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Abstract:

In this paper we estimate the average length of an Euclidean minimum
spanning tree. If the vertices of an EM.ST are uniformly distributed on a unit disk in
R2?, we can derive the behavior of the edge lengths of the EMST ‘constructed from
these vertices by using the ordered statistics, and obtgin an upper bound for the
expected length of an EMST to be {7-n/2 + o({n) , where n is the number of
vertices of the EMST. This estimation is much closer to the actual values than the

previous results. Experiment values are also given.
CR Categories: F.2.2
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1. Introduction

The Euclidean minimum spanning tree (EMST) problems can be defined as
follows. Given n points in the plane, construct a spanning tree(of minimum total
length whose vertices are the given points. This paper considers the problem of
estimating the expected length of an EMST. This is hard to do because the edge
lengths are highly ciependent on each other, but some lower and upper bound were
derived in Marks[2] and Beardwood[1]. -

Let X be a random point which is uniformly distributed on a finite set S ¢ R2.
Let Xl,--.'-,'Xn be a random sample from X, and T, be the length of the EMST
connecting X,,--+,X,, and let ¢, = E(T,), the expected value of T,. Marks[2]
derived a lower bougd for the average length of the Kuclidean Travelling
Salesperson problem (ETSP) { as well as for that of EMST ) as

| q2yE an_l
where A is the Lebesgue measure of S when S ¢ R?% whereas Beardwood[1] found
that an upper bound for the average length of ETSP ( also for that of EMST ) is
| cn = 0.92/°K + o({T) |

when SCRZ In Siipowit[4] some aver‘age and worst cases of the ETSP problexﬁ were
considered when S is a unit square in R2

It seems that there is a huge gap between the upper bound and the lower
bound for the EMST. We hereby get an upper bound for ¢ as |

¢n = 0.707{n-A + o({m),

where S is confined to be a unit disk in R

This paper is organized as follows. In section 2 we.give a definite model of our

problem and the statement of the main theorem we have reached. The proof of the

main theorem is in section 3. The concluding remarks are given in section 4.
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2. Model of the Problem

For convenience of computation, we confine S, the set which the vertices of
the EMST are from, to be the unit disk D = { p € R% !p} < 1 }.’Assume that X is a
random point which is uniformly distributed on D, and (Xy,e-,X,) is an
independent random sample from X; then we can deﬁ;re a closer upper bound of Cp

as stated in the following theorem.

[. Theorem 1 |2

¢y = 0.707{n-A + o({m),

where S is a unit disk in R2
The proof of theorem 1 will be given in the next section.

3. Proof of the main theorem
In this section we give the proof of theorem 1. This requires some preparatvc;:y
work. First of all, we discuss the behavior of the length of an edge that connects two

points with one inside a circle and the other, outside.

[ Lemma 2 ]

. Let X be a random point uniformly distributed on a disk- of radius a € R
satisfying a > 0, and p be a point with distance b frofn the center of the disk and b
2 2 as shown in Fig. 1. Let random variable Z be the distance between X and P;
then the cumulative distribution function F(a,b;-) and the probability density

| function f(a,b;-) of Z are

0 z<b-2a
F(a,b;z)= %[cos"(ﬁggiz)+§cos'l(b—2'§$—2)—g! 1_(a_-5%__ E_z)"’], b—agz<b+a
1 b+aglz
4
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and

%;-zcos“(gg#) , when b-a<z<b+a, ' |
f(a.,b;z):{ C sesesesrerenasannans (2)
: 0, otherwise "
respectively.
<proof>:

]fN

T N4

The probability that the event Z<z occurs, Pr(Z<z), is the ratio of the area of
the shaded region in Fig. 1 to the area of the original disk 7a? because X is
uniformly distributed in the disk; therefore we have F(a,b;z) as (1) and f(a,b;z) =
%ZF(a,b;z) as (2) ( see 'a.ﬁpendix 1). |

Q.E.D.

