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Abstract

! The class of perfect graphs is tremendously rich in their combinatorial structures.
Research in this area involves techniques drawn from polyhedral combinatorics,
graph theory and computational complexity. Several well-known optimization
problems such as the maximum clique, maximum independent set and minimum
coloring problems are NP-hard on general graphs but solvable in polynomial time
on perfect graphs. Many interesting classes of graphs encountered in theoretical as
well as applied research turn out to be perfect. The duality relationships embedded
in the definition of perfect graphs play an important role in their algorithmic and
graph theoretic properties. The strong perfect graph conjecture of Berge, probably
the most famous open problem in graph theory, has eluded researchers for almost
thirty years. Research efforts surrounding this conjecture have yielded many deep
and intriguing results which have applications beyond perfect graphs. Much of this
work would not become obsolete even if the conjecture were proved. In this survey,
we shall summarize the properties of perfect graphs, discuss the relationships among
these properties, classify techniques developed for solving these problems and list
existing algorithmic results and open problems.
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PERFECT GRAPHS
1. Introduction

The class of perfect graphs was discovered by Claude Berge. Motivated by

Shannon's work on "zero error capacity of a noisy channel", Berge made the famous
y g

" strong perfect graph conjecture (SPGC) in 1960. This conjecture has stimulated

researchers for thirty years to strive for its resolution. Today, the conjecture
remains open. However, the intensive research efforts have produced many
interesting ideas and results. Much of this work would not become obsolete even if
the SPGC were proved. In this survey, we shall discuss ﬁroblems generated from
the study of perfect graphs and techniques developed for solving these problems.

Since there have been many books and review papers covering different aspects of

 perfect graphs (see the books of Golumbic [1980] and Berge and Chvatal [1984]}), we

will emphasize more on recent reéults, in particular, the algorithmic aspects of
perfect graphs, which have applications beyond perfect graphs.

We consider graphs that are undirected with no loops or multiple edges. A
gra.i)h G is denoted by a pair (V,E), where V ( or V(G)) denotes the finite vertex set
of G, and E {or E(G)) denotes a set of edges connecting vertices of G. A subgraph
H of G is an induced subgraph if E(H) consists of all edges in G both of their end
vertices are in V(H). A subset P C V(G) is an independent {or stable) set in G if no
two vertices in P are adjacent in G. A subset Q C V(G) is a clique if every two
vertiées of Q are adjacent in G. A collection ¥ of c]iqueé is said to be a clique cover
of ‘G if the union of cliques in ¥ is V(G). A coloring of G is an assignment of colors
to vertices of G so that no two adjacent 'veftices- receive the same color. Such a
coloring gives rise to a collection of independent sets whose union is V(G). Define

the complement G of G to be the graph with vertex set V(G) such that two vertices

in G are adjacent if and only they are not adjacent in G. Thus, a clique in G
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. becomes an independent set in G and a clique cover of G becomes a stable set cover
* A of G. Finally, a class ¥ of graphs is said to be a heredifary class if G € ¥ implies
| that every induced subgraph of G is alsoin #. t
There are four important parameters associated W_i‘th a graph G, which play
" important roles in many graph optimization problems:
cziG): the maximum size of an independent set in G.
6(G): the least number of cliques in a clique cover of G.
«(G): the maximum size of a clique in G.
1{G): the least number of colors in a coloring of G.
A graph G is perfect if ofH) = f(H) for every induced subgraph H of G.
Historically, such a graph was defined to be a—perfect and there was a separate
definition of "«y—perfect’: w(H) = +{H) for every induced subgraph H of G. Two
obvious classes of imperfect ‘graphs can be defined as follows. Let the length of a
cycle C be the number of edges in C and a chord of C be an edge connecting two
non—consecutive vertices in C. Define an induced chordless cycle on n vertices with
n > 4 to be a hole (denoted by Cy,) in G and its complement to be an entihole
(denbted by Tu). It is easy to see that for odd n, Cy and Ty, are imperfect. In the
early 60's, Berge made two conjectures (Berge [1961,1962]). The first conjecture,
later referred to as the strong perfect graph conjecture, states that a graph G is

perfect iff G contains no odd koles or odd antiholes. The second conjecture, which

q | was proved by Loyisz [1972a] and referred to as the Perfect Graph Theorem, states
} that a graph is a-perfect iff it is j—pezrfect, or equivalently, G is perfect iff G is
H perfect. '

Studies on perfect graphs range from their graph theoretic properties to their
algorithmic impﬁcations. Hereditary graphs can often be characterized by forbidden
induced subgraphs. The .SPGC suggests a simple forbidden structures for perfect
a graphs, which has been verified for many special cases. The problems for finding the

above four parameters are NP-hard on general graphs. However, they are
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polynomially solvable for perfect graphs. The first few classes of graphs known to

“be perfect are triangulated graphs, comparability graphs and i-triangulated graphs.-
The list of these special classes of perfect graphs grows rapidly and efficient
polynomial algorithms for the four parameters were known for most of them. In
1980, Grotschel, Lovasz and Schrijver [1980,1984] presented polynomial algorithms
for finding these parameters on gemeral perfect graphs based on the separation
concept of the ellipsqi_d algorithm. However, these algorithms are unlikely to be
practical and efficient combinatorial algorithms exploiting the graphical structure of
_ perfect grapils are still being pursued actively.

Research on perfect graphs has become very active in recent years. Many new
tools have been developed for attacking their recognition and optimization
" problems. We shall divide our discussion into the following four sections. In the
next section, we describe the properties of perfect graphs as well as imperfect
graphs.  Section 3 investigates the relationships among the rapidly -growing
collection of special classes of perfect graphs. - Recognition and optimization
problems on perfect graphs and various approaches towards their resolution are
presented in Section 4. Finally, in Section 5, we.consider related problems and -

applicatioins.




2.  Properties of Perfect Graphs

Much of the research on perfect graphs has been motivated by the two

conjectures of Berge. After the weak conjecture was solved by Lovasz in 1972, a

large body of work has been directed to imperfect graphé; especially those that are

minimal imperfect This is the class of imperfect graphs each of whose proper
induced subgraph is perfect. It is easy to see that the class of odd holes and the

class of odd antiholes are minimal imperfect. Berge's SPGC states that these are

~ the only minimal imperfect graphs. This conjecture has been tackled through

techniques from both graph theory and polyhedral combinatorics. Recently, a new
property of perfect graphs stronger than the Perfect Graph Theorem but weaker
than the SPGC was conjectured by Chvétal [1984] and verified by Reed [1987].
This property is based on the consideration of the P 4—structure in perfect graphs,
where a Py is an induced chordless pa;nh with four vertices. |

Our discussion is divided into four sections: (2.1) the Perfect Graph Theorem;

- (2.2) minimal imperfect graphs; (2.3) the polyhedral point of view; and (2.'4) the Py

property.

ﬁ.l.- The Perfect Graph Theorem

The weak conjecture of Berge states that the following two conditions (2.1.1)
and (2.1.2) are equivalent. |
(2.1.1) o H) = y{H) (a—perfectness) for each induced subgraph H of G
(2.1.2)  w(H).= &H) (yperfeciness) for each induced subgraph H of G
This conjecture was settled by Lovész in 1972 and became known as the Perfect
Graph Theorem. The kKey to the proof is the introduction of the following
self—complementary condition (2.1.3) and the Duplication Lemma.:

(2.1.3) o H) - «(H) > |H| for each induced subgraph H of G
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Denote the set of vertices adjacent to x in G by N(x) (the set of neighbors of

v

™ x). Let u be any vertex of G. Denote the graph obtained from G by adding a new

vertex u' which is connected to all the neighbors of u by G ®# u. G g u is said to be

obtained from G by a duplication of u. A graph G'is said to be obtained from G by
multiplication of vertices it can be obtained from G tfuough a series of vertex

duplication operations.

ﬁ Lemma 2.1.4 (Duplication Lemma). If G is perfect, then G @ u is perfect for any

~ vertex u of G.

Theorem 2.1.5. (The Perfect Graph Theorem, Lovéasz [1972a]). Let G be an
undirected graph. Then conditions (2.1.1), (2.1.2) and (2.1.3) are all equivalent.

2.2 Minimal Imperfect Graphs

An imperfect graph G is called minimal imperfect if it has no imperfect proper
induced subgraph. Obvious properties of imperfect graphs include the following: G
is connected; o(G) > 2 and «{G) > 2. Below, we list other conditions that every

minimal imperfect graph G satisfies.

1.  Lovész condition (Lovész [1974b])

n=qagw-t1l

2. Padberg conditions (Padberg [1973,1974])

Every vertex is in exactly w maximum cliques

Every vertex is in e:factly a maximum stable sets
G has exactly n maximum cliques

G has exactly n maximum stable sets
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Each maximum clique intersects all but ‘one maximum stable set and vice

versa. |

Although these two conditions seem to be quite strong, they are not enough to
characterize minimal imperfect graphs. To illustrate this, let us call an undirected
graph G on n vertices (a,cq)—partitionﬁble ifn = a-w+ 1.and for all vertices x of G
o G) =_6(G\{x}), (G) = 1{(G\{x}). It can be shown that G is partitionable if and
only if both conditibns 1 and 2 hold. Furthermore, the class of minimal imperfect
graphs is properly contained in the class of partitionable graj;hs (Padberg [1974]),
and the latter is properly contained in the class of imperfect graphs (Bland, Huang
a.ﬁd Trotter [1979]). Hence, we have
(2.2.1) A graph G is imperfect if and only if some induced subgraph of G is

partitionable.
This property immediately implies that the class of imperfect graphs belongs to NP,
which is equivalent to that the class of perfect graphs belongs to coNP. Figﬁre 1
shows a graph which is partitionable but not minimal imperfect (discovered
independently by Huang '[1976] and by Chvatal, Graham, Perold and Whitesides
[1979]).
Figure 1. A graph G which is partitionable but not minimal imperfect

Chvatal gave a large class of partitionable graphs which is not minimal
imperfect. Denote by CX the undirected graph with vertices vy, vy, ..., vp such that
.vi and vj are adjacent if and only if i and j differ by at most k (all subscript
arithmetic is taken modulo n). It is easy to see that the graph Cw- St 1s an

(@,w)—partitionable graph When w = 2, then C@-1_ is simply the odd hole

w+1
Copyys When a =2, then G2 -1, is the odd antihole C, w1 Wehave

Lemma. 2.2.2 (Chvétal [1976]). For any integer @ > 3 and w > 3, the partitionable

graph Cw 1s not minimal imperfect.

