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1. Introduction

The automatic ‘layout of integrated circuits or printéd circuit bga;.rds‘ is tra-
ditionally divided into two processes: placement and routing [25]. Via min-
i;nization is a postprocess after routing fc;f eliminating unnecessary feed-
through vlias. Many different models and algorithms have been proposed
for the via minimizatioﬁ of two-layer and three-layer routing. This article
reviews significant results among these works. T1_1e emphasis is placed on

optimal algorithms that have sound theorectical basis and heuristic algo-

rithms that seem to be effective in practice.
1.1. Motivation

Most existing routing algorithms route all horizontal wires on one of the
two conducting layers and route all vertical wires on thé other. Therefore,
a large number of vias are introduced to interconnect the wire segmenis on
s
different layers. Vias not only reduce the reliability and performance of the
circuit, but also increase the manufacturimg cost. Thus, it is desirable to
have a pqstprobess after routing to ‘eIiminaf;e unnecessary vias. Moreover,
since vias are usually wider than wires, via minimization can be used to

make room for uncompleted connections.

1.2. Layer Assignment




Given a layout where the positions of the modules and the wires are fixed,

the via minimization problem is to assign the conducting layers t6 the wire =

segments so that the total number of vias required is minimized. Thus,
the via minimization problem is also known as an optimal layer assignment

problem. ‘In this article, we shall use both terms interchangably.

Consider a layout such as in Fig. 1 where two conducting layers are
used for, i'outing. A met is a collection of wire segments that electrically
connect a set of terminals. A layer assignment is an assignment of t:he two
layers to all the wire s'eg;'ments such that no two wire segments in different
nets that cross or overlap each other are assi;gned to the same layer. Fig.
1 shows a possible layer assignment. When two connected wire segments
are assigned to different layers, a via must be introduced. Thus minimizing
the number of vias is equivalent to minimizing the total layer changes in
the layout.’ A new layer assignment for the nets in Fig. 1 is shown in Fig.

T

2 where the number of vias required has been reduced from 3 to 1.

*

Layer assignment has its major objective of minimizing the total num-
ber of vias. Frequently, it is also subject to some extra constraints due to

practical considerations. For example, wire segments connecting to termi-

nals may have to be assigned to a particular layer.

1.3. Two-Layer Via Minimization




The via minimization problem for two-layer routing has been studied ex-
tensively. Since the plorieer work of Hashimoto and Stevens in 1971 (9],
many researchers have proposed different models aﬂd algorithms which can
be classified into two categories: the optimal approach-and the _heuristic
approach. The optimal approach aims to find the global minimum of the ‘
problem. Hashimoto and Stevens formulated the via minimization problem
as a graph-theoretic maximum cut problem (9], though the latter is NP-
hard for general graphs [7]. Kajitani identified the wire-segment clusters
in a layout, and showed that the graph in Hashimoto’s model is planar
[12]. Thus optimal polynomial-time algorithms for via minimization were
proposed based upon Hadlock’s maximum cut algorithm for planar graphs
[3][8][21][23]. The time complexity of these algorithms is O(n®) where n is
the number of wire-segment clusters in the given layout. Rece-ntly, Kuo,
et al. developed an O(n'®log n) optimal algorithm by transforming the
via minimization pr-oblem into ﬁn:ding a maximum weight Iﬁatching of 2
planar graph [15]. Other than the graph-theorectic formulation, Ciesiel-
ski and Kinnen proposed an integer pfog;amnﬁng formulation of the via
minimization problem. However, the time complexity of their algorithm is

exponential [4].

In the heuristic approach, the optimality is compromized, but the flex-
ibility and the speed are gained. An early heuristic algorithm proposed

by Stevens and VanCleemput uses a force-directed constructive method




[26). Chang and Du developed a layer a.ssignmen.n‘; élgorithm based upon
properties of the bipartite graph [1]. Recently, Xiong and Kuh proposed’
an iterative improvement algorithm by swapping vertices of a graph {27].
The main advantage of these heuristic algorithms is that théy can be easily .

modified to take extra constraints into consideration.
1.4. Three-Layer Via Minimization

The works that have been mentioned so far are about two—lay;er via mini-
mization. The rapid advance in VLSI technology has made it possible to
. use three conducting layers for routing. Three-layer via minimization is still
a rather ne;w problem. It hz;s been shown to be NP-hard and a heuristic

algorithm was proposed by Chang and Du [2].

The via minimization problem considered in this article is sometimes
referred to as a constrained via minimization problem since the geometry
of a layout is given and fixed. The problem in which both the topology of
the layout and the layer assignment are t0 be decided 'is referred to as an
unconstrained via minimization problem or a topological via minimization
problem [1](11][19][24]. The latter problem is beyond the scope of this ar-

ticle.




2. Problem Definition

2.1. Terminology

To precisely formulate the via minimization problem, let us introduce some
terminologies. When defining these terminologies, the given layout is con-
sidered not to have any layer assignment yet. For the layout in Fig. 1, such

a "layerless” layout is shown in Fig. 3.

Two pieces of wires in different nets are said to conflict with each other
if they cross or overlap each other, or if they are too close to be in the same

layer due to the design rules.

