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Abstract

In this paper, weighted tailored 2—partition problem and
weighted 2—center probiem under £ —distance a.ré considered. An
0(2¢-1.d.n) algorit.hm to. solve the weighted tailored 2—partition
problem and an (O((9)-n + d%-log d) time algorithm to solve the

weighted 2—center problem in d—dimensional case are presented.




- Section 1. Introduction

In the weighted 2—center problem and the weighted tailored 2—partition
problem under { —distance, a demand point set P with weights is given, we are
asked to find two service points satisfying certain criterions depending on the
¢ —distance. In this paper, the given demand point set is denoted as P = {Pp Pa
.-y Py } Where p; is with weight w; respectively. If p;’s are in d—dimensional space,
py’s coordinate are demoted as (x), x}, .., x9), i = 1, .., n. Specially, in the
9—dimensional space, they are denoted as (x;, y;),1 = 1, 2, ..., n, and in the
1—dimensional case, we use p; as the coordinate of demand point p; without

ambiguity. The £_—distance between two points p = (x, x%, ..., x%) and q = (7', ¥%,

ey, 4(p, @) ismax { {x'—yl| |i=1,2,..,d} LetC={cy ..., cy } be a set

of service points. Let the £ —distance of a point p to the set C, denoted as £ (p, C),
be min { 4 (p, ¢;) [i=1,2, .., m} The weighted { —distance of 2 demand point
p; t0 a service point ¢ is w;-£ (p;, ¢). For a service point ¢ and a number r, define
D(c,r) ={p; € P | wi-L(ppc) <1}
the set of demand points serviced by service point ¢ within weighted { —distance r.
The ,m—center prob_lenl is to find the minimum r such that there exists m
service points c,, Cy, ..., ¢y With j@l D(cj, r) = P. The minimum 1, denoted by r*
throughout the paper, is called the m—radius of the demand point set. A set of m -
serﬁce points achieves {he minimum r is called an optimal solution. Sometime we
also call r as the optimal solution without ambiguity. The tailored m—partition
problem, quite similar to the m—center problem, is for the given m positive real

numbers 1, T,, ..., Iy, determine whether there exists service points ¢, Cy ..., Gy

such that _ﬁi D(c;, 1;) = P. In this paper, we consider the problem form = 2.
J =




The m—center problem is one of the most important location problems. There
are many literatures consider the m-center problem on planar demand point set
under {,—distance. Especially, the problem under Euclidean distance ({,—distance)
and rectilinear distance ({,—distance) accepts much attention. Since the rectilinear
distance is equivalent to the { —distance in 2—dimensional space under a linear
transformation, the rectilinear m—center problem is equivalent to the m-center
problem under £ —distance in the 2—dimensional case. It is proved that the
m-—center problems under Euclidean distance and rectilinear distance, where m is
arbitrary, a,rerNP—cor‘nplete [Megiddo and Supowit 1984]. For the case that m is
fixed, there are some resulté. For general m, an O(n™?log n) time algorithm for the
rectilinear m—center problem is known {Ko, Lee and Chang 1987]. The weighted'
rectilinear 1—center problem can be solved in linear time [Megiddo 1983]. The
unweighted rectilinear 2—center problem also has a linear time algorithm [Drezner
1987]. The weighted rectilinear 2—center and 3—center problems already have
O{n log n) time algorithms, where n is the number of input points [Ko and Lee
1988]. The tailored 2—partition problem has an O(n-log n) algorithm for the
2—~dimensional case [Hershberger and Suri 1989)].

In this paper, we will present an O(($)-n + d%og d) time algorithm for the
d—dimensional weighted 2—center problem under /_—distance. The algorithm
improves the previous O(nlog n) result in the 2—dimensional case. Also, an
0(24.d-n) algorithm for the d—dimensional weighted tailored 2—partition problem
is given. The result improves the O(n log n) algorithm for the 2—dimensional case
in [Hershberger and Suri 1989].

In the following, we will give two basic lemmas and an O(2¢-d-n) algorithm
for the weighted tailored 2—partition problem in section 2, an O(n) algorithm for

the 1—dimensional weighted 2—center problem in section 3, an O(n) algorithm for
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the 2—dimensional case in section 4, and then with the linear time algorithm for the

o_dimensional case, we design an. O((§)-n + d*log d) ‘algorithm for the

d—dimensional case in section 5. In section 6, we give the concluding remarks.




Section 2. Basic Lemmas and the Algorithm for Tailored 2—Partition Problem

In this section, we first introduce special sérvice points which used in our
algorithms. Theﬁ, we prove two lemmas on the properties of thé special service
points and present an algorithm for the tailored 2—partition problem.