-6 -




Many other properties for minimal imperfect graphs were found besides
Lovasz and Padberg conditions. Most of them provide forbidden subgraphs

'
characterizations.:

3. G does not have an even pair (Meyniel [1984])

Two vertices x and y of a graph are said to form an even pair if there is no
induced odd path conriécting x and y. This property implies |
(2.2.3) G does not have twins (Lovasz [1972a]).
where, two vertices x and y are said to be twins if every vertex distinct from x and y
" is adjacent to either both of them or to neither of them. If G contains twins, then it
is substitution decomposable. ,

Reed (private communication) showed that property 3 holds for partitionable

graphs.

4. G does not have antitwins (Olariu [1986])

Two vertices x and y are said to be eniitwins if every vertex distinct from x
and y is adjacent to p-recisely one of them. Note that, this property is not sha.réd by
all partitionable graphs as one can check that the top and bottom two vertices of

the graph shown in Figure 1 form antitwins.

5.  (Star—cutset Lemma, Chvatal [1985]). G does not have a star—utset.

A cutset C in a connected graph G is a subset of vertices whose deletion leaves
G disconnected. A star—cutset is a cutset C in which there is a vertex adjacent to
every other vertex in C. By restricting star—cutsets to those consisting of some
vertex along with all of ifs neighbors, the star—cutset lemma is reduced to the
following result of Tucker [1977].

(2.2.4) G does not contain a vertex x such that G\N(x) is disconnected.
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By the Perfect Graph Theorem, (2.2.4) is equivalent to the following result of Olaru
:\ (2.2.5) ~ "G does not contain a vertex w such that the set of all the vertices
adjacent to w induces a disconnected subgraph of the complement of G.

Given any class & of perfect graphs, one can enlarge this class by considering

itsl star—closure i; defined recursively as follows.

(1) G e € then G ¢ ‘.

(2) I G or G has a star—cutset, and if G\{v} ¢ # for all vertices v of G, then
Ge 6’

6.  The skew—partition conjecture (Chvatal [1985]).

Define a skew pariition of a graph G 1o be a ba.rtition of Vinto V; and Vy such
that both V; and V; are disconnected. Note that G has a skew partltlon if and only
ifG has Chvatal proposed the following

The Skew—Partition Conjecture No minimal imperfect graph has a skew partition.

For graphs with at least five vertices and at lest ome edge, having a
star—cutset implies having a skew partition. Hence this conjecture generalizes the
star—cutset lemma. Furthermore, it can be deduced from the SPGC, because an odd

hole does not have a skew~partition.

2.3 Polyhedral Point of View
Padberg [1973,1974] derived many properties of minimal imperfect graphs
using techniques drawn from polyhedral combinatorics.

Let A be any m x n matrix of zeros and ones having no zero column, and

define the polytopes P and PI as follows:
P={xeR"|Ax<ex;20,j=1,..0}
Pr=conv{x €R" | Ax<e xj=00r1,j=1,..n}
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where el = (1,...,1) has m components all equal to one. The matrix A is called
perfect if P = Py, ie., if the polytope P has only integral vertices. Denote by G the
graph associated with the matriz A, i.e., the vertices of G correspond, to the columns
of A and two vertices are adjacent if their corresponding columns have at least one
+1 entry in common. A matrix A is said to be a cligue matriz if it contains the
incidence vectors of all maximal cliques of the associated graph G. Chvétal [1975]
showed that A is perfect if and orﬁy if its associated graph G is perfect.

Let A be a clié{le matrix of size m x n and let G be the associated graph.
Denote by B a clique matrix of G. Similarly, define the polytopes Q and QI--for e)
as follows:

Q={xeR*|Bx<ex;20,j=1,..n}
Q= conv{ x€R®|[Bx<e,xj=00rl,j= 1,..,n}
where el = (1,...,1) has components all equal to one and is dimensioned compatibly

with B. Denote «{G) by w. Padberg showed that

Lemma 2.3.1. Let A be a clique matrix of a minimal imperfect graph G. Then

nfvs

Fisw provides a facet of Q; and x = (1/w)e is a fractional vertex of P.

i
This lemma implies that every minimal imperfect graph G contains at least

|V(G)| maximum cliques of cardinality w.

Lemma 2.3.2. Let A be an m n clique matrix of a minimal imperfect graph G.
Then A contains an n n nonsingular submatrix A, whose column and row sums are
all equal to w. Furthermore, any row of A which is not in A, is either

componentwise identical to some row of A, or has a row sum strictly less than w.

This lemma implies that every minimal imperfect graph G has exactly [V(G)|




maximum cliques of size w{G) and [V(GQ)] ;ﬁ;ﬁﬁi}a;laii;}d?ep Ry @)
Let A be a zero—one matrix of zeros and ones and @ it's;; a.S?S(;)Cl-;id Taph

said to have property "8 n if the following conditions hold: :

(i) A contains'an n n nonsingular submatrix A, whose row and column sums are
all equal to £.

(i) Each row of A which is not a row of A, either is componentwise equal to some

row of A or has a row sum strictly less than g.

Padberg derived the following forbidden submatrix characterizations for

perfect matrices.

Theorem 2.3.3. Let A be any zero—one matrix of size m x n. Then A is perfect if
and only if for # > 2 and 3 < k < n, A does not contain any m x k submatrix A’

having property g
24 The Pstructure

Chvatal [1984] defined a graph G to have the Py—structure of a graph H (or G
is P4-isomorphic to H), if there is a bijection f between V(G) and V(H) such that a
set S of four vertices in G induces a Py if and only if £{S) induces a P4 in H. Based

on this notion, he proposed the following

Semi—Strong Perfect Graph Conjecture (SSPGC): If G has the Ps—structure of a
perfect graph, then G is perfect.

The SPGC implies the SSPGC and the latter in turn implies the Perfect Graph
Theorem. This semi—conjecture was shortly settled by Reed [1987] and became the

semi—strong perfect graph theorem. His proof makes use of the Perfect Graph
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Theorem. Below, we briefly describe the main idea of his proof. Define a
endomorphism of a graph G to be a mapping f which maps V(G) into itself in such a
way that f(u) and {(v) are a.djacent if and only if u and v are. Supgose the SSPGC
fails, then there must exist Ps—isomorphic graphs G and H such fhat G is perfect
and H is minimal imperfect. Obviously, G is not H aid, by the Perfect Graph

Theorem, G is not H. A cortradiction can then be obtained by showing that H

must have one of the following three properties which 2 minimal imperfect graph

| cannot have.

Theorem 2.4.1. Let G and H be Py~isomorphic graphs such that G is neither H nor
H. Then at least one of the followmg holds:

(a) H contains a proper induced subgraph isomorphic to C5

(b) Hor H has a star—cutset.

(¢} Hor H has a proper endomorphism.

The semi-strong perfect graph theorem suggests that it suffices to investigate

the fonﬁation of P4 in a graph to check perfection. Based on this, Chvital [1987]

invented the partner decomposition to be discussed in Section 4.




3.  Current List of Perfect Graphs

Many interesting classes of perfect graphs were reported in the literature.
chara.cterizations- for them range from forbidden subgraphs, rep’resentations as
iﬁtersectioﬁ graphs, and edge orientations. Some of these classes are perfect by
definition, e.g. triangulated graphs, comparability graphs. Others are obtained from
the intersection of the class of perfect graphs with certain special classeé of graphs,
e.g. planar perfect graphs, claw—free perfect graphs. Most of them have "good
characterizations", namely, characterizations which render polynomial time
recognition algorithms. Researchers are often interested in finding well
characterized classes of perfect graphs which contain a number of known special
cla.éses of perfect graphs. Another line of research involves determining the most
primitive classes of perfect graphs which can be composed nicely to form various
larger classes of perfect graphs. This aspect will be the main topic in Section 4. We
shall divide our discussion into the fbllowing two types of graphs: (3.1) special
classes of perfect graphs; (3.2) graphs which satisfy tﬁe SPGC. For each class

listed, we state a few equivalent characterizations.
3.1. Special Classes of Perfect Graphs

The birth of perfect graphs was closely .Iela.ted to the discovery of the
perfectness of comparability graphs (Berge [1960]), triangulated graphs (Berge
[1960], Hajos and Suranyi [1958]) and interval graphs (Berge [1960]). Since then,
many other classes were discovered. A diagram depicting the relationships among-
some of these classes is shown in Figure 3. We note here that, although it seems
plausible to investigate only the larger classes of perfect graphs such as weakly
triangulated graphs or strongly perfect graphs, the alternate representations of the

smaller classes are also worth discussing. Figure 2 depicts the relationships among
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some of these classes. Figure 3 gives some sample graphs illustrating the differences

among some classes.
Figure 2. The Hasse diagram of the containment

f
relationships among some classes of perfect graphs

Figure 3. Examples showing the differences among these special classes

In the following, consider a finite, undirected graph G = (V,E) without loops
~or multiple edges: 7

1.  Interval graph: The intersection graph of a family of intervals.

This class was first noted by Hajos [1957].

An equivalent characterization (Gilmore and Hoffman [1979]): G is
triangulated and G is a comparability graph.
| Forbidden subgraphs can be found in Lekkerkerker and Boland [1962] {also see
Duchet [1984]). | |

2.  i-iriangulated graph (Gallai [1962]): Each odd cycle of length > 3 has a set of
chords which form with the cyqle a planar graph whose unbounded face is the
exterior of the cycle and whose bounded faces are all triangles.

