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1. Introduction

In this paper we discuss techmiques for the design of geometric algorithms. Of
course, computational geometry makes wide use of standard algorithm design methods,
such as divide—and—conquer, dynamic programming, and sé forth {10]. We have tried to
concentrate here on ¢ generalization of the locus approach.

The locus approach is widely used in computational geometry algorithms. Some
classic examples can be found in the problems related to construct Voronoi diagrem
[3,4]. Recent interest in the fields of robotics and industrial antomation has prompted
the study of motion planning. One of the basic problems in this field is to determine a
continuous path for motion of a given body (the robot) in an environment that imposes
geometric constraints on the body’s motion. Sharir and Schorr [26,29] used the locus
approach successfully to find the shortest paths in polyhedral spaces. Following their
concepts, Schevon and O’Rourke [22,27,28] found an O(n!tlogn) algorithm toﬂ compute
the geodesic diameter of a 3—polytope, and also gave an O(Kmdlogn) algorithm to
compute edge sequences on a convex polyhedron, where a loose bound of K is O(n$). A
subsequence result of Hwang, Chang and Tu has further reduced the ’complexity to
O(nﬁlogn) [11]. Instead of using the traditional locus approach: "subdividing spaée,
which is the surface of a polyhedron, into regions,”" Hwang, Chang and Tu partitioned
the Cartesian product of two edges into equivalent classes in {11]. This new technique is-
a generalization of the original locus approach.

Another field of directly using the locus approach is dymamic computational
geomeiry {2,12]. In [2], Atallah proposed some problems in computational geometry when
every one of the input points is moving in a prescribed manner. He also presented and
analyze efficient algorithms for a number of problems and prove lower bounds for some

of them. Using the geileralized locus approach once again, Hwang, Chang and Tu [12]
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reduced the time coﬁlple:city of separability problems in dynamic computational
geomet'ry to almost.O( nflogn) in 2-D but almost O(nlogn) in 1-D. Recently Tu and Kao
[31] are trying to apply this technique to the cruising guard problem. ‘The resuits show
that by the generalized locus approach the 1— and 2—cruising guard problems can be
solved respectively in O(n) and O(kn) where k is the number of pockets in the simple
polygon.

In this paper we will discuss and illustrate the generalized locus approach by
examples. The main part of this paper is divided into three sections. After a general
introduction, in SectiOn‘2 we deal mostly with the design method of the locus approach
and give an example: ﬁnding all the shorteét path edge sequences on the surface of a
convex -polyhedron. In Section 3 we apply the generalized locus approach to separability
problem in dynamic computational gedmetry. Since the deenport—Schz’nzel sequences
plays an iﬁportant role in domain partition, we also discuss them in the end of this

section independently. Finally in Section 4 we end this paper with conclusions and

remarks.




9. The Locus Approach

Locus approach i3 a common technique in solving geometric pfoblems. A classic
example is the post office problem: given 7 sites in the plane and a query poini z, report
the site closest to z. If the sites remain fixed over several queries, thén it pays to
subdivide the plane into regions, each of which consists of all points closest to a
particular site. This partitioning of the plane is the well-known Voronoi diagram [3,4].
Once we have the Voronoi diagram, a nearest neighbor query can be answered simply by
doing a point location in the diagram. This is the essence of the locus approach:
subdivide space into regions such that all points in the same region yield the same -
answer to the type of query we are interested in. Point—location in this subdivision can
then be ﬁsed to answer any specific query. |

In tlﬁs section we introduce the generalization of the locus approach. Instead of
subdividing the space on which the input points are located, we partition any domain
which we concern. Furthermore, the partition functions can be various type. For
instance, when finding all the shortest paths on the surface of a convex polyhedron, we
use hyperbolic curves to partition the domain generated by Cartesian product of two
edges. These two conceptual changes are different from the original locﬁs approach. .

To illustrate how we generalize the locus approach from the original one, we give
3 worked out example: finding all the shortest path edge sequences On the surface of a
convex polyhedron. The following three subsections are all close related to this example.
Tn the first subsection we present the general information of finding all shortest paths on
the surface of a convex polyhedron. In the second subsection, applying the locus
approach to the continuous Dijkstra technique, we develop an O(nflogn) algorithm to
solve this problem. Finally in the third parts, by the same concepts and the same data

structures, we solve 1— and 2— cruising guard problems respectively in O(n) and O(kn)
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time where kis the number of pockets in a simple polygon.




2.1 Shortest Path Edge Sequences
‘on the Surface of a Convex Polyhedron

2.1.1 Imtroduction

Recent interest in the fields of robotics and industrial automation has prompted
the study of Motion Planning. One of the basic problems is to determine a continuous’
path for the motion of a given body in an environment that imposes geometric
constraints on the body’s motion. In this section and the next one we comsider the
problem of computing the Euclidean shortest path between two points on the surface of
a convex polyhedron P [26]. This problem is also of considerable interest in terrain
navigation, where a moving vehicle is bound to move along a surface what could be
modeled by a polyhedron (here we treat the vehicle as a single moving point) [17]. The
shortest path problem on a convex polyhedron can be formally defined as follows [17]:

Let S be the surface of a given convex polyhedron P, defined by a set of faces,
edges, and verfices', with each edge occurring in two faces and two faces intersecting
either at 2 common edge, a vertex, or not at all. A shortest path between two points A
and B on S is the Euclidean shortest path between points A, B along the surface of P. A
shortest path edge sequence can be defined as an ordered list of edges of P such that any
two adjacent edges share a common face, and such that there exists a shortest path
traversing the edges in the list. A shortest path edge sequence is said to be magimal iff it
is not the subset of any other shortest path edge sequence [27]. If the question is to find
the shortest path between two fixed points on S, we call it Discrete Geodesic Problem. If
only one source point-(sa.y A) is fixed and we are asked to build a structure which allows
one to find out a shortest path from A to amy other query point (say B), it is called

Single—Source Discrete Geodesic Problem. For the general case, if two query points are
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allowed to be chosen arbitrarily (both are not fixed)-on S, we name it General Geodesic
Problem. We can also make a restriction on the query domain such that the query points
can only be chosen on edges. In this way, it is called Edge—Point’ General Geodesic
Problem. The enumeration of all shortest path edge sequences on a convex polyhedromn is
| named All Shortest Path Edge Sequence Problem.