A wire segment is a maximal piece of wire that is in confiict with some
other wires and that cannot accommodate any via. Since no via can be
placed in a wire segment, a wire segment is a unit to be assigned a layer;

it is meaningless to further divide a wire segment into smaller pieces.

A via candidate is 2 piece of wire that connects two or more wire seg-
ments (in the same net) and that can accommodate at least one via. A via
candidate is a location where a via might be introduced. Since our goal is
to minimize via usage, at most one via would be placed at a via candidate.;

there is no sense in switching layers twice or more along a via candidate.

The degree of a via candidate is the number of wire segments connecting




to the via candidate.

For the layout in Fig. 3, wire segments are labeled by numbers 1 through
18l; via candicates are labeled by lower-case letters a.. through k; and nets
are labeled by upper-c.ase letters A through G. As an illustration, net A
contains wire segments 1, 4 and 7}; wire segments 1 and 4 are connected by
via candidate i; and wire segments 4 2nd 7 are connected by via candidate
“a. All via candidates in Fig. 3 are of degree 2. A typical via cé.ndidate of
degree 3 is a T-shape connection which often appears in a multi-terminal

net.

An essential via is 2 via placed at a particular via candidate which is
present in any layer assignment. In Fig. 3, if no via could be placed at Jo-
cations d and f due to the design rules, then wire segments 12 and 13 would
be .col_lapsed to a.'single wire segment, and so would be wire segments 17
;nd_18. Since wire segments 13(12) and 17(18) should be assigned to dif-
ferent layers, so should be wire segments 6 and 9. Therefore, a via must
be introduced at location ¢ to connect wire segments 6 and 9. Such a via

would be an essential via.

The via minimization problem considered in this article is very general.
Any location in a wire that can accommmodate a via must be part of a
via candidate. In other words, vias can be placed at any appropriate lo-

cations so long as the design rules are not viblated._ On the other hand,




the wires in a given layout do not have to lie on a rectangular grid. Such
-2 layout is sometimes referred to-as-a gridless layout {21][23]. To identify
wire segments and via candidates in a iayout, what is required is a design
rule checker which can report all pairs of wire segment.:s- which are too close

to each other [28].
2.2. Extra Constraints

In addition to\ the constraint that conflicting wire segments are assigned
to different layers, a layer assignment should also satisfy some extra con-
straints due to the design methodology and performance considerations.
For instance, wire segments connecting to terminals are usually required
to be on a particular layer. Power lines should always be assigned to the
.metal layer. The number of vias intrbduced in a net may have to be limited
in order to avoid burdening a performance critical path. In summary, the
;followiilg extra constré.ints should be associated with the via minimization

problerﬁ 1].

L]
e Some wire segments can be preassigned to certain layers.
» The numbers of vias introduced in certain nets can be limited under

certain threshold values.




3. Graph Models

Theorectical models such as graphs and integer programnﬁng have been
proposed for representing the via mmnmzatlon problem However, since
integer programming is 2 NmP—hard problem in general [7] no efficient via '
minimization algorithms were ever des1gned based upon the integer pro-
grz_umning model. We only consider £1'1e various graph models. The graph

is especially suitable for modeling the geometric relationship among the

wire segments in a layout.
3.1. The Wire-Segment Graph

A given layout can be natur.a.lly represented as a graph called the wire-
segment graph. For the moment, let us assume that all via candidates In
fhe layout are of degree 2. Associated with each wire segment, there is a
vg,rtex'in the wire-segment graph. There are two kinds of edges. ' A con-
flict edge connects two vertices whose corresponding wire segments are in
conflict with each other. A continuation edge connects two vertices whose
corresponding wire segments are incident to a common via candidate. The

wire-segment graph associated with the layout in Fig. 3 is shown in Fig. 4

The two-layer via minimization problem can be formulated as a graph
coloring problem. A 2-coloring of the wi.re-segment graph is an assignment

of two colors to its vertices so that no two vertices connected by conflict




edges have the same color. It can be easily shown that, given a layerless
layou-ti, a layer assignment exists iff the associated wire-segm'ent graph has
a 2-coloring, i.e. is 2-colorable. In fact, a layer assignment uniquely deter-
mines a 2-coloring, and the converse is also true. Then, the two-layer via-
_minimizétion problem is tAo find a 2-coloring of the wire—ségment graph so
‘that the number of continuation edges whose tWIO end vertices have differ-
ent colors is minimum. The layer assignment in Fig. 1 natually induces a
2-coloring for the graph in Fig. 4; the color assigned to a veftex is shown

by the vertex.

By assoﬁéa.ting positive weights £o continuation edges, the wire-segment
gfé.ph can be generalized to model a layout containing mulii-terminal nets.
The vertices of the graph still correspond to the wire segments. For a via
candicate connecting k wire segments, the k correspc;nding vertices in the
v:rire-segment graph form a complete subgraph (k-clique); each edge of the
k—clique is 2 continuation edge with weight 1 /(| k/2][k/2]) where |z] (re.sp.
[z] ) is the greatest (resp. smallest) integer smaller (resp. greater) than
or equal to x. Fig. 5 illustrates such k-cliques for k = 2,3,4. For the wire-

segment graph in Fig. 4, since k=2, all continuation edges have weight 1.