The expecied value of the edge length in lemma 2 could be bounded as in the
following lemma. We hereby introduce & symbol u, to replace {{n-I)/n for brevity

in the remé.ining part of this paper.




[ Lemma 3 :

Let n be any integer greater than 1. For every integer m satisfying 1 < m < n,
define X,,---, X the m i:i.d. random points which are umformly distributed in B,
and Y a random pomt uniformly distributed in A as in Fig. 2 Define random
variables Z; = |X,-Y| ,i=1,---,m, where |-| is the Euclidean norm, and Z1 < 22
{ereg Z; the ordered statistics of Z,--+,Z . Then the expected value of Z’: has the

following property

- % 1+u 7
E@)< [ CL-Faglolfa+l, 3)

R T | '
where F(u,,1;t) is as derived in lemma 2.

<Proof>:

P(1,0)

Fig. 2

I

Let P be the point with Cartesian coordinates (1,0); define random variable

* *
Zs,p = |X-P|,i = 1,---,m, where |-] is the Euclidean norm, and Zy,; < Z2,p

%*
<---< Zm,p the ordered statistics of Zi,p T Z.,p ; then

E(Z, ) < E(Zl,p)




By lemma 2, we have

* 1+u -
B(zup) = [ Ttme Bl 1] g Lt

i-u n - ¥

=1- u+f [lFult)]m_dt;

therefore

* 1+11n
E(Z,) < j; [1-F(u,, Lit)"dt + L.

Q.ED.

The integral in {3) is not simple, since there are unknown parameters in if.

The following lemma will give a terser experssion which will not affect the result.

[ Lemma 4 }:
Define F:(o,z)-{R,

F(x) = [cos"(l - ) + x2c05'1(§) - !x_z - }i—]

which is limiting function of F(u,,1 ,x) as n approaches to infinity; then

J;l-i—un[l—F(un,l;t)]ﬁdt <j; [1-F(x)] d.x-l-%, ............... (4)

for all integer n > 2 and all m satisfying 1 { m < n.
<Proof>:

For all integer n)2, defineg:[n,w)— R,

1+u, o
gr)= [ [1-F(u,1x)] dx.

1-u,

Applying the Leibniz’s rule we have
dg(r) = [gf(1+u } -[l—F(ur,1'1+u,)] _ [gf( l-ur)] [1-F(u,,11-u,)]
- In- f 1 [1-F(u,,1; x)] [ (ur,l;x)]d_x

bt |




- 21§ rli -1) B mJ;-l-:I: - F(u " x)] l [%F(ur,l;x)]dx
where |
8te) = el [T B T r ]
=) i_ L xt+{4— —)x - —5/{2x cos"(§+2— ]—x] f(u,1x)
80

o, lx—J-—x‘+(4l %—)xz— %, / [2xcoé"(?2[—+21§)] l]

-[l—F(u 1; x)] ‘m- f(u,,1;x)dx ,

] <

sinceVr>1,Vxe (1w, I1+u)}, it can be shown that

( see appendix 2 )

' Ix—J x4+ (4~ %)xz— %5 / [2x-cos'l(§+2%)] I <2;

-thus

I r)! [1+2 f [I—F(ur, ,x)] ‘m- f(u,,1; x)dx]
= 517,(1+2) ¢§

This prowdes that 11111 g(r) exists, and
1 ®id
|et) - 2 (o) < | o)
r

6 ,_ 6
<~I;(_Pr’ dr =T

hence
1i 6
g(x) < lim gr) + 8
and
i+u 2
P -Flo i) ax < [ -FE)fae+ S
1-u, 0
Q.E.D.
8




The right-hand side of (4) is simple enough to evaluate. In the next lemma we

will give the limiting value of the right~hand side of (4) as m approaches to infinity.
+

[ Lemma 5 :
e f 1-F()"ex = [7,

where F is as in lemma 4.