The Discrete Geodesic Problem and Single—Source Discrete Geodesic Problem
were first posed in [29], where an ({ndlogn) algorithm was given for the case of a convex
polyhedron. A subsequent result of Mount {19] has reduced the running time to
O(nZogn). Both methods are to find the subdivision on the surface of 2 given convex
polyhedron according to one fixed source point, such that any point in the same region
has the same shortest path edge sequence to this source point. After building the
subdivision, the shortest path problem can be transformed into a standard point location
problem and the 'shortest path from the fixed source point to a given query point can be
computed in time Of{k+logn) where % is the number of edges in the corresponding
shortest pé.th edge sequence. For thé nonconvex case, O’Rourke, Suri, and Booth gave an
{n3) algorithm {21} Subsequently, Mitchell [17] improved this result to O{n%ogn) by
using the "Continuous Dijkstra" technique. He combinéd the concepts of the original
Dijkstra algorithm for finding shortest paths in a graph [6], and the subdivision method
in [29]. In [17], edges of the given polyhedron behave like nodes of a graph, but here the
distance from the source to an edge is not the unique value. Instead, Continuous Dijkstra -
Algorithm uses a function that serves as a label for an interval of the edge. Keeping
track of the discrete description of these functions, one can subdivide the edge into
regions for which the shortest path to points in the region have the same shortest path
edge sequence. This method is a generalization of the algorithm proposed in [28].

Since all of the previous algorithms are inefficient to solve General Geodesic

Problem or even Edge—Point General Geodesic Problem, few papers discuss them [17],
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[29]. The problem of finding all shortest path edge sequences on a convex polyhedron
originéted from Sharir [26]. He proposed a method to compute shortest paths in 3~D
amidst convex obstacles, whose solutions depend on all shortest path edge sequences of
these convex obstacles. Sharir [26] gave an O(nflogn) algorithm to compute these edge
sequences for each obstacle. He also provided a bound of O(n’) on the number of edge
sequences. Subsequently, Mount [20] had further reduced this bound to O{nt) and gave
an example to show that it is tight. Recently, Schevon and O’Rourke [27] used a
graph—theoretic argument to show that the number of maximal sequences of edges
traversed by shortest paths is 4(n3). This result also provideﬁ an alternate proof that the
total number of shortest path edge sequences is O(nt). In the same paper he also
proposed an O(nﬂogn-2a(n2)) algorithm to compute all shortest path edge sequences of a
convex polyhedron, which improved slightly on Sharir’s algorithm.

In this section and the next ome we shall propose an O(nflogn) algorithm to
compute all shortest path edge sequemces of a convex polyhedron, by using a data
structure with a size of O(nf). According to this data structure, not only can we
enumerate all shortest path edge sequences and draw out all maximal ones, but we can
also ﬁlnd the shortest path between any two points lying on edges in O(k+logn) time
where %k is the number of edges crossed by the shortest path. Our approach consists of
two major parts. In this section we shall first consider all O(n*) shortest path edge
sequences as n edge sequence trees, and use the property of visibility between points on
edges to construct these trees. In the next section, instead of creating the subdivision on
the surface of a convex polyhedron [26], [17], for each edge pair (e,e,) we construct the
subdivision on domain Z=e.xe, so that any point (A,B) in the same region has the same
shortest path edge Vsequence from point A to point B on S. This approach is the

generalization of Continuous Dijkstra Algorithm in [17] and Slice Algorithm in [26].




2.1.2 Tree Representation for All Shortest Path Edge Sequences

Let P be a 3—D convex polyhedron with n edges. For each pair of points (A,B) on
the surface of P, we denote the shortest path from A to B as 7{A,B), and the sequence of
edges of P crossed by m{A,B) as &(#(A,B)). To solve the Edge—Point General Geodesic
Problem and generate all shorfest path edge sequences, we shall first consider the
restricted case in which the starting point A lies on an edge e, and the ending point B
lies on another edge e.. These two edges, e and e, are called the starting edge and the
ending edge respectively. Since the shortest paths on a convex polyhedron cannot cross
any edge more than once [29], we can use the brute force approach to form all of the
edge sequences as a permutation tree, and then determine which of these sequences are
shortest path edge sequences.

For a convex 'polyhedron P, an edge sequence tree T with starting edge e, is a tree
specifying e, as the root. Each node N;in T is an edge of P, denoted as E(N;). Node N;
is a son of node Ny, if E(N;) shares a common face with E(N;} on P and E(N;) is not an
ancestor of E(N;) in T. The path from root e, to node'N;, denoted as ES(N,), is'an edge
sequence of P. If T is the tree obtained from deleting somé nodes of T, such that for
every node N, of T, ES(N,) is a shortest path edge sequence, we call T’ a shortest pafh
edge sequence tree. T; is considered-mazimal iff it can not be extended to form another
shortest path edge sequence tree,

For example, the edge sequence tree of a tetrahedorn (see Fig. 2.1a) with starting
edge e, is shown in Fig. 2.1b. Hence, the problem to find all shortest path edge sequences

with a fixed starting edge is now reduced to the problem to build a maximal shortest

path edge sequence tree with this edge.

