's be
independent norma.ﬂ;f distributéd with mean 0 and variances o?, which is unknown,
i=1,...,m ; j=1,..,n. Let u; be the unknown uniform background intensity and us be the

unknown line intenéity. Then the line detection problem can be formulated as the following

—d—




hypotheses testing :

Hy : Xij=m+ €j, ' Vi,j and g; unknown,
Hi: Xi5=p+ S35+ €35, Vi,j and
p2 (unknown and nonzero) , if (i,j) is on theline Lj:
Sy = .7 = tcosl + Hind, where -y and # are unknown and quantized,

0 , otherwise.

Testing H, against H; using likelihood ratio criterion is developed here. The

likelihood function under Hy is given by
L(, o0?] Ho) = (21007 ™ Zexp{—1/(2002) B8 Xsy—) 7} ,
and the maximum likelihood estimates of u; , 0p? are

0'02 = Ei}lj (Xij —X)2 / mn.

Under H;, the likelihood function is given by

Lgy p ob Li | H) = (2n08) ™2/ exp{-1/2a)] 3 Ef, (Xip)? +

J E]J_' Xu'"#l—#z) 4}

The maximum likelihood estimates of parameters s, p2, 0%, Ljare:




—_
[;,\1 =Xx = . f. Xij / (mn—k), where k is the number pixels in L,
1 J

=[ E E]]J(XIJ ﬂ1)2+ Ej E]J.,(XU #1 #2)2]/1011:

-~
and Lj is the L; that maximizes L(ﬁ\l ffg ,92 L1 | H;) . Please note that L,

corresponds to the unknown parameter (,d). Then the likelihood ratio is

A
L( Ayhno?, Ly | Hy ) i mn/2
A= = max (— .
WM 62| B ) M@
_ "~ _ A  k{mn-k} _ _.,
However, mnop? = 2:5j (Xi — X )2 = mno? + ———— (Xx — Xk)? , and hence the
mn
likelihood ratio test is
— —
Xk — Xkl
reject Hy  if W2 = max > fu ,
~
mn—k k

~
-where ¢_1is the critical value at level x ,and ¢? is modified to be

1
mn—2 (i, _] ]1., (i,) EIL

an unbiased estimate of ¢ under Hj. The critical value § can be determined from the




distribution of W2 statistic under Hy. However, there is no theoretical way of computing
the distribution of W2 statistic except by computer simulation. The simulation process is
described as follows . First, generate the random normal data as the image background by
Box—Muller transformation [4,p.86] of the uniform data , generated on VAX-11/8530 by
RANDU routine . The uniform randomness of the data is tested by Kolmogorov—Smirnov
test. The simulated image’s resolution is set {0 be 100x100 . An algorithm is developed to
generate all straight lines of two pixel width and of different values of (7,6). Having
generated all 100x100 normal data with zero means and variances one ,the quantxty
]Xk—Xklﬁ/ [02 (1/(mn—k) 4 1/k)] is computed for each line L; which contains tota]ly k
pixels,k > 6. Then the maximum is found over all (7,#)’s. This process is repeated 500
times and the distribution of these 500 valﬁes of W2 is plotted in Fig. 1. The critical

values are listed in Table 1.°

o .10 | .05 1 .01

3

Table 1. Critical values of W2 for 100x100 image. _
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x

19.95 l 21.24 ‘ 23.98 -

[=]
)
1

Probability

0.14

Observation
Fig 1. The distribution of W2 for 100x100 image.




For an input image with Gaussian background, we can make a decision whether
there is a line in the image or not ,B’y checking its W2 value . If W2 > £ ,then a line is
present in the image and its location is the value of (7,0) that gives this W2 (or the
maximum of |Xk—Xk|2/ [02 (1/(mn—%k)+1/k)].

Now question !! Is the decision W2 > Eu invariant under the translation and
scaling of the observations? That is, if we have another image with different contrast or
brightness will the decision be unchanged 7 The answer is yes by looking at |5{k—)—{;]2 and
32 . However, this likelihood ratio test is clearly neither uniformly most powerful nor
consistent [2]. The power of this test depends on the mean difference between the line and
the background ,and also the variance of the noise (i.e. |u| / ¢). If a line falls on the
central region of an image then the test has higher power than that falling near the
boundary region. If a line consists of very few pixels , then unless the value of |u;| / o is
large, the detection will probably fail.