Now the graph coloring problem can be restated as follows:

" Minimum Weight Coloring (MW C):

Find a 2-coloring of the weighted wire-segment graph so that the total




weight of the continuation edges whose two end vertices have different col-

‘Ors Is minlmurm.

Lemma 1. Given a layout where all via candidates are of degree no more
than 3, an optimal layer assignment can be found by finding 2 minimum
" weight coloring of the weighted wire-segment graph.

Proof: This can be easily verified from Fig. 5(2)(b). Q.E.D.

In general, the via minimization problem is not equivalent to the MWC
problem if the degrees of some via candidates are greater than 3. However,
a minimum weight coloring is usually a good approximation to an optimal

layer assignment.

In a given layout, a wire-segment cluster, or simply cluster, is a maxi-
mal set of mutually conflicting wire segments. For example, in Fig. 3, wire
segments 4, 5, 6; 12 “and 14 form one clister: and wire segments 7, 8, 9 and
18 form another. In fact, a cluster in a layout corres;ponds io a connected
. component of the wire-segment graph due to the conﬂict‘edges, and vice

versa. This can be seen in Fig. 4. From our earlier formulatio.n, the layer
assignment problem has a feasible solution iff the wire-segment graph is
2-colorable, or equivalently, each connected component of the graph is 2
bipartite graph. A graph is bipartite if its vertices caﬁ be partitioned into
. two sets so that no edge connects two vertices in the same set. Since we

assume that a layer assignment is known, it can be claimed that all con-
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nected components of the wire-segment graph are bipartite graphs.

One can locate the essential vias ‘in a layout by looking at the connected
components of the wire-segment graph. Note that ‘vertices of a connected
component are partitioned into two sets, and vertices (i.e. wire segmenté)
in different sets must be assigned different colors (i.e. 1ayers).: .Therefo.re,
a continuation edge connecting two vertices in the opposite sets of a con-‘

nected component determines a via candidate where an essential via must

be introduced {9]. Fig. 6 illustrates such a continuation edge.

3.2. The Cluster Graph

Given a layerless iayout, once a wire segment in a cluster is assigned to a
certain layer, layer assignment of the rest of the cluster is forced. In other
words, there are only two possible ways to assign the wire segments in a
ci_uster to two layers.- On the other hand, wire segments in different clusters
can be assigned to layers independently-to each other. Thus, it is appro-
priate to treat all wire segments in a cluster as 2 wholg. With a prescribed
layer assignment, a cluster is said to be flipped over if all the wire segments

in the cluster are reassigned to the opposite layers.

The clusters in 2 layout can form a graph called the cluster graph. For

~ the moment, let us assume that all via candidates in the layout are of de-

gree 2. Each vertex of the graph corresponds to 2 cluster, and two vertices
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are connected by an edge if their corresponding clusters are connected to
at least a common via candidate. The cluster graph for the layout in Fig.
3 is shown in Fig. 7 where each vertex is labeled by using a representative

in its corresponding cluster.

Assume that a layer assignmeént such as in Fig. 1 is known. Then as-
sociated with each edge e of the cluster graph is a weight w(e) defined ‘as
follows: Let v be the number of via candidates connecting the two clusters
incident to e, and let § be the number of vias introduced by the known
layer assignment conne.cting the two clusters. Then

w(e) =6 —(v—§).

Note that, if either one of the two clusters is flipped over, then the current
6 vias in the known layer assignment can be eliminated, but another v —§
vias must be introduced. Thus, the weight w(e) indicates the via reduction
that cdn be achieved due to flipping over either one of the two clusters. As
an example, in Fig. 7, the weight for the edge connecting clusters 5 and
15 is 2 since for this edge v = § = 2 (with‘ reference to Fig. 1). If one of

the clusters 5 and 15 is fipped over, then the two vias connecting clusters

5 and 15 can be eliminated.

An arbitrary layer assignment L can be obtained from 2 known layer
assignment Lo by flipping over a set of clusters. Let §(L} and § (L) be the

numbers of vias introduced by L and Lo respectively, and let X be the set
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of clusters that are flipped over. Then

§(L)=6(Lo)— > w(e) (1)
ceE(x,Xj)
where E(X, X) is a cut separating X and X,i.e. the set of edges connecting
vertices in X and vertices not in X. {1) is due to the fact that for any two
clusters both in X or both in X, the via count between the two clusters
.....reﬁaiﬁs unchanged, but for two clusters one in X and one in X, the via
count is reduced by w(e). In order to minimize the via count 6(L), we want
to find a cut E(X, X) Which maximizes its cut capacity T cpx.z) wle), e
to find a maximum cut. Note that the edge weights w{e) can be positive or
nega.ti\-re, but a maximum cut is always nonnegative since X can be § and
T eeB(X,X) w(e) = 0 for X = @. In case that a maximum cut has capacity
0, Lo is an optimal layer assignment. Let us sumimarize what we have just

described as a lemma.
¥

Lemma 2. For a layout where all via candidates are of degree 2, an optimal
layer assignment can be found by finding a maximum cut of the cluster

graph.