To introduce the special service points, for the demand point set P, we define
the following functions of weighted distance r. _

ct(r):min{x]i‘-l-r/wd 1<i<n}l k=12, ..,4,

ck(r) = max { x5 —rfw;] 1<i<n}, k=1,2 .., 4,

Wheré the indices s and ! are the abbreviation of 'small’ and ’large’ respectively.
The demand point p; that x¥ + r/w; = cX(r) (that x§ — r/w; = ck(r) resp.) is called
the small (large resp.) extreme demand point in the k—th coofdin_a.te with respect to
r. The function cX(r) (c%(r) resp.) then means the border line to service the small
(large resp.) demand point in the k—th coordinate within 1.

By c(r) and ¢X(r), k = 1, ..., d, we define center point ¢ (r) by
8 1 €1€q---€4

ceifz__.ed(r): (c’él(r), clég(r), ey cléd(r)), where ¢; is s o1 L
An illustration of functions ¢*(r), c¥(x) and center points in 2—dimensional case is
showﬁ in ’Figure 1.
[Figure 1]

A seq[uence of ’# and 'P is called a side index. For simplicity of notation, we
denote a side Hinde'x by E. The center points cy(r) for arbitrary side index E and
real number T a;re ihe special service points considered in our algorithms for both the
9—center problem and the tailored 2—partition problem. The dual side index of E =

i N A I ) . - . .
€,€q...€4 15 the side index "E = "¢, ¢,...7 ¢4, where

e
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The center points cp(r) and c-p(r) are the dual center point to each other. Cpf(x)
= {cp(1), c-g(r)} is a special solution considered for the weighted 2—center
problem. ‘ _

In the 2—dimensional case, we use ¢i(r) and c¥(r) to denote cé(r) and cg(r)
respectively.

The following two lemmas show the properties of center points in the two
considered problem. Lemma 1 is for the 2—center problem. A version of lemma 1 in

the 2—dimensional case was proved in [Ko and Lee 1988].

Lemma 1: .

Let r* be the 2—radius of P. Then a number 1 > r* if and only if there is a side
index E such that D(cp(r), r) UD(c-p(1), 1) = P.

Proof:‘

(if part) It is trivial by the definition of r*.

(only if part)

Since r > r*, there is two service points c, and ¢, such that D(c,, r) U D(c,, 1)
= P. We will prove the lemma by proving a stronger statement:

If D(c, r) U D(cy, r) = P then there is a side index E such that the center

points cp(r) and c-p(T) -satisfying D(cg(r), 1) 2 D(¢y, 1) and D(c-g(1), 1) 2

D(cy, 1)-

In particular, D(¢g(r), 1) U D(c-(r), 1) 2 D(c,, 1) U D(cy, 1) = P.

Let us show the statement in the 1—dimensional case first. Consider the case
that ¢, < ¢, In this case, the service point ¢, (c, resp.) services the small (large
resp.) extreme demand point within r. By definition of c (r) and ¢(r) , we have
that ¢, < ¢ (1) and ¢, 2 ¢(x). All the demand points on the the left side of ¢ () are

in D(c (1), 1). For the demand point p; € D{cy, r) and on the right side of ¢ (1},




since w;-(p; — ¢ (1)) < w;+(p;— ¢) < 1, we have that p; € D{c (1), r). Thus, we have
D(c (1), 1) 2 D(cy, 1). By a similar argument, we have D(c(x), £) 3 D(cy, 1). In the
case that ¢, > ¢,, we have D(c(r), r) 2 D(cy, 1) and D{c (x), 1) 2 D(c,, 1).

Now, consider the d—dimensional case. Let C = (c} Cjs J, vey J) j=1,2, Pk =
{x%|i=1,2 .., n}, the projection of P in the k—th coordinate and D¥(ck, 1) =
{x%5] Wi-|xli‘—c]-‘] <r}h k=12, ..,dandj=1,2.

1t is obvious that the projection of D(c r) in the k—th coordinate is contained
in D¥(ck, ), forallk = 1,2, .., d and j= 1, 2. Since that D(c,, 1) U D(cy, 1) = P
we have D*(ck, 1) U D¥(ck, 1) = PX forall k = 1, 2, ..., d. By the statement for the

1—dimensional case already proved, there is side symbol ¢, such that Dk(clzk(r), 1)
) D¥(c¥(1), 1) and Dk(c-lgk(r), r) 2 D¥(ck(z), 1) for all k = 1, 2,..., d. Let side index
E = ¢,65...¢¢. We claim that D{cg(r), ) 3 D(cy, ) and D(c-p(x), 1) 2 D(c,, 1). Let
p; be any demand point in D(c,, r). Since x¥ € D¥(ck, 1) C Dk(clzk(r), 1),
]x —c ( ) ¢rforallk=1,2,..d. Thus,
Wi £ (py; cp(r)) = max { w;- {x¥ — c}ék(r)] |k=1,2.,d}<r.

We conclude that D(cE(r), 1) 2 D(c, r). By a similar argument, we can conclude
that D(c-g(r), r) 2 D(c,, r). Thus, the proof is completed.
’ Q.E.D.

By Lemma 1, there is an optimal solution, referred as special optimal solution, ‘
consists of cp(r*) and ¢-p(r*) for some side index E. The special optimal solution

is the optimal solution to be found by our algorithm.