Experiments on real and simulated images are conducted to verify our proposed
decision procedure. First, three simulated images, resolution 200x200 , each containing a
line of two pixels wide (=75 , §=20), are generated and shown in Fig.2 . The background
data are normally distributed with mean 128 and variance 25. The mean difference between
. the background and the line (i.e. |ug| ) is 20 in (a), 40 in (b), 60 in (c). Since each image is
of size 200x200, we have to divide each into 4 subimages of 100x100 and run the likelih(z)od
ratio test on each subimage. The results are shown in Fig.3, where (a) corresponds to
Fig.2(a) (|p2]=20), (b) to Fig.2(b) (|ua|=40), (c) to Fig.2(c) (lus|=60). The first two
maximum W-squares in (a) or (b) have values less than ¢.40 = 19.95 indicating that mo
line in the corresponding subimages. The rest two maximum W2 in (a) or (b}, having
significant values greater than £.;, reveal that there are lines in the'corresponding
~ subimages, and the (7,6) values of corresponding lines are (45.48,19) and (10.64,20) in (a),
and (44.99,21) and (10.64,20) in (b). Note that , because the center of coordinate system is

moved to each subimage’s center, so the 7 values of lines are different in all subimages. The
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original & is 20 and two estimated s are correct, which corresponding to subimages with
long lines. The other two estimated t’s are 19 and 21, pretty close to 20, which correspond
to subimages with short lines, and the little error is due to quanﬁzation error and two
pixels wide line.

Secondly, two real images of 200x200, each containing-an edge line, are taken and
shown in Fig. 4(2). Sobel operators are used to find the edge strength of each pixei and the
results are shown in Fig. 4(b). Then each edge map is divided into 4 subimages of 100x100
and each subimage is tested to see whether a line exists. The results are shown in Fig. 5 ,
where 5(a) corresponds to the left image of Fig. 4(b) and 5(b) to the right image. All the
subimages contaﬁning an edge line segment give very high W2 values, indicating that
existence of a line is highly significant. Those regions containing no line segment have low
W2 values, smaller than critical value £.1o except one with W2 = 26.89 which is significant.
By checking the subimage with this significant W2 value, we see that the exception is due
to the texture of background where significant line segments exist. After all, the estimated
value of € in the left image are 170,' 171 ,which are all right, and 13, 11, 11 in the right
imagé . The error is still small so we can make a.conclusion that the tests are all
successful. '

2. The binary case. -Let Xj’s be independent Bernoulli distﬁbuted B(1,p); pis
the probafbili,ty of success. Xj; has value 0 or 1 for all i,j . In general , the image
background has sparsely distributed 1’s, and the line, if exists , has densely distributed 1’s,
or vice versa, Thus to detect a line in such a binary image we can set up the following two
hypotheses :

Ho: Xi;~B(1,p0),Y1,j, pounknown,

Xij~B(1,pe), if (i,j)#Ls: an unknown line,

Hl :
Xij~B(1,p1), . if (1,j)eLy, ps unknown and pi#ps,




and try to develop a test statistic to test whether Ho is true or H; is true. If H, is true we

then locate the line. As before, we compute the two likelihood functions :

(1) L{pe|Ho)= II p)o(ii(l _po)l—Xij = pOEiEj Xy (1—po) ™R = 2% Xy ,
ij

and the maxdmum likelihood estimate of pg -,under Hy,is

A EiEj Xij

po=— 1 78 %
Inon
(@) Lpopuli [E) = 0 p Fii(r-p )% m  pXiigp yl¥is
(4,5)#L1 (1,3) €Ly !
B Xy (mek) D% Xy 3B Xi ok (fj@)fu

(13.]) 1 (1 po) ( :J)ng . (IIJ)ELI (]__ P)

1

where k is the number of pixels in L;. The maximum likelihood estimates of po ,py ,L; are