For the cluster graph in Fig. 7, vertex sets {2,5,8} and {11,15} de-
termine a maximum cut of capacity 2. Thus an optimal layer assignment
“can be obtained from the layer assignment shown in Fig. 1 by flipping over

clusters 11 and 15. The resulting layer assignment is t:.hat in Fig. 2.
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The cluster graph can also be constructed from the \;.feighted wire-
segment graph. First, the wire-segment graph is reassigned edge weights.

For a continuation edge originally with weight w, the new weight is w or -w

.depending on if the two end vertices of the edge have different colors or have

the same color. For the wire-segment graph in Flg 4, the newly:a'ssigned.
edge weights are shown in Fig. 8. Then the cluster graph is constructed
by contracting each connécted componént of the wire-segment graph to a
single vel-'tex, and collapsing all continuation edges incident to the same
pair of connected components into 2 single edge whose weight is the sum of
the weights of the collapsed edges. The cluster graph constructed from the
graph in Fig. 8 is exactly that in Fig. 7; Since the weighteci wire—seément
graph is general enough to represent a layout containing multi-terminal
nets, the cluster graph constructed this way is as general. The folléwing-
thgorem is a generalization of Lemma 2. It can be derived in the same way

as Lemma 2. Thus the proof is omitted.

Theorem 1. For a given layout, a minimum weight coloring of the wire-

segment graph can be found by finding 2 maximum cut of the cluster graph.

Corollary 1. Given a layout where all via candidates are of degree no more
than 3, an optimal lay;er assignment can be found by finding a maximum
cut. of the cluster graph.

Proof: Combining Lemma 1 and Theorem 1. QED

14




The via minimization problem has been reduced to the maximum cut
problem, yet the latter is NP-hard for general graphs. Fortunately, Kaji-

tani made an important observation that the cluster graph is usually planar.

Lemma 3. Fér a layout where all via candidates are of degree no more than
3, the associated cluster graph is i)ianar. |

Proof: Consider a layout such as in Fig. 3. By collapsing clusters into
singlle. vertices, and str”e-i:ching connections betweén clusters due to via can-
didates {without altering the topology), the cluster graph can be drawn in

the plane such that no two edges cross each other. Thus the cluster graph

is a planar graph. Q.E.D.

~ The wire-segment graph and the cluster graph were initially defined in
[9], and later refined in {3][23][26]. The exposition of these graph models

in this section has b'ajsica.llj'r_followed [26], but is more general and complete.
3.3. The Via-Net Graph ' a

In a layerless layout, a net is formed by wire segments interconnected by
via candidates. It is natural to represent a net by a trée called the inter-
conmnection tree. There are two kinds of vertices in the tree corresponding
to the wire segments\ and the via candidates respectively. For each incident
pair of wire segment and via candidate in the layout, there is an edge in

the tree connecting the two corresponding vertices. Since each net has an
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interconnection tree, there are as many interconnection trees as the nets.
Thesé.iﬁter-connection trees can be connected by conflict edges. For each
pair of conflicting wire segments, there is a conflict edge connecting their
cor;esponding vertices in two separate interconnection trees. Thus the in-
terconnection trees form a graph called the via-net graph. To distinguish
the two kinds of edges, edges of the interconnection trees will be called
interconnection edges. As an example, tﬁe via-net graph for the layout in

Fig. 3 is shown in Fig. 9.

The concept of conflicting wire segments can be generalized to conflict-
ing nets. Two nets are in conflict with each other if they contain a pair of
conflicting wire segments. Conflicting nets can be represented by a graph
called the net crossing graph. Each vertex of the graph corresponds to a
net. Two vertices are connected by an edge if their corresponding nets are
in, conflict with ‘each other. The neticrossing graph for the layout in Fig.
3 is illustrated in Fig. 10. Note that the net crossing graph can be con-
structed from the via-net graph by contracting each interconnection tree
to a single vertex and collapsing all conflict edges connecting the saxﬁe pair
of interconnection trees into a single edge. For example, vertices 1, 1, 4, 2
and 7 in Fig. 9 are contracted to a single vertex (i.e. net) A in Fig. 10,

and vertices 12, f and 13 are contracted to vertex D, etec.

The via-net graph and the net crossing graph can represent not only a
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. layerless layout, but also a Iayoﬁt containing some vias. Consider a layout
such as in Fig. 2. The via or vias introduced in 2 net divides the net into
two or more subnets. Each subnet can be trea.ted as a net. Then the via-net
graph and the net crossing graph can be defined similarly as before For the
layout in Fig, 2, net F is split into two subnets consisting of wire segment
18 and wire segments 16 and 17 respectively. The associated via-net graph
is shown in Fig. 11. The net crossing gfaph is shown in Fig. 12 where

vertices 18 and 16 represent the two subnets.