Equivalent Characterizations:
(a) Every odd cycle of leﬁgth greater than 3 has at least two non—crossing chords.

(b) Every odd cycle of length k has k-3 chords that do not cross one another.

3.  Comparability graph: there exists a transitive acyclic orientation (a-b & b-c
implies that a~c) on the edges of G.
An equivalent characterization (Rotem and Urrutia [1983]): The complement

of G is the intersection graph of the graphs of n continuous functions Fy: (0,1) + R.
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Forbidden induced subgraph characterizations can be found in Gallai [1967]
™ {or see Duchet [1984]).

Permutation graphs, a special class of comparability graphs, can be
characterized as: G and G are both comparability gra,?hs (Dushnik and Miller
[1941]). A special class of &permuta.tion graphs, the class of Psfree graph (also
called cograph) satisfies that: for any induced subgraph H of G, either H or T is not
connected. Corneil, Perl and Stewart [1985] gave a linear time algorithm for
constructing a substitution decomposition tree of a cograph.

4.  Parity graph (Olaru and Sachs [1970]): Every odd cycle of length greater than

3 contains at least two crossing chords.

An equivalent characterization: for every pair of vertices x and y in G. all
induced paths connecting x and y have the same (odd, even) parity.

This class of graphs includes the class of bipartite graphs and P s~free graphs.

5. Tolerance graph {Golumbic, Monma and Trotter [1984]): there exist a family
F = {Ix | x € V} of closed intervals and a set T = {tx | x € V} of positive
numbers satisiying that (x,y) € E iff the length of Ix N Iy > min {tx,ty}

A tolerance graph is weakly triangulated and its complement is perfectly

orderable.

6.  Triangulated graph (also called chordal graph): there exist no induced even
cycles of length > 4. |
A simplicial vertex u in G is one whose neighbors form a clique. A cutset C in
a connected graph G is a subset of vertices whose deletion disconnects G. A cutset
is said to be minimal if it cc;)nta.ins no proper cutset. An R—orientation is an acyclic-

orientation satisfying that if a~c and b-c, then (a,b) € E(G).

Equivalent characterizations:




(a) G is the intersection gra,ph of subtrees of a tree whose vertices correspond to
the maximal cliques of G. (Buneman [1974], Gavril [1979])

(b) Every minimal cutset of G is a clique. (Dirac [1961]) '

(¢) Every induced subgraph of G has a simplicial vertex. (Dirac (1961],
Lekkerkerker and Boland [1962]) )

(d) G admits an R-orientation. (Rose [1970])

7. Meyniel graph (Meyniel [1976]): Every odd cycle of length greater than 3
contains at least two chords. '

This class of graphs include the class of i~triangulated graphs (Gallai [1962]).

8.  Perfectly orderable graph (Chvétal [1984]): There exists a perfect linear order
Vi, .-, Vn OR the vertices so that a minimum coloring can be obtained by
assigning to each v; the smallest positive integer that is assigned to none of its
neighbors with index less thani. .

Consider a linear order < on the vertices of G. A P4 abed in G with edges
(a,b), (b,c), (c,d) is said to form a obstructionifa < b, d < ¢. A linear order. is said
to be admissible if it creates no obstruction.

An equivalent characterization: G has an admissible order.

This class of graphs includes the class of comparability graphs, triangulated
graphs. and cotriangulated graphs.

9.  Weakly triangnlated graph (Hayward [1985]): G contains no Cp or T, for all.
n> 5. '
Hayward showed that if G is a weakly triangulated graph with at least three
vertices, then G or @ has a star—cutset. Weakly triangulated graphs are preserved
under substitution. A vertex x is said to be dominated by a vertex y if every vertex

z (different from x and y) that is adjacent to x is also adjacent toy. A homogeneous
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set M in G is a proper subset of V(G) such that H has at least two vertices, and
every vertex in V(G)\M is adjacent to either all or none of the vertices of M.
Haﬁmd gave an interesting weakly triangulated graph W, fwhich is self
complementary, without clique cutset mor a homogeneous set, without dominated

vertices and is not strongly perfect.

10.  Alternately orientable graph (Hoang [1987]): there exists an orientation such
that the directions alternate on every induced cycle of length at least four.
If G is an alternation graph, then G is a comparability graph or else it has a

star—cutset.

11. Strongly perfect graph (Berge and Duchet [1984]): Each induced subgraph H

contains a stable set which meets all maximal cliques in H.

Another characterization: no two families ¥ = {Cy,...,Cx} and P =
{Dj,...,Dr} of maximal cliques (with possible repeated cliques) satisfy { | = | Z|
and | 4x| > | Px| forallx e V. |

This class includes the classes of Ps;free graphs, comparability graphs,
triangulated graphs, Meyniel graphs (Ravindra [1984]), cotriangulated graphs, and
perfectly orderable graphs. '

12. Quasi—Parity graph (Meyniel [1987]): if H is an induced subgraph of G which
is neither a clique nor a stable set, then either H or its complement contains

an even pair (no induced odd path connecting x and y).

G is said to be strict quasi-parity if every induced subgraph of G contains an
even pair or else is a clique. These graphs are perfect because no minimal imperfect
graph ;:a.n contain an even iJa.ir.

P. Hell (private communication) remarked that, given any dass # of perfect

graphs, one can enlarge it to a class #P defined as follows. A graph G € #p if, for
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every induced subgraph G' of G, one of the following holds:
(i) G'belongsto &
(i) There exists in G' or in G' two vertices x, y which are not linked by an odd

induced path.

13. Murky graph (Hayward [1988]): G contains neither Cs, Ps, nor D
We now follow the notation of Hayward. A graph is called unbreakable if it
has more than two vertices and if neither the graph nor its complement has a star

cutset. Define a mirror partition [R,S] of a graph G t0 be a partition of the vertices

_into sets R = {ry,...,rt} and S = {s;,...,5:} such that

(1) GI[R] and GI[S] are P 4—free, and

(2) (ri13) € E & (54,55) € E & 15 misses sj & s; misses 15, for 1 < i < j < t.
A graph tha.tL has a mirror partition is called a mirror graph. Let Ls and Ly denote
the line graphs of K3’3\e and K3,3, respectively. Hayward showed that if G is an
unbreakable Murky graph, then G is Lg, Lg or a mirror graph.

14.  Opposition graph (Olariu [1987]): there exists an acyclic orientation of G so
that no Py, wxyz, with edges (w,x), (x,y) and (y,z) has both w-ix and yz.
If G is an opposition graph, then G is either bipartite or else its complement

has a star—cutset.

15.  PIgraphs (Corneil and Kamula [1987]): Each vertex is represented by a point
on 2 line and an interval on another line (which form a triangle); two vertices are
adjacent iff their corresponding triangles intersect.

This elass includes both the permutation graphs and the interval graphs. An
extension of PI graphs is the class of IT graphs (discovered independently by Dagan,
Golumbic and Pinter [1986], which they called trapezoid graphs): each vertex is

represented by an interval on each line (which form a trapezoid) and two vertices
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are adjacent iff their corresponding trapezoids intersect. The class of I graphs is

- contained in the class of weakly triangulated graphs.
3.2 Graphs Which Satisfy the SPGC -

The SPGC has been verified for many special classes of graphs. The perfect
subclasses of these special graphs give rise to new classes of perfect graphs. We list
several important su‘t:-n-:lasses below. A graph is called Berge if it contains no odd
holes or odd antiholes. The following notations are needed. A claw is a K1,3’
namely, a set of four vertices {w,x,y,z} with edges (wx), (w,y) and (w,z). Such a
claw is said to be centered at w. A diemond is a K4 with one edge deleted. A bull
and a dart are depicted in Figure 5.

Figure 4. Three graphs: diamond, bull and dart

1. | Planar perfect graph (Tucker [1972]): “A planar Berge graph.

Planar graphs is the first special class containing imperfect graphs for which
the SPGC is verified. The proof by Tucker [1972] yields a..coloring algorithm.
Recently, Hsu [1987] gave a recognition algorithm which simultaneously solved all

four optimization problems (Hsu [1988]).

2.  Claw—free perfect graph (Parthasarathy and Ravindra [1976]): A Berge graph
without claws.

The class of claw—frée graphs became well-known after Minty's maximum
independent set algorithm (Minty [1980]). The first proof by Parthasarathy and
Ravindra [1976] considered minimal imperfect claw-free graphs. Note that the
problems of finding «{G),’ {G) and #(G) are all NP-hard for general claw—free
graphs. Hsu and Nemhauser [1984] solved these latter problems polynomiaily on
their perfect subclass based on the bipartite matching algorithm.
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3.  Perfect 3—Chromatic graphk (Tucker [1977]): A Berge graph without Kj.
The first proof by Tucker [1977] considered minimal imperfect 3-chromatic
graphs. Recently, he gave anther proof based on a coloring algorithm (Tucker
I

[1987]).

4.  Perfect toroidal graph (Grinstead [1978]): A Berge toroidal graph.

A toroidal graph is a graph which can be drawn on a torus so that no two
edges intersect. The key in verifying the SPGC is the following: if G is mini;:nal
imperfect toroidal, then either w{G) < 4 or G is regular of degree six and
triangulated the torus.

5. Diamond—free ((Ki\e)-fiee) perfect graph (Parthasarathy and Ravindra
[1979], Tucker [1984]): A Berge graph without diamonds.
Original proofs considered minimal imperfect diamond—ree graphs. Tucker
[1987] recently gave a coloring algorithm. Fonlupt and Zemirline [1987] gave a
recognition algorithm.

6.  Bull-free perfect graph (Chvital and Sbihi [1987]): A Berge graph without
bulls. .

7.  Dart—free perfect graph (Sun [1988]): A Berge graph without darts.

8. Gallai perfect graph (Sun [1988]): .Gal(G) contains no odd holes. |

. Given any graph G, define a graph Gal(G) by letting the vertices of Gal(G) be
the edges of G, and making two vertices of Gal(G) adjacent if and only if the
corresponding two edges of G share an endpoint and their other two endpoints are
nonadjacent in G (namely, these two edges form a P3).