Ve —1
P 2:12J Xaj/(mn—k)=Xk ,

0" (i,3)EL |
D= B3 Xi/ k=X,
P = &5 1_]/ )
L(i,i)€el
~
Lis the L; that maximizes L(po,pI,Ll | Hy). -

The log likelihood ratio is

~ AN
'1 \ : L(po,p1, L1 | Hi)
og A =max log
Ly L(Po | Ho) .,
pu— | j— | r -— _
= max{ (mn-k) ]| Xklog(Xk/ %) + (1-Xy )log(1=2%) |
Ly 1—-X

+ [ Bilog(Xi/X) + (1-Kx) log((1-Xi)/(1-X)) I}
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We reject Hy and accept Hyif log A > (;“m ,a critical value. The problem associated

with this testing statistic is " Does the invariant property still hold, under translation and
scaling of observations 7 ". Because there is no easy way to ﬁﬁd an invariant testing
statistic, we check this by simulation. Using simulat'ed 100x100 images, under null
hypothesis (i.e. pp = pi), log A's are calculated 500 times for a fixed py , and the
corresponding critical values are extracted. Table 2. summarizes these critical values at
different values of py. From this table .we see that these critical values are diﬁ'erent, but
not far apart at each fixed type I error x. We conclude that there is no significant evidence
to prove the invariance of log) statistic , under different values of py. But here we will
take the risk and use the average of critical values. Also the simulatéd density plots of
log A for p¢=.2,.5,.8 are shown in Fig. 6 where 6(a) has bandwidth 15 and 6(b), 10.
From these plots we see that the densities of different py’s are nearly the same. Note that

Jin our simulation process ,we adopt the same random number sequence for all cases.

Po\x .10 .05 .01

.2 10.25 10.96 12.19

.3 9.84 10.51 12.13

A4 9.77 10.22 12.02

5|0 10.07 - 10.92 12.07

.8 10.24 10.98 | 12.73
Average 10.03 10.72 12.23 N

Table 2. Critical values of log A .

A simulated 200x200 binary image containing a line, two pixels wide, is shown in
Tig. 7(a) where po= .3, p1 = .8, 7= 75 and 0 = 20 . This image is divided into 4
subimages of size 100x100 and the likelihood ratio test is run on each subimage. The test

results are shown in Fig. 7(b). The first two subimages have log A values less than the

-
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average of £.q0 = 10.03 ,indicating that no line is in these subimages . The other two
subimages have log A values far greater than the average of {.o; = 12.23 , indicating that a

line passes through the corresponding subimage. The estimated (7,d)'s are correct and

consistent with the normal case shown in Fig. 3 .
3. EXTENSIONS TO GENERAL CURVES AND SHAPES

We have developed two statistics to detect a line in an image with uniform noisy
background. Each statistic needs computing the maximum value of certain functions over
all possible lines i1; the inl1age.' Clearly, the maximum operation can be extended to all
parametric curves or nonparametric curves without changing the formulas. For example ,
if the curve to be detected is a parabola , then all possible parabolas inside the image are
lcoxisidered, and all possiblne parameter values of a parabola are searched. If the curve to be
detected is a square, then we have to consider all possible squares by tramslating, rotating,
and scaling a standard square. Formulas for these statistics are unchanged but the
distribution of each statistic will be changed and so will be the critical values. This is the
main shortcoming of statistical approach compared with the Hough transform. In fact, the
statistical method presented here is similar to ‘template matching where the correlation
coefficient is used as a matching criterion, under negligible noises and unstable thting.

In the case of slight variations of positions of line pixels, we can 'consider searching
lines with two or fhree pixel wide in evaluating ik . This will improve the det?ection
power. If there are n lines to be detected , then we have to comsider all possibl-e
configurations of n lines which tends to have exponential complexity. If only one line
segment is to be detected then a hybrid method , by looking at a small window and using

.

some heuristic ideas, may be more reliable and efficient.