Lemma 2 is for the weighted tailored 2—partition problem.




Lemma 2:

For numbers 1, and 1y, where r, > r,, if there exists service points ¢, and ¢, such that
D(cy, r,) U D(c,, 1y) = P, then there exists a side index E such that D(cp(ry), ;) U
D(e,, 1,) = P.

Proof:

Since D(c,, Il) UD(cy, 1)) = P and 1 > 1, D(cy, 1y) U D(cy, 1,) = P. By the
proved stronger statement in Lemma 1, there exists a side index E such that
D(cg(ry), 1y) 3 D(cy, 1;). Thus, D(cp(ry), ) UD(cy, 1,) = P.

| Q.E.D.

By Lemma 2, for a weighted tailored 2—partition problem on P with numbers
I, > T,, if the answer is yes, we may havg a solution with CE(T1): for some side index
E, as one of the two service poiflts. Exploiting this 1emma, we have tIle following
algorithm to solve the weighted tailored 2—partition problem. The algorithm
exhaustively check all the side indices. To each side index E, the algorithm removes
from P the demand points serviced by CE(II) within r, and checks whether all the

remaining demand points can be serviced within r, by a service point.

ALGORITHM TAILORED 2_ PARTITION
INPUT: P, demand point set; 1, > 1,, positive numbers
OUTPUT: YES or NO
FOR all E side index DO
P’ :=P \ D(cg(ry, 1))
T’ := the 1—radius of P’

IF 1" { 1, THEN RETURN "YES’ and STOP
ENDFOR
RETURN 'NO.




For each side index, it takes O(d-n) time to solve the' weighted 1-center

problem of P’. Thus, the complexity of the algorithm is O(29.d-n).




Section 3. The Algorithm for the 1-Dimensional 2—Center Problem

In this section, we will first describe the idea 6f our algorithm for the weighted
2-center problem in the 1—dimensional and 2—dimensional cases. In this section, all
points mentioned are in 1—dimensional or 2—dimensional space.

The weighted 2—center problem on P is equivalent to finding a partition of P
with partition sets S, and S, such that the maximum of 1—radii of S, and S, is
minimized. The minimized partition is called an optimal partition. Let r* be the
2-radius of P, and {c;l, ¢,} be an optimal solution. Then S, = { p; |¢ (ps, c,) <
t(py cg) } and S, = P\ 8, form an optimal partition. The above partition is
separated by the paﬁh of points (the point for the 1—dimensional case) with equal
¢{—distance to ¢, and ¢,. Since there exists an optimal partition separated by a path
on the plane, in the following, we consider partitions separated by paths only.
According to the relative position of ¢, and c,, we will use SI,? Sip S”, and S to
denote the partition sets. For example, ¢i < ¢j and ¢} » ¢} then the partition set
associate to ¢, is denoted by S and that associate to ¢, is denoted by S, In the
1—dime1\15iona.1 case, S[ and SS are used. In fact, there can be many optimal
partitions. Let us see the following example with all demand points on a line.

A demand point in the 1—dimensional case is called a weighted number. A

weighted number p with x—coordinate x and weight w be denoted by (x,w). In the -

example, we have 10 weighted numbers: p, = (1,6), p, = (5,3), p, = (10,2), p, =
(432)) ps = (8)6): ps = (3:1): p7 = (619): pg = (213)) pg = (7:7) and pio et (914)! as

shown in Figure 2.

[Figure 2]




It is easy to see that S, = { pj Ds pT,' Py Pyt the set of points with
x~coordinates > 6 and S, the set of the rest points form an optimal partition. The
2—-radius of this set, 108/13, is contributed by the l-radius of S, The partition
S U {py D4 Pet and S, \ { Py Py Pg} Is also an optimal partition, since the
addition of py, p,, Pg to S, does not affect the 1—radius of S,.

Basically, our approach is to find the separating path (separating point for the
1-dimensional case) of an optimal partition sets with a binary search. After a
search is executed, a larger subsets of S, and S, are identified. After all, the
separating path is found and the whole optimal partition sets 5, and S, are
identified. In a search, it computes 1;radii of the two partition sets separated by
the current searched path to determine the next direction to search. To achieve a
linear time algorithm, in each iteration, we prune a portion of demand points. In a
identified subset of S, or §,, the pruned demand points are those of shorter weighted
Em—distance to the corresponding service point in the optimal solution than that of
some others in the same identified subset. The optimal solution we use is the
special optimal solution consists of center points introduced in section 2.

For the 2—dimensional case, the prune process is applied to x—direction and
y—direction respectively as two l1—dimensional cases. Thus, in the following, we
review the prune process in the Megiddo’s prune—and—search algorithm [Megiddo
1983] for the 1—dimensional weighted 1—center problem.

Let p;,i =1, 2, ... 1, be the given n weighted numbers with weights w;, i = 1,
2, ..., n, respectively. The prune process is as follows.