Lemma 2.1 If edge sequence £é=(ee,...e,.€,) is a shortest path edge sequence, then its
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subsequence &,=(e,e,...e, ) is also a shortest path edge sequence.

Proof: Since ¢ is a shortest path edge sequence, there exist two points, say X and Y, on
e, and e, respectively; such that the shortest path =(X,Y) crosses’ {. Let Z be the
intersection of 7(X,Y) and e,_,. The subpath of n{X,Y) from X to Z then, must be the
shortest path between X and Z. Otherwise, the concatenation of 7{X,Z) and the subpath
of 7{X,Y) between Z and. Y would be shorter than «{X,Y). Therefore, {, must be the

edge sequence crossed by the shortest path from X to 2. g

Lemma 2.1 implies that once we have found a shortest path edge sequence ¢,, it is
" very likely that ¢ would be another shortest path edge sequence. Thus, the process fo
find new shortest path edge sequences can be considered as the "expansion" on edge
‘sequence trees. First, we specify the starting edge e, as the root of T, and add the edges
which share a common face with e, as the children of the root. Then iteratively select a
leaf F;, whose ES(F;) is a shortest path edge sequence on P, and add edges sharing a
common face with E(F;) as the children of F;, until all the shortest path edge sequences
are found. ' '

In the process of expansion, we are immediately éonfronted with two problems: to
determine which leaf F; will lead ES(F,) to be the shortest path edge sequence; and to
decide when to stop expanding the edge sequence tree. To decide whether ES(F;) is a
shortest path edge sequence or not, we use the concept of visibility between points on
edges [26]. Some definitions are specified as follows. Let ff,...7; be a sequence of faces on
a convex polyhedron P such that edge e, (resp. e,) is on the boundary of {, (resp. f,) and
f;, f;,, be adjacent on edge e; for i=1,2,..,n—1. The planar unfolding of P relative to edge
sequence {=(es €,...6,.€,) is obtained by unfolding these faces, one at a time, about the
edges that separate them, until they all lie in the plane containing f, (with no two

adjacent faces overlapping one another, see Fig. 2.2). Two points A and B, on starting
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edge e; and ending edge e, respectively, are visible to each other in edge sequence ¢ if,
after the planar uniolding relative to ¢, the straight line from A to B crosses ¢ (if £is a
set of edge.sequences, it means that A and B are visible to each othér in at least one of
these edge sequences). Let 'f{'g(A,B) be the straight line segment connecting points A and
B in this unfolding. lvrg(A,B)] denotes its length. During expanding edge sequence tree
T, the weight of leaf ¥, is defined as follows:

W(F1) = I[li]l({ |"T§(A:B)l : (A?B)Eesxee: ES(Fi):f;
and ¥V NeT\{F;}, E(N))=E(F)),
- such that !wE(A,B)[5|7r§,(A,B)| where ES(N;)=¢& });

I the set in function min is empty, W(F,) is set to be infinite.

A leaf ¥, is called with minimal weight if no other weights of leaves in T are
smaller than W(F;). Rouglﬁy speaking, the weight of leaf F. can reflect the existence of |
shortest paths between the points on E(F;) and the points on e, in the planar unfdldiﬁg
relative to ES(F;). When W(F;) goes infinite, it implies that, for évery (A,BleexE(F;)
either the points A and B are invisible to each other, or we have already had a node'Nj
in the expanding edge sequence tree T such that the shortest path from A to B crossing
edge sequence ES(N;) is shorter than the one crossing ES(F;). In other words, there are

no shortest paths crossing edge sequence ES(F;).

Lemma 2.2 [29] If points A and B, on edges e; and e, respectively, are not visible in

edge sequence ¢, then the shortest path edge sequence between A and B can not be ¢.

Lemma 2.3 In building edge sequence tree T, if F, is the leaf with minimal weight, then
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edge sequence ES(F;)is a shortest path edge sequence.

Proof: Assume that F. is the leaf with minimal weight and ES(F;)=¢;. There must be a

pair of points (A,B) such that W(Fi)zlwg_(A,B)I. By the definition of weight,
1

IWE.(A,B” is the smallest one for all possible (A,B) in the.planar unfolding relative to
1 .

£ I rél(A,B) is not the shortest path between A and B along the surface of P, then
3 .
there exists another leaf F; (let ES(F;)=¢;) such that either ¢; is the shortest path edge
sequence between A and B, or fj is just the subsequence of this shortest path edge
sequence. In the latter case, we have W(F;)<W(F;). This implies that W(F;) is not the
minimal one. In the former case, we have lwg_(A,B)[< | ¢ (A,B)|. W(F,) should not be
! i :

[wg_(A,B)| (by the definition of weight). Thus, wf_(A,B) is the shortest path from A to
1 - 1

B and {; is its shortest path edge sequence. y

From Lemma 2.2 and Lemma 2.3 we know when to stop expanding edge sequence
tree T. If all the leaves in T are with infinite weight, there are no leaves to be expanded.
Lemma 2.3 also tells us which leaf should be included into the shortest path edgé
sequence tree, and this chosen leaf is also the next one to be expanded. In order to
compute the weight for each leaf and find the minimal one quickly, a data structufe
called visibility relation diagram is used to maintain the visible relations between the

points on edges.
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2.9 A Generalized Locus Approach |
‘with Continuous Dijkstra Algorithm

?