12—




4. BAYESIAN INFERENCE OF A LINE

Let an image be represented by a set of random variables { Xj; | —m <i{ m,~n <}<
n}, and the parameter space (7,x) of a.'h'ne, represented by v = icosx + Fin« , be quantized
into discret;a values { (1,an) | 0< en < 27,0< M ¢ (m2+n2)1/2, =1,...,b; k=1,...,a}. The
image is said to have a line L(7,a) located at (7,@) , if X55 ~Fy(x|6y) for (i,j) £ L(7,@) and
Xij o~ FQ(X|02) for (i,j)eL(v,a) , where Fy(x|0;) # Fi(x|f2) and 0,0, may be
multidimensional parameters (known or mknoﬁn). We shall consider the sifuation .in
which F; and F, have known functional forms, but the location (7,0) of the line L is
unknown. Given {X;;'s}, the problem concerned is that of making Bayesian inference about
(ha). |

Assuming that the distributions Fy(x|6;) and F(x|0;) admit densities pi(x|0;) and

pa(x|0s) respectively, and X;'s are independent for all i and j ,the joint distribution of Xij'S'

conditioned on #;,0, and line L(v,a) ,is given by

P(xij ) (I:J)Efl ('f)a):gl;% )
= pi(xij ,(LI)ENL | 01).palxsj ,(1,I)EL | 02)

= - xii|6y) . o(x33(62)- 4.
(i,l_-jI)EI\Lpl( i 91) (i,?)eLp( [ 62) (4.1)

where I denotes the set of coordinates of all image points.

Further, we assume a prior distribution, to be specified over the set of possible line
parameter values : (7x,a), k=1,...,a; &=1,...,b ; i.e. we specify po(7,a) such that
%21 po{ Y, 1) = 1. The actual specification must be made in the light of knowledge of the
particular application. If the prior knowledge is vague an uniform prior is assumed in

general. Also, if 0; , for some i, is unknown we can assign a prior distribution to it.
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Further analysis of the problem depends critically on the assumptions made concerning 4,

and 32.

Case 1 : Both §; and #, are known. From Bayes theorem ,it is easily seen that

given @y, 0, the posterior densities of the possible line, having observed xij's , are given by

Pra( (7)|0102) e« D(xsy's](7,0),01,02) . pof,0).
Thus by (4.1)
Pan((7) | 65,65) / po(7,0)
o I Puxs5101) . T pafxij]G2)

(4, j)eN\L (i, j)eL
A Xij|Va 1R X435 91 : .
o« (i,?)ELp ( JIB)/(i,?)eLp( il41) (4-2)

For a given po(7,a), it follows that Pan((7,@) | 6,0,) is large when the likelihood
ratio of " line " over "noline ", when based on the observations in L , 15 lazge. If
po(71,0) = _a.}li— Jfor all 7, o |
(i.e. po(m,@) has a uniform prior density) , the posterior mode is also the maximum
likelihood estimate ,and is given by the value of (7,@) which maximizes the right--hand side
of (4.2). | " |

Case 2. : 0 is known and 0, is unknown. . We assign a prior density po(fs6y),

independent of po(m0), over © 2 : the range of possible values of 03, which could depend on

61. 1t follows that for given 4,

Pun({1,0)] 01) = ([) P(xi5's| (7, @), 01, 02).p0(02) 01) d02.po(7,0).
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From (4.2) we have

pmn(('}',a') I 01)/1)0(7105) .

éz(i,l:}'leLPZ(Xi §102)-po(02|0:)d0y

I pl(X"]Ul)
(i, )L

Thus pana((7,¢) | 61) / po(7,@) is now determined by the expected likelihood ratio

with respect to the prior for §; based on the observations in L. The marginal posterior

density for 0, is given by

Pan(02]03) = B 2 Pan(02](71,0),05)-Prn((7,2) | 81) ,
’}( o
- . where

Prn(02|(7, @), 81) e D(%s5's|( 7, @), 01, 02).o( 2| 0y)

The maximum likelihood estimates of 0, and (7,e) correspond to the joint posterior

mode resulting from the choice po(7,@) = 1 [/ ab , with a possibly improper, uniform prior
~ - .