1. Compute x,,, the medianof {p; | i=1,2,..n}

2. Let x* be the optimal center.

Determine whether x* > x_, x* <x_.
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3. Without loss of generality, we assume that x* < x . For the case x* > x_,
the process is similar.
There are n/2 weighted numbers > x_, demoted by p}, ..., p|’-n /7
Consider pairs (p};, p};), i =1, 2, ..., [n/4].

4. Compute the solution x,;_; ,; of equation _
Waiet (Phiog —%) = Wi+ (P —x) fori=1,2, .., [n/4].

5. Compute x7, the median of { xp; 4 4; | i=1,2, ..., [n/4] }.

6. Determine whether x* > x? or x* { x2.

7. Without loss of generality, we assume that x* » Xy For the case x* < x,
the process is similar.

8. For all the pairs with x,;_, ,; > x}, prune away the weighted point with

shorter weighted distance to the x* in each pair.

It is obvious that in a prume process, it takes O(n) time and prunes |[n/8|
points away, where n is number of the input demand points.

In the step 8 of the above prune process, since the weighted number of longer
weighted distance to the optimal center of each pa.ir. is still remained, the 1-radius
of the set of weighted number after the prune process is the same as that of the
original set.’

In the step 2 and step 6 in the above pruné process, the side of x* which x
and xj lie in should be determined. In the l—center problem, it is to compare the
longest weighted distance of x, (or x resp.) to the weighted numbers on its right
side and that on its left side. In the 2—center problem, we will apply the prune
process to0 subsets of partition sets Ss and S i with respect to the special optimal
solution { ¢ (r*), ¢(r*) }, where r* is the 2—radius. For a subset of S, (8, resp.),

thus, we should determine whether x; > ¢ (r*) ( x, ¢ c(r*) resp.) or not. Without
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loss of generality, we consider the case of a subset of Ss. It is symmetric for the case

of 3, The process is as follows:

L re=max{w;(x,—py) | Ps <%y}
2. Consider special solution { ¢ (z), ¢(r) }.
IF {c (1), c[r)} services all weighted numbers within r
THEN ¢ (r*) < xq
ELSE ¢ (1¥) > xy.

In the step 1, it determine the r such that x,, = ¢ (r). In the step 2, the
special solution { ¢ (r), ¢fr) } for all the weighted numbers is conmsidered. By
Lemma 1, if they service all weighted numbers within t, then the 2—radius of P, r* <
r. In other words, the left center ¢ (r*) of the special optimal solution is on the left
side of x,,. Otherwise, ¢ (r*) is on the right side of x,,.

Now, we present the algorithm for the l—dimensional weighted 2—center

problem.

Algorithm 1-Dimensional Wellghted 2—Center:

Input: P, weighted number set

Output: the 2—radius of P

(* S, (5, 1esp.): the set of weighted numbers already determined to be serviced -
by ¢ (1*) (o{r*) resp.) *)

(* R : the weighted numbers still not determined *)

1. R:=P,S5;:=¢,and§,:=
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2. CASE
|R{ = 0 Output r,
|R| = 1: T,:=8,T,:=8,UR,
Compute r}, 1} the 1-radius éf T, and T, respectively,
OUTPUT min {max {r,, 1,}, max {r}, r}}}
ELSE GOTO step 3.
3. Compute x, the medié,n of weighted numbers in R.
4 Ry={xeR|x<{x,}
Ry:={x;eR | x; > x,}.
T,:=5 UR;and T,:=S,UR,.
5. Compute ry, the 1-radius of T, and 1,, the 1-radius of Tz;
6. IF r,=r1, THEN OUTPUT r,.
IF r,<r, THEN S:=T, R:==R\ R,.
IF 1,>1, THEN §,=T,, Ri=R \ R,.
7. Apply prune process to S, and S,.
8.  GOTO step 2.

From step 3 to step 6, the algorithm conduct a binary search to find the
separating péint. According to the order of 1-radii of T, and T,, we identify larger
subsets S, and S, lof Ss and.SI respectively. In step 7, we apply the prune process o |
S, and S, individually. | - |

In each iteration, it takes O(|R|) time to find the median of R,
O(]Ty| + |T,|) time to compute 1—radii of T, and T,, and O(|S,| + |S,|) time to
prune away ([S;| + |S,])/8 points. Since the factor O(]T,| + |T,|) dominates all
the others, we calculate this factor in each iteration for the total time éomplexity of |

this algorithm. Let f, = |T,| + |T,| in the k—th iteration, that is, the number of
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weighted numbers remained in the k~th iteration. It is obvious that f, = n. Since
at the k—th iteration, the belonging partition sets of f,_,.— n/2* points are
already determined, (f,., — n/2%)/8 are pruned. Thus, we have the following
recursive formula. ‘ | |
fe =fy—(f- —1n/2)/8
= /2% + 7.f, /8.