The proof uses the following important property: If a Gallai-perfect graph G
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contains an induced dart, then G contains a star—cutset or an even pair.

Techniques used in verifying the SPGC for special classes have been centered
around the neighborhood structure of a minimal imperfect.gra.ph in those classes. |
Hsu {1984] summarized the proofs for 3-chromatic, claw—free and diamond—iree
graphs and concluded that the SPGC is true for graphs in which each vertex is one
of the following five types: Define a vertex u to be a
(1) bvertex if N(u)is bipartite
(2) b-vertex if the complement of N(u) is bipartite
(3) m-~vertex if N(u) is complete multipartite
(4) m~vertex if the complement of N(u) is multipartite
(5) m'-vertex if each of its neighbor is an m-vertex.

" Im a 3—chromatic graph every vertex is a b-vertex. In a claw—free graph every
vertex is a b-vertex. In a diamond-free graph every vertex is an E—v‘erte.x. This
result was later used by Sun [1988] to prove that dart—free graphs satisfy the SPGC.

Chvital [1976] proved that if a minimal imperfect graph G contains a
spanning subgraph isomorphic to C3 for some k > 1, then G is an odd hole or an odd
antihole. Giles, Trotter and Tucker [1984)] strengthened this result to show that if,
for-each u in a minimal imperfect graph G, the partition of V—{u} into &(G) stable
sets has at least two members containing a single neighbor of u, then G is an odd
hole or an odd antihole. This result also implies the validity of the SPGC for
claw-free graphs.Finally, define a class to be complete for the SPGCiff the tru:th of
the SPGC on this restricted class implies that the SPGC is true in general. By
applying perfection—preserving composition operations, Corneil {1986] showed that
the following classes are complete for the SPGC: k—connected graphs for any
positive integer k, graphs which are both eulerian and hamiltoonian,

self-complementary graphs and regular graphs.
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4.  Algorithmic Aspects of Perfect Graphs

The definition of perfect graphs involves the four most important parameters
in graph optimization problems (her'eafter, referred to as the fou"r optimization
problems). The strong duality relationships on &(G), #G).and w(G), (G) provide
invaluable information for efficiently computing these parameters. In addition,
perfect graphs are hereditary and therefore, suitable for divide-and—conquer type of

algorithms.  These properties can probably explain the recent explosion of

algorithmic interests and results on perfect graphs.

At the birth of perfect graphs in 1960's, several special classes of perfect
graphs were found and their four optimization problems solved. However, these
classes of graphs are, by definition, free of odd holes or odd antiholes and the SPGC
is trivially true for them. Tile first nontrivial proof of the SPGC was presented by
Tucker [1972] on the class of planar graphs. His proof provides an algorithm for
coloring planar perfect graphs. ‘Later, Pathasarathy and Ravindra [1976] showed
that the SPGC holds for the class of claw—-ﬁee'graphs. Minty [1980] gave a
polynomial algorithm for the maximum independent set problem on this class. Hsu
[1979] solved the other three optimization problemé on its perfect subclass {these
three problems are NP-hard on general claw—free graphs). In 1980,. Grotschel,
Lovasz and Schrijver [1980] finally discovered polynomial algorithms for the four
optimization problems on genéral perfect gra;phs. Their aigorithms are based on a
separation concept of the ellipsoid algorithm and bears little relationships with the
graphical structure of perfect graphs. -Although their algorithms are of theoretical
interest, their results pave the way for future research on more efficient
combinatorial algorithms for perfect graphs.

Another important problem, the recognition of general perfect graphs, remains
open. The situation on special classes of perfect graphs is much better. Polynomial

(in many cases, linear) time algorithms have been designed for recognizing
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triangulated graphs (Rose, Tarjan and Lueker [1976]), interval graphs (Booth and
Lueker [1976]), comparability graphs (Golumbic [1977], Spinrad [1985]),
permutation graphs (Even, Pnueli and Lempel [1972]), cographs (Corneil, Perl and
Stewart [1985]), parity graphs (Burlet and Uhry [1984]), Meyniel graphs (Burlet and
Fonlupt [1984]) and etc. A common nature of these a.lgor.i‘thms is that they are all
based on representations which yield either graph decompositions or special vertex
orderings. Again, for these special classes of graphs the SPGC holds trivially,
because of the absence of odd holes and antiholes by definition. In 1987, Hsu
provided an O(n3) algorithm for recognizing planar perfect graphs, which is
equivalent to idenﬁfying odd holes in planar graphs. This is the first algorithm for
recognizing odd holes in a nontrivial {meaning that there are graphs containjng odd
holes) class of graphs. Similar recognition algorithms have also been obtained by
Chvatal and Shihi [1987] on claw—free perfect graphs, by Fonlupt and Zemirline
[1987] on (k¢\e)-free perfect graphs. Hsu [1987a] gave a summary on the existing
decomposition operations for perfect graphs.

We shall first discuss the general optimization algorithms of Grdtschel, Lovész
and Schrijver in Séction 41. We then discuss some composition and decomposition
operations on perfect graphs in Section 4.2. These operations are shared by many
combinatorial recognition and optimization algorithms for perfect graphs. Section
4.3 is devoted to combinatorial algorithms. Finally, we cover some related problems

and applications.
4.1. The Ellipscid algorithms of Grotschel, Lovasz and Schrijver

The algorithms of Grotschel et al. use the ellipsoid method. We assume the
reader has a basic knowledgia of this method (see Gacs and Lovisz [1981]). Define a
convez body K to be a closed, bounded fully dimensional, and convex subset of fRn, n

> 2; specifically, there exist two rational numbers 0 < r ¢ R, and a vector ap € K
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such that S(aq,r) € K C S(aq,R), where S(aq,s) = {x¢€ R | Jx—ao] <5 } denotes the

ball with center ap and radius s. Denote the convex body by the quintuple

(K;n,20,1,R). ;o

The followiilg two related problems are of particular interest.

Optimization Problem. Given a vector ¢ € 2 and a rational number € > 0, find a

vector y € Q" such that d(y,K) < eandcTx ¢ cTy + eforall x € K (i.e. y is almost in

K and almost maximizes c'x on K).

Separation Problem. Given a vector y € {2 and a rational number § > 0, conclude
wit‘h one of the following:

(1) asserting that d(y,K) < & (i.e. y is almost in K)

(2) finding a vector ¢ € § such that [c| > 1 and for every x € K, cTx < ¢Ty

+ 6 (i.e. finding an almost separating hyperplane).

Let R, be the nonnegative orthant and K ¢ R be a convex body such that
there are reals r and R, 0 < r < R, with
(a) R 0 S(0,1) ¢ X C R, n S(0,R)
(b) 0<x<yeKaxeK
The anti-blocker A(K) of K is defined by
A(X) :={y€[R]:| yix<1lforeveryxe K }

If % is a class of convex bodies satisfying (a) and (b) we set A(F) = { A(K) | K €
JG}.

Theorem 4.1.1. Let J¥ be a class of convex bodies satisfying (2) and (b). Then
the optimization problem for J% can be solved in polynomial time if and only if the

optimization problem for A( %) can be solved in polynomial time.
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We shall only briefly describe their approach for solving the unweighted stable
set problem for perfect graphs. They consider the following two classes of convex
bodies. ’

For every 31.1b'set W of vertices in G, denote by x" the incidence vector of W,
ie xy=1ifveWandxy =0if v ¢ W. Then "

~ P(G) :=conv { X" € R | W ¢ V(G) is a stable set of G }
is called the stable set polytope of G.

P*G)i= {xeR" |xy > 0foralyin V(G) and B xv ¢ 1 for all
. vVE

cliques C ¢ V(G) }
is called the fractional stable set polytope of G, which contains P(G). Define

0 (G)=max{ & xy|x€P (G)}
vevV .

to be the fractional stability number.

Clearly, every weighted stable set problem on G can be solved as a linear
programming problem over P(G). The LP—solution over P*(G) provides an upper
bound a*(G) for the weight of the optimal stable set in G. Fulkerson [1973] has
shown the following (see also Chvétal [1975]).

Theorem 4.1.2. P(G) = P (G) if and only if G is perfect.

Hence for perfect graphs, ofG) = a*(G). However, it is difficult to find a
polynomial separation algorithm for P(G). Instead, they investigate the Shannon
capacity of perfect graphs. | |

Denote by GxH the cartesian product of the graph G and H, i.e. V(G:H) =
V(G)xV(H) and two vertices (u,v), (u',v") in V(GxH) are adjacent if and only if u is
adjacent to u' and v is adjacent to v'. Let Gk denote the cartesian product of k

copies of G. The Shannon capacity of a graph G is defined to be
k
#(G) = sup Jo{GEK) (Shannon [1956])
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It is easy to see that o{G) < ¢/(G). Shannon showed that #(G) ¢ a*(G). Hence,
for perfect graphs, o{G) = #(G) = o:(G). But, ¢/(G) is difficult to compute in
general. Lovésé’introduced a parameter, called #(G), which is an upper bound for
(G). !

| Let G be a graph and assume that its vertices are labeled 1, 2, ..., n. A
system (uy, ...,n) Of vectors in a real vector space is an orthonormal representation
of G if the uy's are orthogonal and of length 1. Let % (G) be the set of all .
orthonormal representations of G, and U be the set of vectors of unit length, then

set

A(G) 1= min ‘min max —L —
' (uy,.- - ;un)€ %(G) ceUL<in (cTuy)?

This quantity can also be characterized as a maximum of the sum of the entries of
certain ‘ma.trices representing G. Denote the trace of a matrix B by tz(B). Define

2{(G)={ B = (b)) | B is a symmetric positive semidefinite (n,n)-matrix

with tr(B) ='1 such that by; = 0 iff (i,j) € E(G) }
Lovasz showed that
H(G) = max J[i,%:lbij |Be 2(Q) ). *

For perfect graphs, we have o{G) = &{(G) = A#(G) = a (G). Grotschel et al.
provide a polynomial separation algorithm for the class of positive semidefinite

matrices Z(G), which enables them to calculate .#(G) and hence, &G).
4.2 Decomposition Operations

One of the approaches in analyzing perfect graphs is to ‘inve‘stigate
perfection—preserving operations which either decompose perfect graphs into highly
structured components or generate large perfect graphs from the composition of

smaller ones. The motivation for decomposing perfect graphs is to identify those
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primitive, highly structured classe$ of perfect graphs (e.g. comparability graphs, line
graphs of bipartite graphs) from which general perfect graphs can be constructed.
Hsu [1987b] conjectured that every perfect graph can be composed from components
that are either co;npa.ra.bility graphs or line graphs of bipartite graphs.