The via-net graph and the net crossing graph can be updated dynam-

ically as vias are introduced in a layout. When a via is introduced in a =~

net at a via candidate, the vertex corresponding to the via candidate and
its incident interconnection edges are removed from the via-net graph. In
other words, the interconnection tree corresponding to the net is broken to
su:btrees correspondifig to the subnets. On the other hand, the vertex in
th'e net crossing graph corresponding to the split net is replaced by two or
more vertices, eé.cAh corresponding to a newly generated subtree or subnet.
The edges connecting to each new vertex are determined by traversing its
corresponding subt}'ee in the via-net graph. For example, the via-net graph
in Fig. 11 is constructed from that in Fig. 9 by removing vertex d and its
incident edges. The net crossing graph in Fig. 12 is constructed from that

in Fig. 10; vertex F is replaced by two vertices 18 and 16.
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When solving the V-'ia minimization problem, the best one (;ould hope
is that the net cfossing graph is 2-colorable. In this case, each net rc;n be
assigned to a single layer such that conflicting nets are assigned to different
layers. Thus a layer assignment to all the wire segments can be obtained
without introducing any via. Oi.:herwise, some vias must be introduced.
The vias split the nets into subnets. In a layer assignment sucﬁ 'as Fig. 2,
conflicting subnets must be assigned to different layers. Thus its associated
net crossing graph (eg. Fig. 12) is 2-colorable. Conversely, if the nets are
split into subnets so that the .resulting net crossing graph is 2-colorable,

then a layer assignment can also be obtained. Therefore, the via minimiza-

" tion problem can be formulated as follows: Introduce the minimum number

of vias in a layout in order to split the nets into subnets so that the final

net crossing graph is 2-colorable (i.e. bipartite) [1].
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4, Optimal Approach

Many optipma.l algorithms for two-layer via minimization have been pro-
posed. In this section, we only describe the one recently developed by Kuo,
et al. [15]: This algorithm is based upon the cluster graph model in Sec.
3.2, and is at present the most efficient optimal algorithm from the theo-

rectical point of view.
4.1. Problem Transformations

Let G = (V,E) be the ‘cluster graph for a layout which contains no via
candidate of degree greater than 3. Then G‘ is planar and each edge of E
has an associated real-valued weight. B:;" introducing a series of transfor-
mations, it can be shown that a maximum cut of G can be found by finding -

a minimum complete matching in a planar graph G’ constructed from G.

: Wit:hé)ut loss of ggnerality, ‘we assume that G is conne;:ted. (Otherwise
a maximum cut can be found by finding maximum cuts in individual con-
nected components.) We first triangulate C; by adding some new edges. A
triangulation G; = (V,E;) of G is a connected planar graph embedded in
the plane satisfying

@) E C Ei,
(ii) Each vertex of G has degree at least 2,

(iii) Each face of Gy is enclosed by a simple cycle of three edges, and
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(iv) Any two faces of G; share at most one edge.
We assign zero weight to each new édge in E; - K. As'an éxampl'e, a trian-

gulation of the planar graph in Fig. 7 is shown in Fig. 13.

Lemma 4. A maximum cut of G = (V,E) corresponds to a maximum cut
of G; = (V,E:), and vice versa.
Proof: Obvious. Q.E.D.

- Consider 2 geometric dual G4 = (Va, Eq) of Gy =, (V,'E;) [5}[18]. G4 can
be constructed from G, as follows: Consider aﬁ embedding of Gg‘in the
plane. Associated with each face of Gy, thfare is a vertex in Ggy. For each
edge shared by two faces of G, there is an edge in G connecting the two
corresponding vertices. A geometric dual of the i)lanar graph shown in Fig.
_ 13- is illustrated in Fig. 14. We assign to each edge of Fy the same weight
as its corresponding edge of E;. In general, a geometric dual of a planar
éraph is 2 multigraph. However, aue to the construction of G, Ga contains

no self-loops and parzallel edges, and G is regular.

Lemma 5. Gg = (Vi, Eq) is a cubic planar graph. (A graph is cubic if each
vertex of the graph is of degree 3.) |

Proof: Gy contains no self-loops and parallel edges since Gy sat_isﬁes (i1)
and (iv). Thus Gg is a graph. Each vertex of Vg is of degree 3 since Gy
satisfies (iil). The planarity of G’d :s due to the fact that Gy is a geometric

dual of G;. Q.E.D.
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In G; = (Vu, Es), an edge set D & Ey is said to be even-degree if
each vertex of V; is incident to an even number of edges in D. The weight
of an even-degree edge set D is the total weight of the edges in D. Since
Gq - (-Vd, E,) is a geometric dual of G, = (V, Eg), there is a one-to-one cor-
respondence between edges of E; and edges of E;. This induces a natural

correspondence between the cuts of G; and the even-degree edze sets of Gy.

Lemma 6. A cut of G; = (V, Ey) corresponds to an even-degree edge set of

Gq = (Va, E4), and vice versa.

Lemma6is a Well-known result in ‘the planar graph theory. Please refer
to [5][18] for its proof. Here we simply illustrate this lemma by an example.
: For the graph in Eig. 13, coﬂsider the vertex set X = {8,11}. X determines
a cut E(X,X) where |

. E(X,X) = {(8,2), &,5), (8,15), (11,2), (11,5), (11, 15)}.
In the dual graph (Fig. 14), the edge set that corresponds to E(X,X)is

{(E,D),(D,4),(4,E), (F,C),(C, B), (B, F)} .

Apparently, this edge set is even-degree, and consists of two simple cycles.

From Lemma 6, finding a maximum cut of G s equivalent to finding a
maximum (weight) even-degree edge set of Gy. The following lemma char-

acterizes a maximum even-degree edge set of Ga.