Let Iy = .

algorithm is dominated by O(Flog2n).

it D

f,. Since there are log, n iterations, the time complexity of our
L

7/8) 3t 5 n/2ks
= 3 i+ '
1/ 3 st Ba
<(7/8)-Fs, +n/8

<.

-2

<(T/8F + (3 (7/8))n/8

S
i=

<(7/8)F, +n

By the above inequality, and (7/8)196,2.n = (8/7)-nl%,"? < 8n/7, we have that

Flog2n < O(n). Thus, the time complexity of our algorithm is O(n).




Section 4. The Algorithm for the 2—Dimensional Weighted 2—Center Problem

The basic scheme of our algorithm for the 2—dimensional case is the same as
that for the 1—dimensional case. But, instead of a separating point, a separating
path of an optimal partition is to be searched in the 2—dimensional case. Using the
special optimal solution, the separating path is, as shown in Figure 3, made of two
semi—lines and a line segment. The separating path is exactly the locus of points of
equal { —distance to the two service points in the optimal solution. According to
the relative position of the two centers in the optimal solution, the two semi~lines
are both of slope '1 or ~1, and the segment is parallel to x—axis or y—axis. In fhe
case that ¢} < ¢} and c? ¢ c2, theé semi~lines are of slope —1 as shown in Figure 3c
and 3d. In the case that c! < ciand c? » c2, the semi—lines are of slope 1 as shown in
Figure 32 and 3b. In the case that [e!—c}| > |c2 —c2|, the line segment is verticé.l
as shown in Figure 3b and 3d. For the other case, the line segment is horizontal as
shown in Figure 3a and 3c. In fact, we will search the two semi—lines individually
and find an optimal partition different from that defined by a special optimal
solution on some demand points which will not affect the final solution.

[Figure 3]

By Lemma 1, the special optimal solution can be two types. Omne consists of
center points \_aﬁth side indices ss and 1, the other consists of center points with side
indices s and Is. We may find the optimal solution among each type of special
solutions and take the minimal of the optimal solutions of these two types as the
optimal solution. Thus, in the following, without loss of generality, we pr%ént the
algorithm to find the optimal solution among special solutions consisting center

points with side indices st and is.
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Before presenting our idea, a lemma is needed. Let Dy.{r) be the set of

demand points serviced by cy44(r) within r where 44 is si, 4, ss o1 ls,

Lemma 3: {Ko and Lee 1988]
D**(I) C D**(I’) ifr <1

By Lemma 3, a demand point is serviced by c4«(r) within r, then it is serviced
by C4x(r’) within r’ provided that r’ > r. Consider Lemma 3 in 1—dimensional case,
it means that a demand point serviced by css(r) within r in y—direction (in
x—direction resp.) is serviced by cy(r’) within r’ in y—direction (in x—direction
Iesp. ).

For a set of demand points on the plane, S, denote S, called x—version of S,
the projection of S on the x—coordinate and Sy, called y—version of S, the projection
of S on the y—coordinate.

To solve the weighted rectilinear 2—center problem on P, the first step of our
algorithm is to solve the weighted 2—center problem on P, and P,. Letr, and r, be
the 2—radii of P, and P respectively and r,, be the maximum of r, and r,. With

the value r,, and the special service point set C,, = {c [r.,), ¢, (1)}, we

Y
partition the demand point set P into four subsets as follows.

D= {p; | p; € D {ryy) and £(p;, ¢ [1,5)) € £(Ps; € (rey)) b
Dy, ={p; | p; € D [(r,y) and £,(p;, ¢, (1)) < &a(pss €, {Txy)) T
Ry ={p; ] wi-fa(Pp Cuy) > Ty Wie [ x5 — Xryp) | > 145 1,
R, ={p;| wi-4(Pp Ciy) > Iy wie [~ rg )l > 5 b
[Figure 4]
The Figure 4 illustrates the partition conceptually. The union of R, and R” is the

set not serviced by ¢ (r,,) and ¢, (r,,) within r,,. The points in R, (R resp.) are

v
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serviced by Cz,(rxy) in x—direction (in y—directiog resp.), and serviced by cd(rxy) in

y—direction (in x—direction resp.) within r,,, but not serviced by ¢, (Tey) in
y—direction (in x—direction resp.), and not serviced by ¢ [(14y) in x—direction (in

y—direction resp.) within Iyy-

Lemma 4: The 2—radius of P, r* > ey
Proof:

Without loss of generality, assume that r,, = r,. Since r, is the 2—radius of

Py, T, < max {min {w;- |x;— cX(r*)], Wy |x; — K() [ }] 1 <ign}
< max {min {w;£,(p;, ¢ (%)), wy-£(py, ¢, (7*)}
= ¥,
Thus, r* > 1, = L , Q.E.D.

By Lemma 4, if D;l U D’Is = P then the 2—radius of P is exactly r Thus, in

Xy
the following, we consider the case that D’ uD; # P only.