In this section we shall first describe the structure of visibility relation diagrams in
details. Then formally state the algorithm of finding all shortest path edge sequences on
a convex polyhedron, and analyze the time complexity of the algorithm. Finally,

conclusions with remarks are in the end.

2.2.1 Visibility Relation Diagrams

Let T be the currently expanding edge sequence tree with root e;. Assume that S
is a set of edge ‘seqﬁences in which all edge sequences have the same ending edge e,. In
order to determine whether there are shortest paths crossing the edge seqﬁences in é, by
Lemma 2.2, we must show the visible relationships between the points on e, and the
points on e, in the planar unfoldings relative to the edge sequences of 5. Our approach is
to consider the 2—D space Z=gsxe, of all possible pairs of st_arting and ending points, and
partition it into regions, such that for each such region R ¢ there exists an edge sequence
ﬂﬁsmmtmnﬂmdMABkRéﬂgAﬁkwéAB)MOwawmmJMmﬂyueﬁe
points A, B visible to each other in the planar unfolding relative to &, but the siraight

line segment connecting A and B in ¢ is also smaller than the others in edge sequences of -

S\{¢}-

Definition. Assume that S={¢,&,,..,¢,-0¢n) 18 a set of edge sequences with starting
edge e, and ending edge e,. Let the function f: egxe, — Su{¢} defined by
JA,B)=¢;iff A and B are visible to each other in £,

and Te (A,B)gng(A,B) for all £;eS\{{;} ;

i
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AA,B)=¢-iff A and B can not be seen from each other in S.
For a pair of edges, e, and e,, a visibility relation diagram (short for VRD) restricted to S

is a partition on domain Z=exe, defined by f We denote the equivalent class
corzesponding to £; as R &

In the following, we first consider the special case in which S contains only one
edge sequence, and then we show how to modify the VRD restricted to S to a new VRD
when adding an edge sequence into S. In the remained paragraphs, the method to
compute weights of leaves from VRD will be proposed.

" Initially, let S contain only one edge sequence é=(ee,..e;_e,). After performing
the planar unfolding relative to &, we have a polygon, denoted by G,(¢), whose boundary
is composeq of e, ey, é.nd the edges connécting the end points of e;, e;,, for i=1,2,..,n—1
(see Fig. 2.32). By using the algorithm in [9], it is easy to find two shortest paths
connecting the end points of e, and e, in G,(£) such that these two paths are not crossed
with each other (see Fig. 2.3b). Hence, these two paths together with e, and e, define
another simple polygon G,(¢). For the points A€e, and Bee,, if they are visible to each
other in ¢, their connecting straight line segment should be contained in G2(§)
According to visibility between points on e, and on e,, domain Z=e;xe, can be
partitioned into two equivalent classes R ¢ and R s for the point (A,B)in R 2 Aand B
are visible to each other in & if (A,B) isin R # they can not be seen from each other in
£. In order to find the boundary between R ¢ and R b on domain Z, we should formularize

the boundary between these two equivalent classes.

Definition. The boundary—points of R{ are the points (A,B)eZ where the straight line

segment AB in G,(¢) contains a vertex of G,(£).
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Lemma 2.4 For a fixed vertex of G,(¢) the locus _of boundary points is a hyperbolic
cuzve on domain Z=e xe;.

Proof: Let A and B be points respectively on e, and e, and ¢ be the fixed vertex.
Parameterize A and B as a,;+b,u and a,+b,v respectively, for appropriate vectors a,, a,,
by, b, and real parameters v, v. Then the condition that A, B, ¢ are collinear can be
written as

(A—c)x(B—)=0,
ie., 0= (a;+b,u—<)x(a;+byu—<)
= (ar<)x(a;=<) + [bpx(az<)]u + [(arc)xbylv + (byby)uy,

which is an equation of a hyperbola in u—vspace [29].

By Lemma 2..4, each vertex of G,(¢) has a corresponding hyperbolic cﬁrve. The
boundary of R ¢ is composed of these cure segments. Fof example the boundary deﬁned
by the polygon in Fig. 2.4b is shown in Fig. 2.4c.

Since we have found the equivalent class corresponding to just one edge sequence,
our next goal is to show how to modify an existent VRD to a new VRD when adding 2
new edge sequence to edge sequence trees. Let S={{,{,,...{,} be the set of all edge
sequences with the same ending edge e, in currently expanding edge sequence tree T,
Assume that we have had a visibility relation diagram VRD, festricted {0 S. Whenever a
new node N is generated on T, if E(N) is e,, we should modify VRD; to show the-
Vexistence of BS(N), since it is possible that some paths crossing ES(N) are shorter than
the ones crossing the other edge sequences already exsting in S. To simplify the
notation, let ES(N) be £. The modification consists of two steps :

Step (1) pa,rtitioﬁ domain Z into R ¢ and R ¢; -
Step (2) for all points‘(A,B)ERgnRgi, decide whether the shortest path in the

planar unfolding relative to ¢ is shorter than the one in the planar
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unfolding relative to ¢; (determine whether (A,B) should be classified into
R .
¢ Of R ¢ )

i
’

Step (1) can be accomplished by the previous method. For step (2), we perform

two planar unfoldings relative to ¢ and ¢; on a common plane such that they share the
common ¢,. However, point B on e, will be duplicated to two points in these two

unfoldings, say B ¢ and B . (see Fig. 2.5). Let the perpendicular bisector of B 515‘ ¢
i i
intersect & at point C. This bisector partitions the plane into two halfplanes. One

contains B ¢ while the other contains B £ If A is in the same halfplane with B & then

1

|XB’E] <|AB . |. In other words, the path from A to B crossing ¢ is shorter than the one
1

crossing &;. Hence (A,B) should be classified to R,. On the contrary, if A and B, arein
g <i tf 6

1

the same halfplane, (A,B) belongs to R§° When A is just located on C, we have

i

]KB—&| =]AB §_|. It means that if we move point B on the edge e, (the position of point
1 .
C is well defined) the locus of (C,B) can partition R fnR ¢. into two regions, where one
1

should be combined into equifra.lent class R & while the other should be iﬁcluded into

Rﬁ-' We name these points (C,B) the pariition—points. Hence, this new partition on

b3
domain Z, obtained by modifying the original VRD,, is the visibility relation diagram
restricted to SU{¢}. In the same way mentioned in Lemma 2.4, it is easy to show that

the locus of these partition—points is also a hyperbolic curve on domain Z.