Lemma 7. Let D be a maximum even-degree edge set of Gy = (Va, Ea).
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Then D is either empty or a union of vertex-disjoint nonnegative cycles.
Proof: Assume D # #. Since Gy is a cubic graph, each vertex of 'G'd' is
adjacent to 0 or 2 edges in D. Thus D is 2 union of vertex-disjoint cycles in

Gy4. The claim then follows from the'fa.ct that D is maximum. Q.E.D.

To find 2 maximum even-degree edge set of Gy = (Va, E3), we :construcf
a graph G’ = (V',E’) from G,. Each vertex v of G; is replaced by a 3-clique
in G’ and each edge e of Gy has a sur?ogate in G’ as depicted in Fig. 15.
For the cubic planar grgph in Fig. .14, the constructed graph is illustrated
in Fig. 16. Define the edge Weights of G* as follows: the surrogate of each
edge ¢ € Eg has the same weight as ¢; and all new edges-in 3-cliques have
ZEero we1ghts Note that the constructed G’ is still planar for its topoloay
remains the same as that of G,.
A matchiﬁg M of gr#ph G’ = (V',E") is a set of edges no two of which
have 2 common vertex. If |M| _ |E']/2, then M is called a complete match-
ing. A maximum weight matching (resp. minimum complete matching) is a
matching (resp. complete matching) of G’ whose total weight i§ maximum

(resp. minimum).

Lemma 8. Let M C E' be a minimum complete matching of G'=(V',E').
Then E; — M is 2 maximum even-degree edge set of Gg = (Vy, Fa).
Proof: Let M C E' be any complete matching of G'. Consider any verfex v

of G4 and its associated 3-clique in G’ as in Fig. 15. Then M either contains

22




all three edges e),€; and e in G’, or contains exactly one edge among the
" three. In the former case, v has degree O in the subgraph of G; induced
by E; — M; and in the latter case, v has degree 2 in the subgraph. Thus
E;— M is an even-degree edge set of _Gd. Conversely, let D be any even-
degree edge set of G4. As shown in Lemma 7, D is either empty or a union
of vertex-disjoint cycles. From the construction of G’, one can observe that
there exists a complete matching M of G’ such that D = Ed — M. (Such a
' complete; rmatthiri'é is illustrated in Fig. 16 with respect to an even-degree
edge set shown in Fig. -14.) Clearly the weight of Ey ~ M is maximum iff

the weight of M is minimum. Q.E.D.
4.2. The Optimal Algorithm

Let us summarize the algorithm for optimal layer assignment and analyze

its time complexity..

7

Input: The cluster graph G, = (V,, E.) for 2 given layout.
Output: A maxirmum cut of G.. o

Algorithm MaxCut

1. Decompose G, into connected components. For each connected Com-

ponent = (V,E), do.steps 2 to 5.

9. Construct a triangulation G; = (V, Ey) of G = (V,E) by adding new

edges to G.
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3. Construct a geometric dual Gg = (Vy, By) of Gy = (V, Ey).

4. Construct the planar graph G’ = (V,E’) from G4. Each vertex of G4

is replaced by a 3-c1iqﬁe in G’.

5. Find a minimum complete matching M of G’. M determines a max-
imum even-degree edge set E; — M of Gg which corresponds to a’

maximum cut of G; and thus a maximum cut of G = (V.E).

6. Combining the maximum cuts for individual connected components,

we have a maximum cut G, = (V,, E.}.

Let n. and n be the numbers of vertices of G. and G respectively. Since
G, is planar, due to Euler’s formula [5], G. has O{n.) edges. Thus Step 1

can be computed in O(n.) time by using a simple depth-first search. Ap-

plying Euler’s formula repeatedly, we can see that each of the graphs G, G

“and Gy has O{n) vertices and O(n) edges. G’ also has O(n) vertices and

O(n) edges for each 3-clique in G’ contains 3 vertices and 3 edge;. Fach of

Steps 2 and 3 takes O(n) time since they can be carried out by embedding

G and G, in the plane and identifying their faces [10]. That Step 4 takes
O(n) time and Step 6 takes O(n,.) time is obvious. We have argued that
all steps execpt Step 5 takes linear time in the worst case. Below we shall

sketch an O(n!®log n) algorithm for Step 5.
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A minimum cqrﬁplete matching of G’ = (V’,E;) can be found by ﬁnd.ing |
a maximum weight matching of the same graph except that the weight w{e)
of each edge ¢ € E' must be replaced by a new weight W — w(e) where W
is a large-constant. (The negation of w(e) converts a minimization prob-
lem to a maximization problem. The added large constant W forces the
obtained matching to be complete.) Lipfon and Tarjan have 'des'igned an
O(n!Slog n) algorithm for finding a maximum weight matchiﬁg of a planar
graph by applying the planar separator theorem [16]{17]. Thus we have the

following lemma.

Lemma 9. Finding a minimum complete matching of a planar graph G’

can be done in O(n'*log n) time.