<Proof> P

2
Let k, = J; [1-F(x)] "dx and 6= 2cos™¥(}) ; then

T - m
ky = [ sin(g) (220 L0058 Vg

For all § € (g , ), we have

( see appendix 3 )
—7-c0s# < sinf — f-cosf ;

thus
‘ /2
km-'—-j(; B

> j; :2sin(g)(—cos 6)"do;

. i *
sin(g) (B2 = f-oosflgg ;. S
T

replace 4 by 2¢1+§ ; we have

k, > g™ 51(; "/ (sing, + csg,)-sin"¢, - cos®p,-d¢,
. 2
- 2m O.S.J;T/ sinm*1¢2-cos‘¢2-d¢2

/2
=" f 2-sinmeigy c0s°gy- g,
0

The integral of the Jast expression is the beta function of parameters -2—!-1 and —— m+1

50 we have

1) - T(EED

km 2 2m-0-5.

r (m‘f‘f)




. thusVm,

by the duplication formula{3} and Stirling’s formula, -

1,7
kmzr__;l_(g_%) ............................. P (5)

where ¢, is a positive constant. .
On the other hand, ¥ w € (0, 1), since V ¢, € (0, %), we have
( see appendix 4 )
| cottpl-—§+ 0, >0
and

( see appendix 5 )

lim cotps —x/2 + ¢; _ 0
| o cos?p,
for i l-w) > 0, there exists 4, € (g , 7) such that V ¢, € (9.,'"% 3 %)3

coty; —7/2 + ¢ _ x{l-w)
0< COS 4 < 2 ?

and o
cot, + o, + % <7 [-1+(15E)-cos2cp1]
( see appendix 6 ) | | '
< %-(1 - cos2c;:>1)r71

< x-sin"p,

§0
cosp, + (p, + %)singa1 < x-8in%g, ;

let v, = ¢, + 7, thenV p, € (6, , =),

sing, — .- €08, < 7+ (—C08¢,)" ;

) ) m s
kp ¢ fo wsill'(g) [EQ;——-GCOSE] dg + f;} sin(g)-(—cow)“df}
w

<cp+ ly——;w,

where ¢, € (0,1) is independent on m ; thereforeV ¢ > 0,3 M, Ym > M,

10




( see appendix 7 )

Combine (5) and (6), we have
lim _Ix
Mo qm-k_ = IQ-.
Q.E.D.

Now we begin the proof of theorem 1.

<Proof of theorem 1>:

Assume that the average length of the EMST in the unit disk has an upper
bound c{n , where n is the number of vertices of the sbﬁnning.tree and ¢ is a
constant independent on n. _ |

As in Fig.2, the area of A is T Siace X,,- - +,X,, are uniformly distributed on
this disk, the probability of a point fallen in A is the ratio of the area of A to the
area of the disk. Let random variable Z,, be the number of the X}’s fallen in A; then
' Z, has the ‘binomial distribution B(n,%). Now we divide the problem to the
following cases:

[case1: Z_ = 0]:
n—l\n

The probability that this case occurs is P{Z, = 0) = =" and all X;’s are

in B. Therefore the length of the EMST has an upper bound c{n -JP—_I;— because the
edge length is proportional to the radius of the disk.
[case 2: Z = n}:

The Probability that this case occurs isP{Z, =n) = (%)m , and all X;’s are in
A. Thus the length will never exceed

( see appendix 8 )

27+ n-(1-| =) < 2r + 1.

11




[case 3:1<Z <]
~1)mk
The probability that this case occurs is P(Z =X%) = (k)u)n— and there
are (n—k) Xys in B and k Xy’s in A. From the previous result, the length has an

upﬁ‘er bound

( see appendix 9 )

el k(n-k)
e ptk [42(;-k)+ J—E]

where h(n) = o(n).