Lemma §: If D!, U D) # P, then ¢¥(r*) < ¢j(r*) and ¢¥(r*) 2 ci(r*)i A
Proof: )

If ¢3(r*) > ¢3(r¥), there is an r such that r,j < r < * and ¢X(r) = c¥(r). Thus,
c (1) (c,(r) resp.) can service all the demand points within r in x—direction by
itself.  Since 1 2 1., {c (1), ¢, (r)} services all demand points within r. It

contradicts r* is the 2—radius of P. The proof of cY(r*) 2 ¢¥(r¥) is similar.

Q.E.D.

| By Lemma 5, the separating path of the optimal partition is made of two semi

lines of slope 1 and a line segment parallel to x—axis or y—axis, as shown in Figure
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2a or 2b. Thus, only separating lines of slope 1 are considered in case of finding an
optimal solution among special solutions consisting of center points of side indices s
and Is.

Now, given a line L of slope 1, Ru is partitioﬁed into two subsets. One is the
set of points above the line L, denoted as RL,upp er and the other is that below the
line I, denoted as RL,right' To such a line L, we consider two sets Tl,L = R” U D;l
u RL, upper’ T2,L = R” UuD, U RL,Ii ght and the weighted 1—center problems on
(Tl,L)x and (TZ,L)y' There is a line L, such that the maximum of the 1-radii of
above two sets of weighted numbers is minimized. Denote the minimized maximum
as 1;. Similarly, for the set RM, there is a line L of slope 1 partitions R”' into

P"L left and R such that the maximum of the 1-radii of the x—version of RH

L.,lower _
U D’ls U RL,lower and the y—version of RH. U D;l u RL,left is minimized. The
minimized maximum for the R, is denoted as r,.

We claim the following lemma for the optimal solution of P among special

solutions with side indices si and Is.- Denote the above optimal solution as 1.

Lemma 6:
The maximum of r, and 1, i_s the optimal solution among the type of special
solutions with side indices sl and is.
Proof:

Let 1’ denote the maximum of r, and r,. We will first prove that r’ > r"" and
then prove that r’ < 1.

To prove r’ 2 r", we will show that all demand points are serviced by C’ =
{e,(r), éls(r’)} within r’. By Lemma 3, all demand points in I’ U D are serviced
by C’ within r’, since r’ > 1

xy- L€t p; be any point not in D;I U D’Is' We consider the

case that p; € R, and p; is on the upper side of the separating line L. Since p; €
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Ra and r’ > ey csl(r’) services p; within r’ in y—direction. Since p; is on the upper
side of line L, and © > 1, ¢ (r') services p; within 1’ in x—direction. Thus,
Wi L (ps, C') < r’. By the same argument, we also can prove that wirl (p;, C) <
for the demand point p; in the other cases. Thus, we conclude that r’ >

To prove that r’ < ", witHout loss of generality, we assume P = r,. Consider
the partition of R, with separating line L* which is the locus of points p = (%, ¥)
satisfying x — ¢¥(z") = y ~ cI(z"). We will prove that the 1-radii of (TI,L?‘)x and
(T2,L*)y is less than or equal to r". Since r, is the minimum among all partitions of
R", ">, =1\

Let p; be any point in Tl,L*' If p; is not in RH, it is obvious that
Wi [x5 — cX(r")| <1". Consider that p; € Ry Hx;—ci(r") <0, then x; — (") <
", Thus, we should consider the case that X;— c’:(r") > 0. Since p; is above L*,
xp = (t") < yi—o¥(r"). Let C* = {c ("), ¢, (r")}. In case that w;-£ (p;, C*) =
Wi LDy, € 1), Wil — X € wy (D, © (1)) < £
For the case that w;-£ (p;, C*) = w,-£_(p;, ¢, (")),
it 1% - Cf(f")[
= i (3 — X(x")
¢ wye (7 —c¥(I) -
= wy|y; — (")
Wi bo(Pyy € (1))

<

w

[ FaN

Thus, we conclude the 1—radius of (T1 L*)x < r'. Similarly, for any point p; in

T, 1% We also conclude w;- |y; - c{(r")l < r". Thus, the 1—radius of (T2 L)y <
1 b
Since 1’ is the minimum among that of partitions, we have 1" > 1.

Q.E.D.
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With Lemma 6, the problem now is.to search the optimal separating lines for
R, and R __efficiently.  We will show the algorithm for Ry only. It is similar for
R,

The scheme of the algorithm is essentially the same as that for the
1—dimensional 2—center problem. We conduct a binary search for the position of
separating line of the minimal partition. In each iteration, we compute m, the
median of (x; — y;)’s where p; € R, and is still not determined. Let L be the line
satisfying x —y = m. Next, we compute the 1—radii of (Tl,L)x é.nd (T2,L)y 0

determine the next direction to search and make sure the belonging set of one half of

' and in T
1L,

undetermined points. To the points already known in 9., We
'}

conduct the -prune process to them according to their x—version and y—version
respectively. It is obvious that the complexity is linear, the same as that for the

1-dimensional case.
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Section 5. The Algorithm for the d—Dimensional Weighted 2—Center Problem

In this section, we will present an algorithm for the d—dimensional weighted
2—center problem, which is based upon the algorithm for the 2—dimensional case.