Lemma 2.5 The locus of the partition—points of R§OR§- is a hyperbolic curve on
13

domain Z.
Proof: To make the proof.. simple. We follow the previous notations. Let B §=a+b'u, N

B€‘=ai—]—biu , and C=c+dw, for appropriate parameters. Since [BéBg'C = [Bg_Béc, we
1 1 1
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have the following equation,

(B, —Bx(CBy) + (BB, )x(C-B; ) =0,
which can be simplified as

CotC Ut Catcyuntc u?=0,
where  c=l(aa)x(c-a)l+[(z-ag)x(c-a,)]
c=[(aa)«d]+[(a-ag)xd]
cy=((a;—8)x(~b)+(bs=b)x(c-a)]+{(a-2;)x(~b3)+(b-by)x(c—a)]
c,={(b; b)xd]+[(b—b1) xd]
c4={(o D(-D{(5-b)<(-b9)

This equation is also a hyperbola in u—v space. g

As mentioned in Section 2.1.2, VRD is built to show the visible relation between
points on edges, and to compute the weights of leaves in expanding T. In order to get the
weights of leaves-from VRD, we should point out which path makes the edge sequence to
be the shortést path edge sequence. Let F be a leaf in T and ES(F)=¢. A weighi~point
(AB) of F is a point in R{ such that W(F)=1W§(A,B)l. If Rf is empty, F has no
weight—points. We define the boundary of R ¢ 3 the union of its boundary—points and

partition—points.

Lemma 2.6 If ¥ is a leaf with non—empty R £ there exits a weight—point (A,B) of>F,
which is located on the boundary of R &

Proof: We prove this lemma by contradiction. Assume that all the weight—points of ¥
are mneither boundary—points nor partition points. Let (A,B) be one of these
weight—points. By definition; of weight—point we can find two points on the boundary of

R§’ say {A,B)) and (4,B,), such that WE(AI,B ,) and wg(Ag,Bz) are both longer then
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ﬂ-é(A,B), run parallel with ng(A,B), and are on the different sides of W(S(A,B). But this is
contra'ry to the fact that both A,, A, A, are collinear on starting edge, and B, B, B, aré
collinear on ending edge (see Fig. 2.6). Thus, there must be a wefght—point on the

boundary of R g .

With the same geometric arialyses used in Lemma 2.4 and Lemma 2.5, the lengths
of AB and CB can be formulized as hyperbolic functions of parameters u and v, too.
Since there exists a weight—point on the boundary, we can compute the weight by
differentiating these ﬁmction's. Hence the visibility relation diagrams not only can show
the visibility between edges but also caﬁ maintain the weights of nodes during expanding
the edge sequence trees. | '

2.2.2 The Algorithm and its Time Compléxity

In this section we first formally state the algorithm of finding all shortest path
edge sequences on a convex polyhedron, and then analyze its time complexity.

We can describe our algorithm formally as follows:

Algorithm: Finding_ All_Shortest-Path—Edge—Sequences (FAS)

Input: The data structure representing the convex polyhedron P

Qutput: Visibility Relation Diagrams and Edge Sequence rI-‘rees for All Shortest
Path Edge Sequences of P

(1) FOR each edge e; on P, use e, as the starting edge DO :

2) Let e; be the root of edge sequence tree T;;

(3) FOR each edge e; sharing a common face with e; DO :
(

4) Construct the VRD on domain Z=exe;;
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Let e; be the son of e; and compute the weight of &
END of FOR;
WHILE there exists a leaf whose weight # @ DO : !
Find the leaf F with minimal weight;
FOR each edge e, sharing a common face with E(F) DO :
. Construct/Modify the VRD on domain Z=e;xe,;
FOR each leaf F* with E(F’)=e, DO :
Compute/Recompute the weight of F’ END of FOR;
Let ey be the son of F;
END of FOR;
END of WHILE;
16) END of FOR.

The correctness of Algorithm FAS can be shown in the following theorem.

Theorem 2.7 = By Algorithm FAS, we can construct a one to one correspondence
between the shortest path edge sequences on P and the paths from root to internal nodes
in edge sequence trees.

Proof: We prove this theorem by induction. Let i be the length of the edge sequence.

i<n—1. Let {=(e,e,..e,) be a shortest path edge sequence on P. By Lemma 2.1, the edge
sequence & =(ee,.., ) is also a shortest path edge sequence. By inductive hypothesis,
there must exist a node N in edge sequence trees such that ES(N)=¢£,. Since { is a
shortest path edge sequence, N has at least one son, say F, where E(F)=e,, such that
W(F) is NOT infinite (ref. Lemma 2.2, Lemma 2.3, and the definition of weight in

Section 2.1.2). This implies that £ is a path from root to node N in edge sequence trees.
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For i=1 or 2, the statements are obviously true. Assume that the statements are true for



The argument is clearly reversible; hence the theorem is proved. y

The running time of Algorithm FAS depends on
(a)  the number of nodes in edge sequence trees,

(b}  the number of regions in visibility relation diagrams, and

(cj the time to modify visibility relation dia.gré.ms during expanding edge sequence
trees.