One of the important operations, implied by the Pe;fect Graph Thecgrem, is
"complementation”. In applying the decomposition operation described in this
section, we not only check a given graph, but also check its complement. A number
of operations satisfy the interesting property of being self—complementary, namely,
the graphical structure associated with the operation exists in graph G if and only if
it exdists.in G.

Most of the operations discussed in this section preserve perfectness for both
~.decomposition and composition, which are very useful for recognition algorithms.

For each operation, there is an associated graphical structure, whose existence in a
| graph G enables us to apply the operation on G. Depending on the nature of these
operations, we can classify them based on the following considerations: (1)
formation of induced cycles; (2) P4—structure; (3) graph reduction. At then end of

this section, we pose some open problems.
42.1 Formation of Induced Cycles-

The idea can be drawn from regular graph connectivity. It is well-known that
the biconnectivity deﬁnitioz; of graphs is related to " cycles" in that two edges in
different biconnected components are not contained in any simple cycle. For perfect
graphs, it appears that the correspording notions are induced cycles (holes) and
their complements (antiholes). Since odd holes and odd antiholes are imperfect,
none of the perfection—pfeserving operations can generate odd holes or odd
antiholes. In fact, most of these operations do not create any holes at all. We shall

discuss several classical operations of this kind and summarize them at the end.
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Define a cutset in a connected graph G to be a set of vertices in G whose
deletion disconnects G. The operations described in this section involve certain
vertex partitioning and cutsets.

!

4211 Operations Which Do Not Create Holes

We describe several perfection—preserving composition operations which do
not generate holes or antiholes. The reader will find that certain operations are
special cases of others. We inclide them because there exist different

generalizations and applications for these operations.

1.  Clique identification

Given a graph G, with a clique Kl; another graph G» with a clique K3 such
that |[K;] = |K.| and a one-to—one mapping f from K, to K,, one can construct a
new graph G from G; and G; by identifying each vertex v of K; with f(v) of K». G |
is said to be obtained from G and G, through clique identification. On the other
hand, there is a na_,tﬁral reverse decomposition operation. Suppose a connected '
graph G contains a clique cutset K. Let Hj, ..., Hx be the connected components of
G\K. Let G; be the subgraph of G induced on V(H;) UK,i=1, .., k. Then we say
G can be decomposed into Gy, ..., Gy.

It is well-known that clique identification is a perfection—preserving operation
(one can check that «{G) = max (w{G1), »(G2))). Decomposition based on clique
cutsets is often useful in recognizing special classes of perfect graphs and in solving
their optimization problems.  Whitesides [1984] has developed polynomial
algorithms based on such decomposition. Burlet and Fonlupt [1984] showed that
i-triangulated graphs can ‘be composed from basic i-triangulated graphs through

clique identification.
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2. Join

This operation is more general than substitution. Let Gy, G2 be two disjoint
graphs and vy, vz be two disfinct vertices in them, respectively. Define G- G, be
the graph with ’

V(G1:G2) = (V(Gy) U V(G2))\{vy,v2}
E(G:Ga) =  E(G\{vi}) UE(G2\{v2})
U{ (x5) | (x,v1) € E(Gy), (v,¥) € E(Go) }
Thus, G- Gy is obtained by joining every vertex in N(vy) to every one in N(vj).
Bixby [1984] showed that this operation is perfection-preserving by constructing
efficient covering algorithms. This composition is one instance of a more general
construction studied in Cunningham and Edmonds [1980].

Conversely, if a graph G satisfies that there exists a partition of V(G) into V,,
Vi Vg and V3 with [Vo U V4| > 2, [V2 U V3| 2 2 such that every vertex in V; is
adjacent to every one in Vo, no vertex in V, is adjacent to any one in Vo U V3 and
no vertex in V; is adjacent to any one in Vo U Vy, then we say G contains ¢ join and
can be decomposed by the join decomposition into G; and G, where G; is a
subgraph induced on Vo U V; U {v2}, and G is a subgraph induced on {vi} U VU
V3, where vy, v, are arbitrary vertices in Vy, V), respectively. ‘
Cunningham [1982] gave an O(n3) algorithm for finding the join decomposition iree
of a graph. Gabor, Hsu and Supowit [1985] reduced its complexity to O(m-n).
Burlet and Uhry [1984] showed that parity graphs can be composed from bipartite
graphs 7a.nd cliques through join composition.

If we set Vj to be the empty set throughout the last paragraph , then the join
decomposition reduces fo the substitution decomposilion.  The substitution.
decomposition plays an important role in thé study of comparability graphs: a
comparability graph containing no substitution is uniquely tramsitively orientable.
Spinrad [1987] has shown that the substitution decomposition tree of a graph can be

obtained in O(n?) time.
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3.  Amalgamation

Burlet and Fonlupt [1984] developed a decomposition algorithm for
recognizing Meyniel graphs. ~This operation is called the amalgamation, which is a
genéralization of the join and a special case of the clique identification. We describe
the cor'responding composition operation as follows.

Let Gy, Go be two disjoint graphs. Let Ky, K3 be two cliques of the same size
~ and vy, va be two distinguished vertices in Gy, Go, respectively such that
(a) KiCN(vy), K CN(va).
(b) Every vertex in K; is adjacent to every other neighbor of viin Gy, 1 =1,2.
(©) N(¥:) =K & N(v2) = Ka

Form é, new graph G, called the amalgam of G; and G, by identifying each v
in X, with a distinct vertex in K, connecting every vertex in N(v;)\K with every
one in N(va)\K2 and deleting vy, v2. Conversely, if a graph G can be formed as the
amalgam of two graphs G; and Gg, then we say G can be decomposed by the

amalgam decomposition into Gy and Gg. When K; = K; = @, the amalgamation

reduces to the join. -When N(vi)\K,; = N(Vz)\Kz = @, the amalgamation reduces to

the clique identification.

A basic Meyneil graph G is a connected graph whose V(G) can be pa.r-titioned
into A, K and S such that
(a) A induces a 2—connected bipartite graph, K is a clique, S is a stable set.
(b) =xe€A,yeK=(xy) e E(G); each x € § is adjacent to at most one vertex in A.
Burlet and Fonlupt [1984] showed that using the amalgamation, Meyniel graphs can
be decomposed into basic Meyniel graphs.

In fact, one can further decompose a basic Meyniel graph G through its

complement G. Separating G along the clique cutset S results in two induced

subgraphs G, and Gy of G, where G;is a subgraph induced on A U K and Gz is a
subgraph induced on K U S. Now, G; can be decomposed by the substitution

decomposition into a bipartite graph induced on A and a clique K. G; can be
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decomposed by clique cutsets into a collection of cliques. If we regard the

substitution decomposition as a special case of the amalgamation and regard a graph

G to be amalgam decomposable if either G or G is the amalgam of two smaller
I3

graphs, then we have

Theorem 4.2.2. Meyniel graphs can be decomposed by the amalgamation into

2—connected bipartite graphs and cliques.

4.  Generalized Join B ‘
‘The substitution decomposition is self-complementary. However, its
génera]jzation,' the join operation, is not. Following Hsu [1987], we describe here a
self-complementary operation which includes the join. A graph G is said to have a
generalized join if there exists a partition of V(G) into two collection of subsets Vi,
V";, - Vg (whose union is called V) and V;, Vg, vers V; (whose union is Vj) such
that every vertex in V‘il, j= 1,...,t+1, is adjacent to all vertices in “ﬁ jV? but no
other in V3; and every one in .V];, j = 1,...,t+1 is adjacent {o all vertlces in mL_J V1
but no other in V.
An equivalent condition based on forbiddern configuration is that there exists a
partition of V(G) into V; and V, such that
(4.2.1) there do not exist vertices xy, y;in Vy, xg, y2 in V, with (x4,%2), (y1,¥2) €
E(G) but (x1,y2), (x2,71) £ E(G).
From this characterization, it is easy to see that G contains a generalized join if and

only if G contains one.

If G contains a generalized join as described above, then we say G can be

decomposed by the generalized join decomposition into G, and Gq, where G, is a
2

subgraph induced on ViU {vé, V2y weny V;} with all edges among the v;‘s removed and

G, is a subgraph induced on V, U {vi,vi, vees v1} with all edges among the v;s

i
removed, where vi is an arbitrary vertex in VJ- Conversely, we say that G is
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composed from G and G, by the generalized join composition.

The problem of testing whether there exists a generalized join in a graph is
still open. | p
5. Generalized 1-separation

We describe in this section a generalization of the amalgamation by combining
the clique identification and the generalized join. A connected perfect graph G is
said to be I—separable if the following partitioning applies either to G or to its
complement: V{G) can be partitioned into three subsets Vy, X, and V; such that K
is a clique, neither V{ nor V, is an independent set, (4.2.1) holds for Vy, V, and the

following. is satisfied:

(4.2.3) there does not exist an edge (x;,x2) connecting x; € V; to x2 € Vy such

that neither (v,x;) nor (v,x2) belongs to E(G) for any v € XK.

Let G, (respectively, G3) be the subgraph obtained by deleting all edges with both
ends in Vi (respectively, V) from G. G is said to be decomposed by the
1-separation into G, and Ga. Conversely, we say that G is composed from G and
Gq. It is easy to verify that such a composition does not create any hole or antihole
and that it preserves perfection. Hence, no minimal imperfect graph can contain a
partition satisfying (4.2.1) and (4.2.3).