. Defining 4 to be the value of #; maximizi II i;]&2), it is easy to
for §;. Defining 2,(m,a) *O PE tae VAl 2 MaxXImizing (i,j)ELpz(xul 2) y

A FaAY
see that the maximum likelihood estimates are given by (%,a) and 4, (4,8) where (%,8)

H

maximizes
N
I pofxy0d )/ I palxigl6y) -
G A e
Case 3. : Both ¢ land g, are unknown. Assigning a prior density po(0y,02) over .

©12 , the range of possible values of (01,02), independent of po(7,a), we obtain

Pun(7,@) & p(xi5's{(7,@))-Po(7,) : (4.3)
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where

 P(xsj's|(ma)) = ({) p(xs's|(7,@),01,02).po 01, 02) d0; dbs.
12

(4.4)
Inference about ; and f, can be based upon
Pan(f1,02) = I f Pun(61,021(7,@))-Pan( 1) ,
where !
Pun(01,02|(7,@)) o p(x35's( 7, @), 1, 62)- Do 1, 02)-
(4.5)

When we assume uniform priors, the joint posterior mode, which gives the

. - . . . A A A A )
maximum likelihood estimates, is at (7,a), 01’( £3) ,and 92,(,}:& where (¥,&) maximizes

0 ptf ) T paelf) )

X33 L .
Gi)enn O bme) g e T ne)

A . . Fay . . .
and 91, (1,2) ‘maximizes (i’l:];[)EI\LPI(Xijlol), and 02,(% o) is defined 51@larly.

Estimates for (7,a), 6; and f#, are easily obtained by minimizing the posterior
expeci;ed' loss for some appropx_-ié.te choice of loss function, which is quadratic in most
applications. In the case of quadratic loss function the estimate of each unknown
parameter is the mean of the posterior distribution of that parameter , givén the
observations. As a Bayesian solution to the hypothesis testing problem , we see that
posterior odds ratio is easily calculated [5,p.146]. and in general the Bayes factor B =
(posterior odds ratio)/(prior odds ratio) is the " weighted " likelihood ratio. For example, if
S is a subset of the set of all possible (,a)'s, testing Ho : (7,@)eS versus Hy : (1,a)£S is
provided by calculating pma{S).(1 — 1r0) / {7r0.[1 — pan(S)]} , where
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Pon{S) = %% pm(71a),and7 = £I po(y,0).
T, 0)ES O (y,a)eS




5. BAYESIAN ANALYSIS WITH NORMAL .OBSERVATIONS

Let both §; and 02 be unknown and both F; and Fy be normal (Gaussian). Taking
0; = (p1,71), 1 = 1,2, the mean and the precision (reciprocal of the variance), respectively

then (4.1) can be written as

* , 'P(xij-'s | (1,@),85,62)
i = (71 27r(mn—-a)/2 T227ra'/2x Ti/2) L% Xij — 12
(mi/27) (72/27) ep{_(/)(i,j)eléL(J p1) }
exp{ —(72/2) BT (xs5— p2) }, (5.1)
(i,])€L

where a is the number of observations in L(7,a). In considering the prior distributions of

each (p3,73) , it is better to select the conjugate exponential family [2,p.77].

It is not hard to see that the conjugate prior distribution of (us,73) is given by

b | i tis)o (s 3 /27) Y2exp{ (s 73/2) . (15 ~ (t12/41)))}
85D ep 1] (850/045) — 1111 - (73/2) ),

b od
where . ti3> 0, t4; > (tiaftis) >0

Conditioned on 7y, p; is assumed to have normal prior with mean ti3/t;; and

precision  tj373 , and 73 is assumed to have marginal gamma distribution
2 . . . .

D((t13+1)/2,(t1—(t12/%13))/2 ) . By properly selecting ti,t52,ti3 we can obtain the desired

prior distribution with realistic meanings. Thus

po(01,02) = m(ps,7y | b1nbi2,b13) - m(pa, T2 | tastas,bas).