Let us first consider PU = { (x{, x})| k = 1, 2, ..., n }, the i—j version of P,
which is the projection of P to the i~th and j—th coordinates. Let rif (r¥f resp.) be
the optimal solution among the special solutions consists of center points with side
indices ss and o (s and Is resp.) for PU. For a type of special solutions with side
index E = ¢¢,...€4, it induces a type of special solution with side index E; = €;€; on
the i—j version of P for all ($) versions. Let 1g! be the optimal solution of PU
among the special solutions with side index By Heg=g, rEij is 1 otherwise réj
is T, |

Lemma 7:
The optimal solution among special solutions with side index E is the maximum of
rﬁ}j,lgi<j5d.

Proof:

Let 1’ be the optimal solution and r" be the maximum of réj, 1<i<jg<d.

We should prove that r’ = 1",
First, let us show r’ > . Let CEij(.I’) :_(céi(r’), cJ;j(r')) and c-Eij(r’) =
(c-1 (r), c- (r')). It suffices to prove that r* » rid, for all 1 <i < j <m. In other
i j

words, it suffices to prove that D(c, (r'), ) UD(cp (r), ) =P forall 1 <i < j
ij ij
¢ d. Let £(py, ¢) = max {|x{ — c!|, |x] — ¢i|}, where ¢ = (ct, ..., cd). It is

obvious that £13(p,, ¢) < £ (p,, ¢). Thus,
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max { min { Wk'zoioj(pk: CE(I,))) wk'g;j(pki C'E(I,)) } I k=1,2 .1 }
¢ max { min { Wy £ (Py, (1)), Wi+ 4o(Py c-p(T)) } | k=1,2, .0}

That means D(c (1), ') UD(cp (r), ) =PH, forall 1<igj<d.
i iy

Now, let us show that r* < r". Tt suffices to show that D(cp(r"}), ") U

D(C"E(I")’ "} = P. For any p; € P, let £ (p;, CE(IH)) = [xlic _ Cl;k(I"N and
&Py, c-p(T")) = IX¥~C-2t(r“)I- Ik#t,

wi & (ps, Cg(r"))

= wyemin { [ = ok ()], [xf = o-2 (") }

s I".
In the case that k = t, we also conclude that w,-{ (p;, CE(I")) < r".  Thus,
D(cg(r"), r") U D(c-p(t"), t") = P. Q.E.D.

By Lemma 7, a straightforward algorithm is for each of 29-! types of special
solutions, find the optimal solution, and then take the minimum among 29-1 optimal
solutions as the 2—radius of P._But it takes O((§)-n) time to compute r¥ and r¥,
for a.ll_l <i<j<n and takes 0(2_“1'1-;12) time to compute the maximum of r]}_}j , 1<

i < j < d for all side indices E. Totally, the straightforward algorithm takes

O((9)+n + 29-.d%) time. In the following, we design an algorithm which takes -

O((4)-n + d2-log d) time which reduces the factor 2¢-1.d? into d2-log 4.

Suppose that all the rif and rif for all 1 <i < j < n are already computed. ILet
us consider the relatibnship between side indices of P and the side indices of P¥ for
1 <i< j<d. The relationship can be represented by an edge labeled complete

graph G of d vertices v, v,, ..., v4. For a side index E = ee,...¢4, we label the edge
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(vi, vi) by +1if ¢ =¢and —1if¢; # ¢; forall 1 <i < j<d. The dual side index "E
also induces the same edge labeling. It is easy to verify that the product of edge
labels in any 3—cycle ( cycle of length 3) is +1 in such an edge labeling. In fact, the
product of the edge-labels in any cycle is also +1. Let II(S) denote the product of
labels on edges in edge set S and S, @ S, denote symmetric difference of edge sets S,
and S,. Then II(S, ® Sg) = II(8))-II(S,). Consider a cycle C = viy Vig..Viy, Where
Vipg = Vije Consider 3—cycles C; 44 = vig Vij Vijag Vigy J = 1, .o, k—2. Tt is easy to

verify that 0 C; j+1 = C. Since G; ;,, is 3—cydle, H(Cj j+1) =+1forallj=1,..,

i
k—2. Thus, II(C.) = II(C,)-T{Cpy)+ ...:II(Cy, ) = +1. An edge labelling

satisfying the above product condition is called coherent.