The, problem of recognizing the structure of 1-separation is open just as that

of the generalized join.

421.2 Operations which create only even holes
Define a graph G to ‘be I—inseparable if it cannot be decomposed by the
1-separation described above. Given a l1-inseparable perfect graph G, we consider

"2—separation" operations which yields components that allow induced cycles of G
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to “cross“. these components. A formal description of a general 2—separation is quite
involved (can be found in. Hsu [1987a]). We shall describe the basic idea and give a
pfototype example. We saj‘r that two disjoint subset of vertices Uy and Uy in G
form a partial join if every vertex in U, is adjacent to every one in U;. Consider the
following analogy. Recall that 3—connected components of a 2—connected graph are
obtained by repeatedly separating the graph using cutsets consisting of two vertices.
Similarly, we shall apply our 2-separation to those l1-inseparable perfect graphs
using separating structures consisting of two parts {C%,C2}, where C! can be one the
following: a vertex, a 2-cligue or the edges of a partial join and C1 can be either a
vertex or edges of a partial join. Since operations involving a partial join can be

reduced to the case of 2 single vertex, we shall concentrate on 2—clique cutsets.

1. Ct={x}, C?2={y}.

Let C = {x,y}. If (x,7) € E{(G), then {x,y} is a clique cutset. Hence, assume
(x,y) ¢ E(G). Because two induced paths connecting x, y in different components
must form an even hole, every induced path connecting x, y in G must have the
same parity. Let Hy, ..., Hx be the connected components of G\C. Let the induced
subgraph on V(H;) U C be G;. If x is oddly related to y, then G can be 'decomposed
into Gy', ..., Gx', where Gj' is the subgraph G; with the additional vertex x;, y; and
edges (x,xi), (x3y1) and (yyy). If x is evenly related to y, then G can be
decom_posed into Gy", ..., Gx", where Gi" is the subgraph G;i with an additional
vertex x; adjacent to both x and y (as shown in Figure :f)_ These added vertices not
only are used to preserve perfection, they also play an important role in the
optimization algorithms discussed below. |

5
Figure # A case for 2-separation

To illustrate how to solve the optimization problems using the decomposition

scheme, we consider the maximum weight independent set (MWIS) problem. To
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simplify our discussion, assume G is decomposed by the cutset C 1into two

components G; and G; and each vertex v of G is assigned a weight w(v).
Furthermore, assume the MWIS on Gy can be solved in polynomial ti{me. We show
that after suitable modification of weights (denoted by w') of vertices in G, a
MWIS P of G can be obtained as the union of a MWIS P G, of Gy and a MWIS
P G, of G, relative to w' such that P G nC= PG2 n C. Thus, our MWIS algorithm
* on @ is reduced to that on G, relative to w'.
Denote a MWIS of a graph G by Py and its weight by W(PG). Define the
marginal weight wg{x,y} of {x,y} relative to Cin G to be
W) + W)+ ¥(Ea\(ng uNG) v e) T Fe\C)

which is the difference between the weight of a MWIS in G containing both x and y,
but no other vertex in C, and the weight of a MWIS in G\C. It is possible for this
quantity to be negative.

" Two important relationships between path parity and the weights of

independent sets in general graphs are stated in the following lemma.

Lemma 4.24. If x is evenly related to y, then wg{x,y} > wg(x) + wg(y). If x is

oddly related to y, then wg{x,y} < Wg(x) - Wg(y).

To compensate for the deletion of G, when we reduce the MWIS problem to

Gy, a quantity g is introduced in the following

Theorem 4.2.5. Consider the following two cases:

(a) xis connected to y in G through degree—2 vertices. x;and y;. Without loss of
ggnerality, assume w(x;) > w(yy). Let w'(x) = ng(x) + g —h, w'(xy) =
w(xy) + g, w'(y1) = W(y1) + h, w'(y) = wgl(y) and w'(u) = w(u) for all other

u in G, where h = Wgu(x) + wg l(y) - wgl{x,y} > 0and g > h. This is"

illustrated in Fig. 12.
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(b) x is connected to y in G, through a degree 2 vertex x5  Let

w'(x) = ng(x) + g, w'(x) =w(x) + g w'{y) = wgl(y) + g and w'(n) = |

st — o0 C C
w(u) for all other uin G', where g = wGl{x,y} - WGI(X) - WGX(y) > 0.
Then the weight of a MWIS of G is the sum of W(PGI\C') - gand wl(PG,), where
P is a MWIS of G’ relative to w' (as shown in Figureg). :
[

Figure. . The weight modification for 2-separations

3.  2-amalgam spiit .

This corresponds to the case that both C! and C2 are partial joims, and in
ad&ition, there is a clique Q each of whose vertices are adjacent to all vertices
involved in the two partial joins C! and C%2 Note that, in the amalgam split, C? is
empty. This operation was proposed by Cornuejols and Cunningham [1986], and
they also gave an O([V|?E|?) algorithm for recognizing such a structure in general

graphs.
422 The Pystructure
1.  Partner Decomposifion

Theorem 4.2.6 (Even decomposition, Chvatal and Hoang [1985]}). Suppose V(G) can
be- partitioned into V; and V such that each induced P4 has an even number of
vertices in each Vi, i = 1,2, then G is perfect if and only if each of the subgraphs

induced on V; and V, is perfect.

Theorem 4.2.7. (Odd Decomposition, Hoang {1985]). Suppose V{(G) can be
partitioned into V; {colored red) and V (colored white) such that

(i) noinduced P4 has precisely two vertices of each color,
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(i) if an induced P4 has precisely three vertices .of one color, then at least one of
these three vertices belongs to no monochromatic induced Py. .

Then G is perfect if and only if each of the subgraphs induced on,Vy and V3 is

perfect. ' '

Two vertices x and y in G are said to be pariners if there is a set 5 of three
 vertices such that both S U {x} and S U {y} induce a P4. If the hypothesis of
Theorem 4.2.1 or Theorem 4.2.1 is satisfied then obviously any two partners belong
to the same Vi Hence the following result implies both Theorem 4.2.6 and
Theorem 4.2.7.

Theorem 4.2.8. Suppose V(G) can be partitioned into V) (colored red) and V,

{colored white) so that all partners have the same color. Then G is perfect if and

only if each of the subgraphs induced on V;and V,is perfect.

Consider the partner graph of G that has the same vertices as G, with any two
vertices adjacent if and only if they are partmers in G. Such a graph can be
constructed in O(n5) steps. Then G has a nontrivial partition satisfying the
hypothesis of Theorem 4.2.8 if and only if the partner graph of G is disconnected.
Based on the even decomposition, bipartite graphs can be decomposed into two

stable sets. Finally, the partner decomposition is self~omplementary.
2.  Forbidden P{ypes

Denote a P4 by abcd. A 2-color assignment of vertices in P4 can be
represented by the followiﬁg form: for example, RWWW, which stands for the
assignment of red to a and white to b, ¢ and d. The hypothesis of Theorem 4.3.1

"every two partners have the same color" can be replaced by a stronger hypothesis

—35—




Jlike "there is no P4 of type RWWW or WRWW or WRRR or RWRR". Chvatal,
Lenhart and Sbihi [1987] proved that there are precisely twelve theorems of this

form: '

Theorem 4.2.9. Let the vertices of G be 2—colored. If there is no P; of a type that
belongs to S, then G is perfect if and only if each of each of its two subgraphs

induced vertices of one color is perfect.

Six of this theorems arise by setting
S = {(RWWW,WRWW,WRRR,RWRR},
S = {RRRR,WRRW RWWR,WWWW}
S = {WRRR,WRRW RWWR,WWWW RWRR}
S = {WRRR,WRRW RWWR,WWWW,RWRW}
S= {WRRR,WRRW,RWWR,RWWW,RWRW}
S = {WRRR,WRRW,WRWW}
and the remaining six theorems arise from these six by substituting G for G. Note

that the first of these twelve theorems is exactly Theorem 4.2.2.
423 Graph Reduction

In this section we describe operations which do not necessarily yield
perfection—preserving composition and decompositions, but they are useful in other
aspects. To describe the first two operations, we need the following notations. A
vertex x is said to be evenly (respectively, oddly) related to y in G, denoted xEqy
(zespectively, xOGy) if every induced path comnecting x to y in G has an even

(respectively, odd) number of edges.

1. Even Merging




Let ul, u? be two evenly related vertices in G. Define the even merging of @
relative to ut and u? to be the operation which replaces ut and u? by 3 single vertex
u and makes u adjacent to every vertex in N (u!) U N(u?). It was’ 'shown (Fonlupt
and Uhry [1986]) that even merging on two evenly related vertices preserves

perfection.

2. 0dd Merging

Let ul, u? be two oddly related vertices in G. Define the odd merging of G
relative to ul and u? to be the operation which deletes ut, u? and makes every other
vertex in N(uf) adjacent to every one in N (u2). Denote the resulting gra.ph by &.

Hsu [1987a] showed the following:

Theorem 4.2.10. If G is perfect and either
(1) (uiu?) ¢ E(G) and wlOsu?

or (i) (ulu?) e E(Q)and (ut,u?) is not contained in any triangle,

then the odd merge G relative to u! and 2 is also perfect.

3. Stable cutset (Tucker [1983))

Let S be a stable cutset of G. Let H;, i=1,..k, be the connected components
of G\S. Let G; be the subgraph of G induced on H; U S, i = 1,...k. Tucker showed
that

Theorem 4.2.11. G is a graph with a stable cutset S such that no odd hole of G
contains a vertex of S, then G is r—colorable is and only if each of the Hj is

r~colorable.

To simplify our discussion, we assume G is decomposed by the cutset S into




two subgraphs G; and G,. Given that both G and G2 are r—olored, Tucker's idea
is to fuse together the corresponding vertices of S in G; and G one at a time and, if
the colors of the current pair x; (colored i), x2 (colored j) being fused into x are not

the same, then ote can perform an i—j interchange to make them the same color.