Fixing (7,c) , i.e. ixing L, the posterior distribution of yy,7; is also normél—gamma,




distribution with parameters

. 2
tu=tu+ I x5,

T e

tp=tp+ LI xj,

. (L,j)eNL

tiz=t3+mn—a . (5.2)

Similar results also hold for (u3,72). From these results and (4.4),(4.5),(4.6) we see that,

Pan(1@) | Pa(1,2) oc T((1+15)/2).D((1+435)/2) / (1t 32) 1/ 2
(W= ()2 (4, (a2,

(5.3) -
where t:i, t?z, t?;, are given by (5.2) and
* 2
t21=t21+ L X Xij »
(1,j)eL
*
te=1n+ LI xj ,
(i,j)eL |
*
toa=1ta34+a . . (5.4)

The right hand side of (5.3) is the multiplication of two multivariate elliptical
t—distributions [6,p.48]). In particular, for noninformative prior, letting ti2 =0, $i3—0 ,

ti; — 0 we find that the right hand side of (5.3) becomes -

2 - ' 2 :
I P((l+ai)/2)..ai1/2{(k),:l§)}efi(xu —z)(+a)/2,

where a, = mn —a , az = &, [y = \L ,; = L and x; is the mean of observations in [j , i=.
1,2. This paa(7, @) is cleatly shift and scale invariant. If Pmn(7,0) is fairly even , we can say

there is no line in the image.
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6. PRACTICAL CONSIDERATIONS AND DISCUSSIONS

Is the whole theory developed here compatible with the real situations in image
processing? The serious constraint in the theory is that the observations are indei)endent,
whereas the normal assumption is an approximation and in general tolerable , since an
image is generally taken by integration of several frames. ‘We know that many CCD
sensors in the market are of 300 or 400 sensing elements, not exactly 512 per row and this
gives the correlated observations [7] . However, a newly genius designed sensor from GE is
CID 512 (TN 2250) which has 512x512 square sensing elements [8] and we; believe that
observations taken from this sensor are quite nearly independent although we db not have
such one (Please note, TN 2250 has interlace 1:1 and hence not compatible with most
commercial image processors which need interlace 2:1 ). Any reader who has such device
. may try the test of independence. A serious problem is that many commercial sensors are
unstable in sensing the light, i.e. there are temporal variations when the lighting looks
stable [9, p.40]. This will affect the heuristic procedures but not ours.

Geometric distortions, due to optics, present a problem to our methods as well as to
Hough transform. As mentioned before we may use lines of two pixel: wide to overcome
the effects of distortions. In this case ,we loose one piiel precision. The Hough transiorm
will have better tolerance to the geometric distortions if the algorithm of finding Beaks in
accumulator array is quite reliable.

The Hough transform needs multidimensional accumulator array, which is geflerally
formidable large, whereas our methods do not. However, our methods take too much
computing time and fortunately this can be implemented in parallel. Thus for a SIMD or
MIMD machine with a large number of processing elements , our methods will be able to
achieve real time performance and reach practical usage. Also, Hough transform has a
shortcoming of inability to detect no line in an image when noises are present, whereas our

methods haven't. In summary our methods are realistic and can be applied in many
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'practical situations, and in some cases better than Hough transform.
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Fig. 2. Three simulated images ( 200x200 ) , each containing a line of two pixel

wide (=75 , 6=20 )."The mean difference |us| is 20 in'(a), 40 in (b), and 60 in (c)..




GEN20.DAT
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FORTRAN STOP L THETA 1S: 20, 00000
% SH TIME i RADIUS IS: 10.64178
4-APR-1989 15:21:05 FORTRAN STOP '
$ DEASS SYS$OUTPUT e TME _
3(a) ‘ - 3(b)

Fig 3. The test results of Fig. 2, where 3(a) corresponds to Fig. 2(a), and 3(b)

to Fig. 2(b).
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Fig 4. 4(a) Two true images of 200x200 , each containing an edge line. 4(b) Results

by using Sobel operators on 4(a).
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FORTRAN STOP
5b)

Fig 5. The test results of Fig 4. , where 5(a) corresponds to the left image and 5(b)

to the right imagé.

{
~26 - ’ i
|




T O ALBTALZ207 UDIDI IO
- % RUN USR$DISK2:[UFIFINDB
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FORTRAN STOP
$ SH TIME
(L)

Fig 7. 7(a) A simulated 200x200 binary image with a line ( po = .3, p1 = .8, ). 7(b)

The test results on four subimages of 7(a).