Lemma 8: _
A coherent edge labeling is uniquely determined by the labels on any spanning free.
Proof:

Let T be any spanning tree with labels on the tree edges. Let e be any edge
not in T. Let C, denote-the unique cycle in T + e. To make the labeling coherent,
the label on e, {, is fofced to be II{C, \ {e}). Thus, the labeling is unique. Now, we
prove that such a labeling is coherent. Consider any 3—cycle C with edge set e, e,
and e,. If only one of them is not in T, say e, then C = Ce;. Thus, I(C) = +1. I
two of them are not in T, say e, and e2,j’then Ce; ® Cey = C. Thus, II(C) = II(Ce, ©
Cey) = II(Ce)+II(Ce,y) = 1. If all the them are not in T, then Ce¢, ® Cgy ® Cey = C.
Thus, II(C) = TI(Ce,): I{Ce,) I(Cey) = +1. Thus, the labeling is coherent.

Q.E.D.

By Lemma 8, any coherent labeling is induced from a side index. Let f;; be
the label on edge (v, v;) in the given coherent labeling. Consider the side index E

= €€,...6q, Where €, = sand ¢; = s if f; = +1 and ¢; = 1if f; = —1. Theside index
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will induce a coherent labeling which is the same as the given one on the spanning
tree made of edges (vy, vi),1 =2, 3, ..., d. Thus, by the above observation, they are

the same.

Now, consider the complete graph G with edges costed. An edge (vi, vi) has
two costs; one is rl for the label +1 and the other is r¥ for the label —1. Given a
coherent labeling with label si; on edge (vy, v;), 1 i < j< d, define the cost of the
labeling to be max { rsiij | 1<i< j<d} In this formulation, by the

correspondence between side indices and coherent labelings, the problem to find a

side index E such that max { réj |1<i<j<d} is minimized is equivalent to -

finding a minimal cost coherent labeling of G.
To find the minimal cost coherent labeling, our algorithm is to label the edges
iterativély. By Lemma 8, we need to label the edges of a spanning tree only. Our

process is as following. Our first algorithm is as following.

Algorithm Minimal Cost Coherent Labeling: 7
INPUT: a complete graph G of d vertices, with edge costs riiand r¥ 1 ¢i<j<d
OUTPUT: r* :the cost of a minimal cost coherent labeling -
1. Sort edgetcosts ri and r¥i, 1 <i < j< d into
a nonincreasing sequence R[1], ..., R[d(d—1)].
2. FORk=1to0d(d-1) DO
21 Let Rk =1d.
2.2 If (vy, v;) is not labeled and does not make cycle with labeled edges
THEN Label (v;, v;) with —s.
3. ENDFOR
4. Scan the labeled edges to determine the corresponding side index E

5. r*=ma.x{r]§j|1§'i<j§d}
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Theorem 9:

Algorithm Minimal Cost Coherent Labeling correctly gives a minimal cost coherent
labeling.

Proof:

Let S = {sij| 1 i< j<d} be the resulting coherent labeling by executing
Algorithm Minimal Cost Coherent Labeling and T be the cost of S. Let rif be the
first one in the execution such that (1) edge (vi, v;) is already labeled or (2) edge
- makes a cycle C with the edge already labeled and II(C \ (vi, v;)) =s. If condition
(1) happens, it means (v, v;) is labeled as s. If condition (2) happens, it means that
in the resulting coherent labeling the edge (v, v;) is labeled as s also. Thus, r > r}.
Since ¥ is the first one the condition (1) or (2) happens, for all the costs larger than
12, their corresponding edge labels will not occur in the resulting coherent labeling.
Thus, r ¢ rl. Therefore, we conclude that r = rli,

Let T be the set of edges already labeled when £ is scanned. Let F = { fy | 1
¢i<j<d} beany minimal cost cohereﬁt labeling. We claim that the cost of F,
denoted as ", is r. Consider the labels of F on edges in T. If they the same as that
of . Then in F the edge (vy, v;) is also labeled s. Thus, 1" > 1l = r. Otherwise,
there exists an edge (va, vb) in T such that sap # fab. Thﬁs, r?:b is scanned before
ril. That means rg> 2 1ll. Hence, in this case, we also have 1" 2 rif‘:b >ri =1 In
another hand, by the minimality of r", " < r. Hence, " = r. That means S is also -

a minimal cost coherent labeling. Q.E.D.

The Algorithm Minimal Coherent Labeling is essentially the same as the

Kruskal’s algorithm for the minimal spanning tree problem. In the algorithm, the
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step 1 take O(d%og d) time for sorting. In step 2, for each edge, it should check
whether the edge makes a cycle with the labeled edges. The check process can be
implemented by the set union find algorithm which takes O(log*d) amortized time.
Thus, step 2 takes O(d%og*d) time. The step 4 takes O(d) time. In total, the time

complexity is O(d%og d).
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Section 6. Concluding Remarks

We have presented an O((3)-n + d%og d) time algorithm for the £ —distance
weighted 2—center problem and an O(29.d.n) algorithm. for the weighted tailored
2—partition problem. In the 2—dimensional case, since the { —distince is equivalent
to the rectilinear distance, we then solve both the problems under rectilinear
distance in O(n) time also. But, for the higher dimensional space, these two
distances are different. That is still an open problem to solve the problems under

rectilinear distance in higher dimensional spaces efficiently.
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