4.  Coloring K s—free perfect graphs

Tucker [1987b] gave an O(n3) algorithm to 3—color Kfree perfect graphs.
The idea is to reduce this problem to that of coloring (K \e)~free perfect graphs by
doing Kj—contraction iteratively. Let Ty = wxy and T; = xyz be two iriangles
which share an edge (x,y) and w, z are not adjacent. Define a K3—coniraction to be
the operation that collapses w and z into one vert-ex, say w', and makes it adjacent
to all vertices which were adjacent to either w or z.

];Dxeca,use it is possible to create odd holes after a Ks—contraction, Tucker
showed that, whenever this happens, one can remove such odd holes by locating a
star—cutset and separating the contracted graph into components. Fach of these
components can be iteratively contracted so that the final components are
(K4\e)-free and éasily colorable (Tucker [1987a}). These component colorings can

then be combined to form a coloring of the original graph.

5.  Decomposing (K4\e)free perfect graphs

A (K4\e)free graph G has at most O(|E(G)|) maximal cliques (each edge of
G is in at most one maximal clique). Fonlupt and Zemirline [1987] used the
following three decomposition operations to separate a perfect (Ks\e)~free graph
into components that are either bipartite graphs or line graphs of bipartite graphs: |
(1) a clique cutset.
(2) astable cutset of size two.
(3) a2 separating structure consisting of a vertex z and the edges of all maximal

cliques containing z, where z belongs to at least three maximal cliques, one at
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least of size at least three.

The separating structure in (3) can be interpreted as a clique cutset in another
graph Ggq as defined below. | Lét the cligue graph Gq of G be one il} which V(G,)
correspond to the set of maximal cliques of G, and two maximal ciiques of G are
adjacent in Ggq if and only if they share a vertex. Note that even if G is perfect, Gq
could still contain an odd hole. It can be shown that if G contains no twins, then
- there is a one—to-one correspondence between vertices in G and maximal cliques in
Gq and vice versa (the definition of G4 implies a one-to—one correspondence
‘between maximal cliques in G and vertices in Gg) and the separating structure in
(3) corresponds to a clique cutset in Gq. Hence, the main theorem in Fonlupt and

Zemirline [1987] can be restated as follows.

Theorem 4.2.12. Let G be a perfect (K4\e)-free graph. Then one of the following
holds:

(i) G is bipartite or the line graph of a bipartite graph;

(ii) G has a clique cutset;

(iii) Ggqhas a clique cutset;

(iv) G has a stable cutset of size 2.

This theorem suggests that, in decomposing perfect graphs, one might
consider decomposing some related graphs which could simplify the overall

description.

6.  Frail composition (Chvatal [1985])

An operation is called fradlif it transforms graphs Gy and G, into a graph G
with the following property:
(4.2.13)  If an induced subgraph H of G is an induced subgraph of neither G, nor

Gy, then H or H has a star-cutset or else H has at most two vertices.
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Denote the class of all graphs with at most two vertices by TRIV. We have

Theorem 4.2.14. Let ¥ be any class of graphs such that TRIV C € and such that
. ‘
& is closed under taking induced subgraphs. Then % is closed under taking

induced subgraphs and under all frail operations.
43. Combinatorial Algorithms

The algorithms discussed in this section can be applied to special classes of
perfect graphs. They have the followiqg features: (i) they make use of the graphical
structures of the special class; (ii) the optimization algorithm often provides a proof
that the class of graphs in consideration is either perfect or satisfies the SPGC; (iii)

they are more efficient.

1.  Triangulaied graphs

Based on the property that every induced subgraph of a triangulated graph G
contains a simplicial vertex, Fulkerson and Gross [1965] suggested the following
iterative procedure to recognize triangulated graphs. Repeatedly locate a simplicial
vertex and eliminate it from the graph. If, at some stage no simplicial vertex exists,
then the graph is not triangulated. Otherwise, the final sequence of vertices
obtained in this order is called a perfect elimination scheme (or PE ordering) of G.
The existence of such PE schemes actually characterizes triangulated graphs. By
constructing such schemes Ba.ckwards, Rose, Tarjan and Leuker [1976] were able to
give an O(|V| + |E|) algorithm for recognizing triangulated graphs using
lexicographic breadth—first—search (Lex BFS).

Let o be a perfect elimination ordering for G. Fulkerson and Gross [1965]
pointed out that every maximal clique was of the form {v} U A,, where

Av={xeNF) | oYv) < oy{x) }.
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Based‘on this, it is easy to find a maximum clique and the chromatic number of G
in linear time. A maximum independent set (and a minimum clique cover) of G can
be found by applying the following greedy algorithm to a PE ordering vy, ..., va 0f G
(Gavril [1972]): Let y; = vi. Recursively, once y; is chosen, choose yi« to be the
first available vertex in the sequence which is not adjaé;ent to any of yy, ..., Y&
Then the final set of yi obtained, {yy...,yx}, i8 2 maximum stable set and the

collection of cliques of the form {yi} U AY‘ is a minimum clique cover.
1

2.  Comparability Graphs
Comparability graphs admit transitive orientations. Transitivity induces an

equivalence relation on the set of edges in E. A characterization of uniquely

* transitively orientable graphs was given by Shevin and Filippov [1970] and Trotter,

Moore and Sumner [1976]. Based on the edge equivalence class, Golumbic gave an
O(§-|E|) G—decomposition algorithm for recognizing comparability graphs and for
calculating the exact number of transitive orientations, where § is the maximum
degree of G. Using the substitution decomposition, Spinrad [1985] gave another
recognition algorithm, which will be discussed in Section 4.2. |

A height function h on V(G) can be defined as follows. h(v) = 0if v is a sink
(i.e. no edge directed out from v); otherwise, h(v) = 1 + max { h(w)| v-w }. This
function can be assigned in linear time using a recursive depth-first—search. It gives
«(G) (the largest h(v)) and produces a minimum coloring for G (all v with the same
h(v) receives the same color).

To find oG), one can transform a transitive orientation into a network by
adding two new vertices s and t and edges s-x, y-t for each source x (no edge
directed in) and sink y. Assigning a lower capacity of 1 to each vertex and call a

minimum flow a.lgorithm.‘ The value of this flow is o(G) based on the min—flow

max—cut theorem.




3. Interval graphs

Since interval graphs are also triangulated, the four optimization problems can
all be solved using the algorithms for triamgulated graphs. I%ased on the
characterization that G is an interval graph if and only if G is a {riangulated graph
and G is a comparability graph, one can obtain an recognition algorithm for interval
graphs based on those algorithms for triangulated graphs and comparability graphs.

However, a linear time algorithm was obtained by Booth and Leuker {1976] based on

the construction of PQ—tiees. They made use of the following property (by Gilmore

and Hoffman [1979]): '

(4.3.1) a graph G is an interval graph i-f and only if its maximal cliques can be
linearly ordered into Qg ..., Qx -such that, for every vertex x, the
maximal cliques containing x occur consecutively.

Given a graph G, they determined all maximal cliques (at most O(n) of them) and

test if this pfoperty can be satisfied by starting witﬁ a single maximal clique and

iteratively including one more maximal clique at a time. They stored the maximal
cliques in a PQ-tree, which keeps .track of all the potential linear orders satisfying ()

and adjusted this tree iteratively.

5.  Meyniel graphs

Burlet and Fonlupt [1984] showed that Meyniel graphs can be built from basic
Meyniel graphs by repeated applications of the amalgam operations. By extending
the arﬁalgamation to include substitution and complementation, we showed that
Meyniel graph can be built from bipartite graphs and cliques. Conceivably, such a

decomposition scheme can lead to polynomial optimization algorithms.

4.  Claw—free perfect graphs
Minty [1980] and Sbihi [1981] gave polynomial algorithms for the maximum
stable set problem on claw-free graphs. Minty reduced the problem of firding
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vertex—augmenting paths in a claw—free graph to that of finding edge—augmenting
paths and used Edmond's matching algorithm. Sbihi, instead, developed a different

I3

type of blossom algorithm shrinking odd holes and cliques. ‘
The other three problems of finding w(G), ®{G) and /G) turn out to be

NP-hard (Hsu [1980]) in general claw—free graphs. Hsu and Nemhauser [1981,1982]

and Hsu [1980,1981] gave polynomial algorithms for finding these parameters on

~ their perfect subclass. A common feature of these algorithms is that they are all

related to bipartite matching.

Chvéatal and Sbihi [1988] gave 2 polynomial algorithm to recognize claw—free
perfect graphs. They decompose a given graph based om clique cutsets into
components belonging to certain classes of primitive graphs, one of which is a

subclass of Gallai-perfect graphs they referred to as elementary graphs.

6.  Planar pei'fect graphs
Tucker's [1973] proof that the SPGC holds for planar graphs actually yields a
coloring algorithm for their perfect subclass. Later, Tucker and Wilson [1984]
improved its complexity to O(n2). Hsu [1986] designed another coloring algorithm
based on simple .decompositions which produce components that are "almost"
uniquely colorable. However, these two approaches only work on unweighted case.
 Motivated by the coloring algorithm of Hsu [1986], We discovered a
decomposition re;:ognition algorithm for planar perfect graphs (Hsu [1987b]). The

primitive classes- of this decomposition are (i) planar comparability graphs; (11) |

planar line graphs of planar bipartite graphs; and (iii) a small class of 10 exceptional

graphs which can all be generated from a typical configuration (as shown in Figure

®). Because of the simplicity of edge connections in planar graphs, our separation

structures can be classified by the number of vertices contained in the cutsets. We
use four kinds of cutsets. A l-cutset is an articulation vertex. A 2-cutset is either

a 2—clique or a stable set of size 2. A three cutset is a set of three vertices which is
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not a stable set. These cutsets have all been covered in Section 4.2. Finally, a
4-cutset is an induced 4—cycle.

7
Figure 8. A special class of planar perfect graphs

These decomposition schemes can be used to solve all four optimization

problems on planar perfect graphs (Hsu [1988]). Since planarity is not needed in the

above implementation, these methods can actually be applied to any perfect graphs -

whose inseparable components under these four separation structures have

polynorm'al alébrithms for the four optimization problems.