Summing_up the above three cases, we have |
cr< c. (ll 1) 4—1-+2T+1 ‘i

—1)nk -1 }{n—k —k |

"5 [ o[BI [ e )]]

and
p L
where i‘
_ n =1 n\(n_l)n'k k 2ﬁ-+1 n-i n\(n—l)ﬂ k h(n—-k) . - |
and )

= T ) K]

We can rewrite q(n) as |
R P s e =

‘ll'-a

because
( see appendix 10 )

k ]n—E 1 _
l—mﬁ n—_1-<1+§(n—_1-j,fork—0,1, ,I

we have

(H\L!.l"l) -k ) . (k)‘ n—1 !D*E < E (n\(n—ir)ln k(l % 2(;;—1))

é.nd

12 i




ny(n—1)nk 5k
I—H_—I< 2( ) o Jn—l <1TE‘(DTI')',
80 we have
llmrq(n).._l ........-.. ................. faesnena (7)

Or the other hand, because

( see appendix 11 )

k k> |
1+ < Iﬁ< 14—, fork=12---n,
we also have '

(k)(ﬂ)n— k- (1+T) < 3 (n‘(n"'l)n x J-_ (k)M)n_ k. 1_|_

b

80

lim— "g!n\(n-1)nk &k
A

which implies that the last two terms in p(n) are negiligible; therefore

img o) = JT% ........ P U (8)
Combine (7) and (8), we reach N
limp(n) _ [#x
I-® %EH}_J_’ o
BB [Tr o),
e{n = lg-n+ o({m).

=1,

hence

and

Q.E.D.

13




4. Conduding remarks
In order to compare the upper bound we derived with the actual length of the

" EMST, we generated 300 samples for each n = 22, 3%, 42,- --, 20? and computed its

ax,é_ra_.ge length. The results are shown in Table 1. !

The relative error is about —6.437% eventually; this -conﬁrms that the upper
bound we derived is reasonably good. On the other hand, this upper bound might
not be the actual expected length because; as in the proof of theorem 1, any point (if
exists) in set A might connect with more than one péint in B; this mea.ns'tha.t the

- tree we construct is not "minimum", and this upper bound could be reduced by

further work.

14




Table 1. Comparison between theoretic and experiment values:
Number of Theoretic = Experiment Coefficient Relative error
points n  value [7-n/2  value fy bof{x-2  (O—~{70]2)/{x-n]2
4 2.5066 1;9232 0.54252 -23.276%
9 3.7509 3.4608 0.650{;5 - 7.9571%
16 5.0133 4.6758 0.65951 —6.732%
25 6.2666 6.0126 0.67845 —4.052%
36 7.5199 7.1721 0.67440 - 4.625%
: 49 8.7732 8.3840 0.67654 - 4.323%
3 64 10.0265 9.5114 0.67078 - 5.137%
81 - 11.2798 10.7081 0.67126 — 5.069%
100 12.5331 11.8994 0.67135 - 5.056%
121 13.7865 13.0467 0.66916 - 5.366%
144 15.0398 14.1862 0.6669% - - 5.675% |
169 - 16.2931 15.3320 0.66540 — 5.899%
196 17.5464 16.5315 0.66621 — 5.784% _
, 225 18.7997 17.6946 0.6655¢ ~5.878%
i F 256 20.0530 18.8232 0.66374 - 6.133%
; } 289 21.3063 19.9954 0.66360 - 6.153% ‘
1y | 324 225507 211560  0.66311 —6.222%
361°  23.8130 22.3074  0.66240 - 6.323% -
!i 400 25.0663 23.4527 0.66159 —6.437%
i
| “
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_ List of figure captions:

[ Figure 1 J:

We have a disk with center the origiﬁ and radius a and a ‘point p having
distance b from the origin with b > a. No loss the generality, we can assume that the
coordinate of p is (b,0). If 2 point X iﬁ the original disk ];as distance z from p, then
the set of all such X is the shaded region on this figure.

[ Figure 2]: -
Given n points, we divide the unit disk into two iegions by drawing a circle
with center the same as the unit disk and radius u, = {{n-I)/n in order to obtain

the behavior of the length of an edge that connects two points with one inside the

circle and the other, outside.