To see this, we examine each separately.

For (a), Mount {20] and O’fiourke [27] have proved that there are O(n3) shortest
path edge sequences from a fixed starting edge to the other edges on P. This implies that
the number of internal nodes in each edge sequence tree can be bound to O{n3). To -
simplify the analysis, assume that P .is triangulated. By the fact that the shortest path
can cross a face only once, each internai node has mo more than two children. Hencel
there are overall O(n?) nodes (including leaves) in an edge sequence tree. Since we
construct n edge sequence trees in Algorithm FAS, there are totally O(n¢) nodes in n
edge sequence trees.

For (b), to count the number of regions in visibility relation diagrams, we first

examine the correspondence between the regions and the shortest path edge sequences. -

Lemma 2.8 There are O(n?) regions in each visibility relation diagram after performing .
Algorithm FAS. |
Proof: To prove this lemma, we show that for any two points A=(A_A,), B=(B,,B,)
on domain Z=egxe,, if A and B are in the same equivalent class, say Rf’ then there
exists a path PcRg-connecting A and B on domain Z. In other words, Rf is path
connected. Without loss of gfanerality, we discuss the following cases separately.

CASE1: If A=B,, AB is parallel to ¢; on domain Z (see Fig. 2.7a). We shall claim
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that ABCR ¢

Assume that there exists some point C=(Cg,A,) on AB but belonging to Rg,,
where £#&. We first perform planar unfoldings relative to £ and € on a common plan
such that they share the common edge e,. However, point A, will be, duplicated to two
points, say A ¢ and A & (see.Fig. Th). Let the perpendicular bisector to E\_{KE intersect
e, at point E. This bisector partitions the plane into two halfplanes. Since (C,,A,)eR &

and (AS,AB)ER€, we have |7r§(Cs,Ae)|>[7r§,(C5,Ae)] and ]wg(As,Ae)]<|W€,(AS,Ae)].

This implies that respectively [CSA£]>|CSA§,| and |AA §|<IA5A f’l in these planar
unfoldings. Hence E must be on A,C, ,and By is in the same hyperplane with C_, which
means |7r§(BS,Ae)|>]7r§,(Bs,Ae)|. The shortest path edge sequence from B, and A,
should not be ¢ ,but be £. This contradicts to our assumption,‘(Bs,Ae)eR £ The case of
A =B, can also be derived from, instead of create two e,, duplicating e, when performing
planar unfol-djngs. —
CASE2:  With same notations, if neither A =B, nor A;=B;, we have two kinds of
planar unfoldings relative to ¢ (see Fig. 2.8). In one case we(As,Ae) Crosses Wg(Bs:Be):
while in the other case these two paths are not crossed by each other.

For the former case, if Wg(As:Ae) crosses Wg(BssBe) at point D (see Fig. 2.8a), we
shall claim that the following curve P is a path connecting point A and B'in domain Z
and PCR ¢

P is a hyperbolic curve in domain [A_,B.]x[A,,B,] such that

for every point (PP JeP , P, D, and P, are collinear in the planar unfolding

relative to &. |
Since A and B belong to R £ KSKE and B_S'BE should be included in polygon G,(¢§).
Hence, for all points (PP )eP, P, and P, can be seen by each other in the planar
unfolding relative to £. Assume that some point C&P belongs to R £ where £#& and

C=(C,,C,)- This implies that |wg(Cs,Ce)|>|7r§,(Cs,Ce)|. On the other hand, since A
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and B belong to Rg, we have Iwg(As,Ae)] <|7r§,(A5,Ae)] and lvré(Bs,BeH <| vr‘é,(Bs,Be)|
-respectively. A simple geometric analysis can derive that |7r§(CS,Ce)|<]7r€,(CS,CE)|,
which contradicts to our assumption that CeR £ Thus every point CeP must belong to
Ry | | o
For letter ome, since both A and B belong to er’ K;ré and 'H;I—Z_6 should be
included in polygon G,(£). Hence, all points on KS—KE and B—SB'E can be seen by each
other in the planar unfolding relative to £ Let A’=(A,B.) and B'=(ByA,). In the
following, we shall claim that either AATUA'B or AB’UB’B (but not both) belongs to R £
Assume that A’ belongs to R £ but £#&. This implies that the shortest path edge
sequence from A to B, is £. Thus, we have ]w'f(As,Be)b]arE,(As,Be)l. On the other
hand, since both A and B belong to Rf’ we have ]wg(AS,Ae)].<|ﬁ* (A AL)| and
|7r§(BS,Be)|<|7r§,(BS,Be)| respectively. A simple geomettic analysis can derive that
either I?TE(AS,BE)I<|7T§,(AS,BE)I (see Fig. 2.8b) or B’ER? but not both. Here, the
former one contradicts to our assumption that A’ERf, while the latter ome meets
ABUB’B ¢ RE (by CASE 1). The relative statements are also true for assumption
B’ERE. |
With the analytical results in CASE I and CASE 2, it is not difficult to see R ¢ is o
path connected. Since the number of equivalent classes on domain Z is the same as the
number of shortest path edge sequence, the number of regions on domain Z is bound to

O(n?). Hence Lemma 2.8 is true. g

Our next goal is to show that when processing Algorithm FAS the number of
regions in each visibility relation diagram is also no more than O(n?). By Lemma 2.8 we
have known that each internal node has only one corresponding region, but it is possible
that, in building edge sequence trees, we have a leaf (or leaves) whose edge sequence has

two (or more) corresponding regions in the visibility relation diagram. For this leaf, it
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will eventually be either an internal node constituting an edge of some shortest path
edge Séquence, or a leaf with infinite weight. In the former case, the final internal node
will contain only ome corresponding region, while the other regions xéill be overlaid by
the regions of other internal nodes. The latter one implies that the path from root to this
node is not a shortest path edge sequence. Iis equivalent class should be empiy and all
its corresponding regions will be covered by regions of other edge sequences. Thus,
during the entire process of Algorithm FAS, the number of regions in each visibility
relation diagram will be no more than the number of all shortest path edge sequences

from a fixed starting edge to another fixed ending edges. The above discussion can be

summarized as the following.