2

Theorem 2. Given 2 planar grap}l G, = (V., E.), Algorithm MaxCut can
find 2 maximum cut_of G, in O(nl*log n.) time. .In other words, for a
layout where all via candidates are of degree no more than 3, an optimal
layer assignment can be found in O(n}-*log ‘:‘Lc) time where 7, is the number

of clusters in the layout.
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5. Heuristic Approach

Tn this section, two fast heuristic algorithms for twb—layer_via. minimization
are reported. Even though no theory can guarantee their optimality in any
way, experiments have demonstrated that these algoritﬁms are very effec-
tive in éenefating near-optimal solutions. Moreover, thege algorithms have

the advantage that they can be easily modified to handle extra constraints.
5.1. The Net Split Algorithm

Chang and Du developed a layer assignment algorithm bjr using the net
split formulation described in Sec.3.3 {1]. In this formulation, vias are in-
troduced in a layout to split nets into subnets so that the final net crossing
graph is bipartite. A bipartite graph has the following well known property

[5]:

Lerima 10. A graph is bipartite iff it contains no. odd cycle, i.e. cycle of

odd length.

Due to Lemma 10, vias should be introduced to eliminate odd cycles
in the net crossing graph. The following example illustrates how the net
crossing graph is modified when a via is introduced. Consider the layout
in Fig. | 3 and its associated net crossing graph in Fig. 10. Since there
are many odd cycles in Fig. 10 passing through vertex F, a via should be

introduced in net F, say at location d (Fig. 3), to break these odd cy-
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cles. Then net F is split into two subnets as in Fig. 2, and the resulting
" net crossing graph is that shown in Fig. 12. Note that vertex F in Fig.

10 has been split into two vertices in Fig. 12. This breaks all the odd cycles.

An in_tpitiw/e method of breaking all the odd cycles in the net crossing
graph is by generating all of ‘them. Since a graph can contain an exponen-
tial number of odd cycles, this method is not practical. Thus aL heuristic
approach is taken ;chat only generates all the 3-cycles, i.e. cycles of length
three. Vias are first introduced to .break al.l the 3-cycles in the net crossing
graph. If thére are still ('Jdd cycl;as left, these remaining odd cycles are then

broken by using fundamental sets of tycles.

Consider a connected graph G = (V,E). A spanning tree of G isA a tree

that is a subgfaph of G and contains every vertex of G Let (V,T) be a

spanning tree of G. Then any edge not in T will create exactly one cycle

vi’Ilen added to T. Such a cycle is 2 member of the fundamental set of cy-

cles of G with respect to T. Without causing any confusion, we will simply

‘ call cycles‘in the fundamental set of cycles with respect to a spanning tree
»fundamental cycles”. It is well known that the fundamental cycles can

generate all the cycles of a graph [5][18].

Lemma 11. Any cycle of a graph can be expressed as the ring sum of a set
of fundamental cycles.. (The ring sum of two edge sets consists of the edges

in either one edge set but not in both.)

.
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Corollary 2. A graph is bipartite iff each fundamental cycle is of even
length.

Proof: The ”oqu i part is obvious. Since the ring sum of two or more
even edge sets (i.-e. edge set containing an even number of edges) is an even

eage set, the ”if” part follows directly from Lemma 11. Q.E.D.

Now we can outline the net split algorithm as follows:

Algorithm NetSplit
1. Construct the initial via-net graph and the net crossing graph.

2. Find all 3-cycles in the net crossing gfaph. Introduce a set of vias to
split the nets such that all 3-cycles are broken. Modify the via-net

graph and the net crossing graph to reflect the split of nets.

3. Find a fundamental set of cycles for the net crossing graph [5][22].
Introduce a via in the net which is involved in the largest number
of fundamental cycles of odd length.’ Modify the via-net graph and

the net crossing graph accordingly. This process is repeated until all

il

fundamental cycles are of even length.
. 4. The net crossing graph is bipartite. A layer assignment is obtained

b‘y finding a 2-coloring of the net crossing graph.

It should be noted that all computations in Steps 2, 3 and 4 are per-
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formed on the via-net graph and the net crossing graph. .AIso, recall that
“these two graphs can be maintained dynamically as vias are introduced in
the layout (Sec. 3.3).. Since Step 2 is the most crucial part of Algorithm
NetSplit {The majority of odd cycles in the net crossing graph are broken

in Step'2), we will explain it in more detail.

The following simple algorithm has been used to generate all the 3-
cycles. For each vertex, consider any two vertices adjacent to the vertex.
If they are adjacent to each other, then the three vertices form a 3-cycle:

In this way, all the 3-cycles can be generated.

For each cycle in the net crossing graph, there exists at least one corre-
sponding cycle in the via-net graph. Such a cycle in the via-net graph can
be considered to induce the cycle in the net crossing graph. For example,
the 3-cycle (B,F,D) in Fig. 1_0__'is induced by cycle (5,b,8,18,d,17,13,f,12) in
Fig. 9: The latter cycle consis.ts of three parts: (5,b,8) in net B, (18,4,17)
in net F; and (13,f,12) in net D. These 'thresi parts are connected by conflict
.edges. As shown in Fig. 3, such a cycle in the via-net graph usually corre-
sponds to a "loop” in the layout [1]. A cycle in the net crossing graph fnay
be induced by more than one {usually a small number) cycle in the via-net
graph. Thus, to break a 3-cycle in the net crossing graph, it is necessary to
- genera,t‘e all the cycles in the via-net graph that induce the 3-cycle. This

can be done by traversing the three interconnection trees in the via-net

29




graph corresponding to the three vertices (nets) that form the 3-cycle.