-y
;Y)
a
X
[a] & T
o IN p=(b,0)
_ Fig. 1~
The two angles # and ¢ can be derived as
f= 2-cos‘1(£§%2)12)

and .
¢= 2-cos"(h-2—'{2'-§—z?_—a3)
and the y—coordinate of the point (x,y) is
IThiZt,
= JaL(ﬁz%)z s
s0 the area of the shaded region is

mz.rﬂ + ﬂ'bz-Q-Q— b-y

) + z%-cos7(

2. Because J-—x‘ + {4 - —)x -1 / [23( 005'1(2' 2—")}
| Jl_f-’_)xr)/cos §+Q_)

b1 g2
= 32'003-1(32+:2_z b24-z 32) Jl_(a +b 23—z )

‘et
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&+ ) = gor = 0
it is evident that (3 + Qlﬁ) has minimum value E when x = E and has maximum
value 1 \yhen x = 1-u, or 14u, ; therefore we can define w = cos"()gc + Qlﬁ) and
[ G+ oG g = (P =
which is in the interval (0,1) and since x € (1-u,,1+u,) € (0,2), we have

x—J x4 Dt %/[Qx-cos'l(xg-i-ﬁlﬁ)] I <2.

3. It is well-known that ¥ a € (0,%), o < tana. Replace a by =~ ; then V f ¢

5,
70 < tan{x-0) = —%Eg
and ' -

o (7—0)(—cosf) < sinf
because (—cosf)>0 Vé € (%,ér), hence

—x-C088 < siné— B-cosf .

4.  Asinappendix3,Y p, € (0,%), we have
v, < tang,,
50
g— 0, < tan(g— @;) = cotp, ;
hence
cot¢p1—§+ v, >0.

lim_ cotor = 7/2 + o1 G . Because the numerator

oy oo’y i

5. We want to prove that

and the denominator both approach to 0 as ¢, approaches 1o g, we could apply

L’Hospital % rule and find that




e = Tt — =

lim coty; — x/2 + ¢,
‘Pl"'g' cos? ¢,

_ lim _—l-cot?p+1 ’
’Pr*g' —2-8‘111901-(‘.0“01
= lim cospy _
x”2:81n3p, ~  °
Pry 1

‘6.  From the formula of the binomial expansion, we have

w-i
(1—cos?p) T
_ w-1 2 w-l w-3 2,32
=1+ 5(-cos’p) + —5——5{(-cos’p}* + ---
>1+ lEE(:oszgo1

because w-€ (0,1).

7. Vwe(0,1),Ym, wehave -

i3
k <cg+ lﬁ_mw’

where c_ € (0, 1) is independent on m ; therefore V ¢ > 0 , choose w € (0,1) such

- JE-n<s

and for the ¢ and the associated ¢ , the inequality
| @ <s
holds for sufficiently large m because c, € (0,1). Thus

[ﬁ(km-g) < [t + g(g-'l) <e

that

and hence

km<—é[g+ e] .

8.  The first term of [27.r + n-(l—!n%I)] is the perimeter of the unit disk, and the




expression in the parentheses of the second term is the width of the region A in
figure 2. This means that we can use the sum of the preimeter of the unit disk and n
times of the width of A to boﬁnd the total length of the EMST whose vertices are
uniformly distributed on A. \ |

9.  The first term of [c-“n—Ei 5;— + k-[ 2(::__}{} + h(z:k) ]] is the upper

bound of the average length of the EMST whose (n-k) vertices are uniformly
distributed on the region B in the ﬁéu:e 2, and the expression in the parentheses of
the second term is the upper bound of the expected value of the smallest edge length
that comnects ome of the (n—k) points uniformly distributed in B and a point
uniformly distributed in A, as derived in the previous lemmas. Therefore we can

bound the total length of this kind of EMST by the above expression.
10. It can be derived by the binomial expansion.

11. It can be derived by the binomial expansion.

|2+
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