Corollary 2.9 The number of regions in each visibility relation diagram can be bound to

O(n?) durin,;,r thé whole process of Algorithm FAS.

For (c), we shall claim that for each time we expand a node in edge-sequence trees
it takes O{n%ogn) time to modify its corresponding visibility relation diagram. Using the
notations in Section 2.1.2, the planar unfolding relative to some edge sequence [29] and
the comstruction of polygon G,(€) [9] can both be performed in Onlogn) time. The

construction of all intersection regions R §i‘lR. g, can be accomplished by calculating the
1

3

intersections between the hyperbolic curves, by sorting these points along each of these
curves, and then by tracing the boundary of each intersection region. Since by CoroHary
2.9 we know there are at most O(n?) regions in each visibility relation diagram, it needs
overall time O(n2logn) [26] to draw out all intersection regions. For each of the resulting
((n?) intersection regions (at most), we must draw a hyperbolic curve to partition it.

Since the planar unfoldings telative to £ and £; have been put on a common plane, this

step takes constant time. To compute the weight for a new node, we must differentiate
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the boundaries of its corresponding regions. It takes O(n) time. With this informati'on,
the next time we modify its ‘weight, we need only constint time. The above discussions
can be summarized as follows. To expand a new node in an edge sequeilce tree, we spend
((nlogn) time to construct G,(¢) and region Rg, O(nﬂlggn) iime to find the intersection
tegions, and O(n?) time to modify the visibility relation diagram and compute the
weights of leaves. Hence, it takes overall O{n%ogn) time to expand a new node in the
edge sequence {ree.

By the analytical results to (a), (b), and (c), we can conclude that Algorithm
FAS totally takes O(nflogn) time to construct n edge sequence trees and n{n—1)/2
visibility relation diagrams. Since the visibility relation diagrams show us the visibility
between points on edges of P, the problem of finding shortest path edgé sequences on P
can be reduced to a location i)robiem on VRD’s. For a pair of given points (A,B) lying
on edges e, and e, Tespectively, we need only O(logn) time to identify its located region
in domain Z=egxe,. Thus, its corresponding shortest path edge sequence can be draw out
from edge sequence trees immediately.

By concludiﬁg above discussions, we give the fo]lowing theorem.

Theorem 2.10 Given a convex polyhedron P with = vertices, one can preprocess P byv a
procedure which runs in O(nflogn) time. This procedure produces n edge sequence trees
and n(n—1)/2 visibility relation diagrams, in each of which has O(n?) zegions. With the
aid of these trees and diagrams one can find the shortest path edge sequence between
any two specified points lying on edges in O(k+logn) time where k is the number of

edges in the shortest path edge sequence.

2.2.3 Conclusicns and Rema.:ks




As mentioned in Schevon and O’'Rourke’s paper [27], the gap between the number
of shoftest path edge sequences and the time to compute them can be narrowed. This
research work has shown it. We transfer the visible relationship b;tween edges into
Visibility Relation Diagrams, and organize all shortest path edge sequences into n Edge
Sequence Trees in overall O{nSlogn) time. This is a new approach in finding all shortest
path edge sequences. It is different from Sharir’s [26] or Mount’s [19] ‘methods, in which
they partitioned the surface of a polyhedron into slices. Hence the running time can be
reduced. It seems quite likely that the algorithm developed in this paper is much closer
to the optimal one, as there are O(n#) shortest path edge sequences on the polyhedron,
and for given two points, without preprocessing, one needs O(n2ogn) time to find their
shortest path edge sequence (the best met_hod up to now). We expect that the time
complexity could be redﬁced to O(n8) by using some better data structures fo mainfain
visibility relation diagrams. Keeping the-ordering of 1-;he boundary of each region during
constructing visibility relation diagrams could be another approach to reduce the time
bound. The data structure of the visibility relation diagram may be of interest -in its own
Tight. |

The method we used in this paper is a generalization of the continuous Dijkst;a.
technique in {17]. In [17], the Continuous Dijkstra technique was limited to discuss the
relationship between a fix point p and the points on each edge € or face f. In our term,
these relationships can be characterized as the visibility relation diagrams on domain
Z=pxe or Z=pxf 1espectively. For example, It is easy to understand that Single—Source
Discrete Geodesic Problem can be looked at as a special case of Edge—Point General
Geodesic Problem. In Algorithm FAS, we simply initialize original starting edge to be a
single point, and then proceed exactly as before to comstruct the visibility relation
diagram for each edge. Obviously, each of these visibility relation dia,gramé is a partition

on the corresponding edge. This is actually what Mitchell has done in [17].
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We believe that the generalized Continuous Dijkstra algorithm can also be applied
10 Geﬁeml Geodesic Problem, which is important in the study of robotics and terrain
]

navigation. But in the generalization from Z=e;xe; to Z=f i,

the process to partition Z
into equivalent regions will be more complex. It obviously includes a subproblem which
ig the dynamic point location problem in 4—D. Hence, whether we can develop a good
algorithm for this generalized case crucially depends on the method to solve the dynamic

point location problem in 4-D.
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2.3 Cruising Guard Problem
r
The cruising guard problem is another problem to which we successiully apply the
locus approach. By the same concepts and the same data structures described in Section
2.2, in this subsection we develop algorithms to solve 1— and 2— cruising guard problems

respectively in O(n) and O(kn) where k is the number of pockets in a simple polygon.
9.3.1 Definitions and Notations