A cycle in the via-net graph is broken if a via candidate in the cycle
is chosgn to hold a via. Thus, after generating all ﬁhe cycles in the via-net
gra.ph that induce the 3-cycles in the net crossing graph, we want to select
the minimium number of via ca.ndidAateé such that everijcycle génerated
contains at least a selected via candidate. This problem is equivalent to
the subset cover problem which has been shown to be NP—h#rd [7]. A sim-
ple approximation method is to select the via candidate that is contained
in the maximum numBer of cycles repeatedly until every cycle contains a
selected via candidate. When a via candidate is selected, all the cycles

containing the via candidate are excluded from further consideration.

5.2. The Vertex Swapping Algorithm

Vértex swapping has béen a well known 'technique for min-cut network par-
titioning (6][13]. It is not surprising that the same technique can be applied
to a similar probiem of finding a maximurﬁ cut of a weighted graph. Since
the via minimization problem can be formulated as a maximum cut prob-
lem, a heuristic layer assignment algorithm has been developed by using

vertex swapping [27].

Consider the cluster graph G = {V,E) for a given layout. Each edge

e has a.real-valued weight w{e). The goal is to maximize the cut capacity
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T cer(a,5) w{e) where (A,B) is a partition of V. Starting with an initial par-
tition of V into two sets, the algorithm tries to increase the cut capacity
by a series of vertex exchanges between the two sets. The algorithm stops

when no further improvement is possible. =

Let A and B be any paﬂ:ition of V. For any vertex a in A, define an

‘internal connection I(2) and an external connection E(a) by

 I(a) = z(a,zerE,zeA w(a, 17),
E(a) = E_(a,v]EE.yEB w(a,y).
Similary, define I{(b) and E(b) for any b € B. Let D(v} = I(U)'— E(v) for
any v € V. It can be verified t‘ha.t D'.(\?) is precisely the gain in cut c;.pa;:ify
if v is moved from its current set to the other set. After a vertex moving,
- the D values can be recalculated easily. If vertex a in A is moved to B,
.then the new D values D’ can be calculated by
.+ D@ =-Dla),
D'(z) = D(z) ~- 2w(a, z) z€ A—{a},{a,z) € E, (2)
D'(y) = D(y) + 2w(e,y)  y€B,(a,y) € E.

The D values can be recalculated similary if a vertex b € B is moved fo A.
Let us state the vertex swapping algorithm as follows:

Algorith.m VertexSwap

1. Construct an initial partition of the graph. Compute D(v) for all

veV.

31




2. Determine a sequence of vertices vy, vz, ..., U Whose total gain 3>, D(v;)

is positive. The vertices v;’s are selected such that
D(vy) = maz{D{v) |v €V},
D(v;) = maz{D(v) |v € V - {U]_,‘Ug-, o Vic1}}, 2> L
Note that each time after a vertex is selected, all the D values mugt
be recalculated using (2) before the next vertex can be selected. If
a vertex sequence with positive total gain is found, then n:;ove'the'

vertices from their current sets to their opposite sets. Repeat this

. process until such a vertex sequence can not be found. -

32




6. Three-Layer Via Minimization

Like two-layer via minimization, three-layer via minimization can also be
formulated as a coloring proolem with respect to the wire-segment graph.
However, there is an additional constraint peculia-r.to three-layer via mini-
mization. For example, in Fig: 17, wire segments 1 and 2 connect to each
other at location a. Wire segment 3 in a different net overlaps wire segment
2 hoi‘izontally. If a via is placed at loc_a.tion a, then segment 3 cannot be on

the second layer. Otherwise, the three wire segments will be all connected

together due to the pun.ch-through via.

Because of its simil-a.rity with the graph three-coloring problem which is
NP-complete [7], the three-layer via minimization problem has been shown
to be NP-complete, and a fast heuristic algorithm was proposed [2] Start—
mg with a given layer assignment, the a.lgorlthm tries to eliminate vias one
after another by reassigning layers to the wire segments. A given layout
with layer assignment is represented by a via-net graph though only vias in
the given layoﬁt are considered as via ca.nézidates. In other words, vertices

of the via-net graph now correspond to vias and subnets in the layout.

The algorithm determines if a via can be eliminated or not by using
information local to the via. For a given via v, let LEVEL(1) be the set
of subnets incident to v, and let LEVEL(j), 7 > 1, be the set of subnets

which are in conflict with subnets in LEVEL(j-1) and which are not in
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| VEL(2),-.., LEVEL(j-1). In the via-net graph, vertices cor-
:-_‘silbnets in LEVEL(j) are j distance away from via v. Thus

3L can be easily computed by a breadth first search through
.. _aph.‘

1 rithm tries to eliminate a via by first considering the possi-
] ent of all subnets in LEVEL(1). If this fails, it considers the

: VEL(1) and LEVEL(2). This process is repeated and every
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Fig. 6. A continuation edge determining an
essential via
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‘ Fig. 7. Cluster graph G
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Dotted lines are interconnection edges.
Fig. 9. Via—netgraph
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’ (Edges r.n-arked with shortbars form a cut.)
Fig. 13. Triangulation G of G




(Edges rnarked with short bars
form an even — degree edge set.)

Fig. 14. Geometric dual Gd' of Gy
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