7.  (K\e)free (diamond-free) perfect graphs

Every diamond—free graph satisfies the property that for each vertex v, N(v)
consists of a set of cliques among which no edge connects vertices in different
cliques. Hence, there is a linear number of maximal cliques in G,and ofG) is easy to
compute. Tucker [1987] showed that every diamond—free perfect graph G contains a

vertex v such that at most two cliques in N(v) have size greater than 1. His method

is as follows. Starting from any given vertex vy, one can build a maximal chordless

path P = vyvs...vx where edge (vi,vi+1) is in clique C; and for i+1 < j, cliques C4
and C;j are disjoint.‘ Then vy must be a desired vertex. This result immediately
yields a coloring algorithm: Suppose G\{v} has already been colored using «(G)
colors. Let Cy, Cy be two cliques in N(v) of size greater than 1. Consider a color i

not used in C; and a color j not used in Co. Then the set S of vertices in N{v) with

colors i or j form an independent set. Let H be the subgraph induced on all vertices

colored i or j. It is easy to see that no i-vertex in § can be in a component of H
containing any j-vertex in S. Hence,'one can switch the color of all jvertices of S
into i and assign the color jito vertex v.

Fonlupt and Zemirline [1987] recently discovered a decomposition recognition

algorithm for diamond—free perfect graphs as described in Section. We believe that
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optimization algorithms using that decomposition scheme can eventually be

designed.

6. Kifree (3-chromatic) perfect graphs
An optimal coloring algorithm for this class was recexitly designed by Tucker
[1987]. The main idea is to reduce the coloring problem to that of (K4\e)-free
perfect graphs. To achieve this, Tucker eliminates each diamond of G by
identifying its two nonadjacent vertices, and decomposing the resulting graph in
case odd holes are created. We briefly describe his approach as follows. Let Ty =
x1y2, Ty = x4yz be two triangles in a (K4\e)-free perfect graph G such that x; and
x5 are not adjacent. Identify x; with x, and let x be the resulting vertex, which is
adjacent to all vertices that were adjacent to either x; or x3. TLet G' be the resulting
graph and T be the triangle xyz in G'. Tucker showed that if G' contains an odd
hole C', then |
(2) C'contains exactly one vertex in T, say x,
(b) the other two vertices of T each form one or more triangles in G' with vertices
of C'. | |
Then at least one of {y} U N(y) and {z} U N(z) is a star-cutset in G' and we can
decompose G with respect to any star—cutset until no star—cutset exists in any

components. Furthermore, G can be 3—colored if and only if each of the components

can be 3-colored.




5.  Related Problems and Applications

- We shall discuss problems and techniques derived from the sthy of perfect
graphs in the ‘following three areas: 1. decomposition; 2. récognition; 3.
optimization.

Many special classes of perfect graphs can be recognized by applying suitable
decomposition schemes. Most of these can be used to solve the corresponding
6p£iz—m'zatioﬁ problemsrprbvide;i that géod characterizations of the inseparable
components are available. Some of these decompositions can also be applied to

graphs that are not necessarily perfect.
1. Kemel-solvability

Define a kernel of a digraph‘ G to be a subset of vertices K C V which is both
independent and absorbing (every vertex in V\K has a successor in K). When evéry
induced subgraph of G has a kernel, the digraph G is said to be kernel-perfect
(Duchet [1980]). A reversible arc x-y is one such.that y-x also exist. A subdigraph
of G is said to be complete if its vertices are pairwise adjacent (its underlying
undirected graph). An orientation of a graph is normalif every complete induced
subgraph of G has a kernel. An undirected graph G is said to be {kernel) —solvable if
every nmormal orientation of G is kernel-perfect. Berge and Duchet [1983]
conjectured that '

(5.1.1) A graph is perfect if and only if it is (kernel}solvable.

A sufficient condition (Galenan—Scnchez and Neumann—Lara [1984]) for a digraph to

be kernel perfect is the following
(5.1.2) Every odd directed cycle C has two chords whose terminal endpoints are
consecutive on C.

A special type of normal orientation is called an M-—orientation if every directed
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triangle possesses at least two reversible arcs. An undirected graph G is
(kernel) —M—solvable if every M—orientation of G is kernel-perfect. Thus, a weaker
form of (5.1.1) is | ‘

,

(5.1.3) Every perfect graph is (kernel)-M—solvable.
Duchet [1987] showed that parity graphs are M—solvable.

2.  The recognition of circle graphs and circular-arc graphs

The join decomposition has been used by Ga.bor, Hsu and Supowit [1985] to

recognize circle graphs. They showed that
(i) A graph G is a circle graph iff every j-inseparable component of G is a circle
_ graph. |

(ii) FEach j-inseparable circle graph has a unique chord model.
They also gave an O(m-n) algorithm to construct a chord model for a j-inseparable
circle graph. Such a decompositionl scheme can also be used to solve the
isomorphism problem trivially.

Hsu [1987¢] reduced the recognition problem of circular-arc graphs to that of

circle graphs based on a definition of normalized representations.

3.  Covering Orthogonal Polygons
The art gallery problem is to determine a mirimum number of guards in a

polygon such that they see ‘every point of the polygon. This problem is NP-hard

(O'Rourke and Supowit). It can be restated as the problem of covering a polygon -

with a minimum number of star polygons (a star polygon contairis 2 point that sees
every point of the polygon). An orthogonal polygon is one with all its sides parallel
to one of the two cootdinate axis. Define an independent set of points in P with
* respect to a class of covering polygons C, denotes a set of points in P, no two of
which can be covered by any polygon in C. Consider the following duality theorem:

(5.3.1) The size of a minimum cover by polygons from class C is equal to the
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size of a maximum independent set of points with respect to the class C.
Chaiken et al [1981] first showed that this theorem holds for polygons that are
orthogonally convex (OCP). Gy'ori [1984] then showed that it holds if the polygon
is only vertically convex. Later, Saks {1982] showed that the graph determined by
the boundary squares of the grid induced by the vertices of an OCP is perfect. This
theorem has now been shown to hold for covering orthogonal polygons with
orthogonally star polygons (Motwani et al. [1988]). Their approach is to study the
visibility graphs arisen from certain special orthogonal polygons. Some of these turn
out to be perfect, e.g. permutation graphs, weakly triangulated graphs and available

optimization algorithms (e.g. minimum clique cover) can be readily applied.

4,  The odd hole recognition problem

The recognition problems for a number of special classes of perfect graphs such
as planar perfect graphs, (K4\e)-free ﬁerfect graphs and claw—free perfect graphs are
actually equivalent to the odd hole recognition (OHR) problems on plé,nar graphs,
(Ks\e)—free graphs and claw—free graphs, respectively, because the SPGC holds for
fhese classes and they do not have odd antiholes of size at least seven, by definition.
The status of the OHR problem on' general gra.phs- remains open. Suppose the
SPGC is true, then a polynomial OHR problem can be used to recognize perfect
graphs.

One problem related to the OHR is the path—parily problem: given two
vertices u and v in G, determined if there exist two induced paths connecting them
with different parity. Its status is also open. Another problem is to test whether
two given vertices u and v in G are contained in any hole. This can be solved for

planar graphs (Hsu [1987d]). An understanding of this problem is very useful in

designing decomposition schémes for perfect graphs.




First of all, the family of maximal cliques in a (K4\e)—free graph G satisfies the
Helly property: any subfamily F of maximal cliques in whic_h any two cliques share
ai: least one vertex has a common vertex in all maximal cliques in,F. Hence a
maximal clique ¥ = {Qy,...,Qx} in Gq satisfies that all the Q;'s contain a common
vertex z. If they contain two common vertices u and v, then"u, v must be contained
. in every clique of G, and form a twin. Therefore, there is a unique common vertex
* contained in all the cliques in F. On the other hand, for each vertex z'of G, the set
F of maximal cliques in G conta.iniﬁg z gives rise to a maximal clique in Gq Hence

Now, consider the separating structure in (3). Let FG be the set of maximal

cliques in G; let F; be the set of maximal cliques containing z. Deleting vertex z
and edges of all maximal cliques' containing z in G reduce Fq to FG\FZ. Since F,
gives rise to a maximal clique in Gg, this operation corresponds to deleting all
“vertices of the maximal clique F;, in Gg. This verifies that the separating structure
in (3) corresponds to a clique cutset in Gq. The restriction placed on z amounts to
-elimina,ting trivial cases: if there are only two maximal cliques in G containing z,

“there is no need to decompose G at z; if all maximal cliques containing z are of size

2, then {z} gives rise to a clique cutset in G, which can be covered by (1).
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Figure 1. A graph G which is partitionable but not minimal imperfect




Figure 2. The Hasse diagram of the containment relationships

among some classes of perfect graphs
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i Figure 4. Three graphs: diamond, bulil and dart




T e T et

e / \ \\ //’ \\
} 7/ { ! \\ // \\
/ I i ] ]
( Gy b G, ( G Xy % G, |
1| . ) 1 2 )
Y i1 ! 4 \ 4
~ \ / i ~ i
\_\ % / '/' ~
.. - e
— .

e / ‘ \ /’ “4 4 o
) 33 >3

VoG, Gy, . C 1 1 G,

! \\ 'i\ ; /‘, \\ 1 y Yy 2 ,"
ANy \ /’ s ~ 1 1 s

O R —vertex © A-—vertex

Figure 5. A case for2—separation

P e




r‘_ ‘ w(x)

:i /d"’_—' --‘.h.‘-"--.._\ ’
. -

- | ~

s . w(x.]) ~
N\

w(y1 )

// ‘h\\\
’/ x,)+g \\
{ ] 1
| \ G, [« X4 G, J
% N C’ e
N w(y) Wy +g -

Figure 6. The weight modification for 2 —separations




5 S, Sa

Class S consists of S;‘ . S2 and S 5 where S’; is the collection of graphs
éon_sisting of S, and any other graph obtained by replacing one or more

edgesin {a,b,c} of S ; With induced paths of length 3

Figure 7. A special class of planar perfect graphs