Let P denote a simple polygon which is represented by a sequence of vertices w,
Viyeey Un-1, A0d 0= Tn-1vy With es= wi_yv; for i= 1,2,..,n—1 are the edges of the polygon
_ connecting the corresponding vertices. We also assume that the boundary of P is
directed cloé:kwise, that is, the interior of P lies to the right of each edge.

P is said to be weakly visible from an edge e if for each p on P, thereis a peon e
such that the line segment pp. Hes iﬁside P. Here we say that a line segment lies inside P

if the interior of the line segment-liés in the interior of P [33].

Definition. Let P be a simple polygon which is weakly visible from some s.peciﬁed edge
e. The cruising guard pfoblem is to

Minimize  MAX( {| si | i=1,2,...k} )

5.t. P is weakly visible from E

where E= Us; and VsjCce j=1,2,..k

As motivation for the definition, consider the placement of k guards on edge e,
whose job is to observe the antire polygon P. If P is weakly visible from e, it is necessary

for the guards to cruise along some sections of e. Of course, to monitor the whole area in
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this polygon efficiently, we would like to minimize the longest section.

'.To simplify the algorithm and yield an éasier proof of correctness, we put the
polygon in a "standard form." Consider the polygon in Fig. 2.1. Let 1:n-1’ and v’ be the
intersections, if any, of the extension of wy.;vo. It is clear that the vertices in region A
can only be seen by vy.. Hence, E must include w,.;. The same applies to region B, with
vertex vy replacing vertex w,.;. To be more general, let P’ be 2 new simple polygon
obtained by replacing vy’ and wy.’ with v and v, respectively, and deleting regions A
and B. P’ has the property that all of its vertices lie on the same side of the line ﬁn._w%
A polygon with such a property is said to be in standard form. In the following, all -
algorithms will designed to work on such polygons.

We will assume for convenience that the origin of our coordinate system is at v,

and that the edge v,.yvp lies along the positive z—axis.
2.3.2 One Cruising Guard Problem

Let P be a simple polygon, which is in standard form and is weakly visible from
edge ey = Tn-1¥. For the cruising guard problem, if k=1, we need to find a shortest

segment on eg, from which P is weakly visible.

Definition. For vertex vi; define
ri = MAX({ r] reep and v; is visible from r }) and
li = MIN({ ! | leeo and v; is visible from { }).
For edge e, if ri-y < &, 73-40; is said to be of fype 2 segment and denoted as toy; if 75y >

15, firi-; 18 said to be of type I segment and short for t1i (see Fig. 2.10).

The geometric meanings of type 1 segment and type 2 segment are the following
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facts;

' /
Fact 1: (type 2 segment) If 71,5 is a type 2 segment, f»; is the shortest segment from

which e; is visible.
Fact 2: (type 1 segment) If lir;-; is a type 1 segment, e; is visible from any point of ;.

Thus, the necessary and sufficient conditions of weakly visibility from a segment

are

Lemma 2.11 If E is a segment of ¢y such that
Viyg, tuNE# @ and Y ioi, il E =iy,
then P is wéa.kly visible from E.

Lemma 2.12 The shortest E, which has the property of Lemma 2.11, is the optimal

solution for 1 cruising guard problem.

" Hence we design an algorithm for 1—cruising guard problem directly from Lemma

2.11 and Lemma 2.12.

Algorithm 2.1 (I—cruising guard problem):
(1)  For each v;, compute rj and & ;
(2)  For each ¢ , compute 73_; or i and label them as fp5 o1 44 ;
(3)  If there are no type 2 segments
then Ro=¢ and La=¢;
else Rg= MAX({ li | Ti4hiis a type 2 segment }) and
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Ly = MIN({ ri-; | 7i1liis a type 2 segment }) ;

Tf there are no type 1 segments

then Ri=¢ and L= ¢;

else Ry=MAX({ 4| Tiriqis a type 1 segment }) and
Ly = MIN({ ri | Giri-1is a type 1 segment }) ;

R=MAX(R{,R2) and L=MIN(L{, L,);

IfL<R

then segment LR is the answer ;

else any point on RL is the answer.

The running time of this algorithm is clearly polynomial in n. Step (1) and step

(2) do the same work as described in [1] in which paper Avis and Toussaint had a linear
algorithm for determining the visibility of a polygon from an edge. For steps from (3) to
(6) all the work to do is'to find MAX and MIN. It an be also accomplished in O(n).

Thus we have a linear time algorithm for solving 1—cruising guard problem.

2.3.3 Two Cruising Guard Problem

Assume that for convenience that the optimal solution of 2—cruising guard

problem is a set of two segments, s; and s,, of €. Let E=LR be the segment obtained by
Algorithm 2.1. Point py is the midpoint of E. The following lemma for the upper bound

of s and sg is always true.

Lemma 2.13 |E|/2 is the upper bound of MAX({|si|,|s2]}). Hence, neither s; nor s,

Crosses .
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In the following, we assume that s{ is contained in segment Lp, while s, is

‘contained in segment PaR. The main idea of our algorithm consists of two steps..
)

(1)  For each edge e,
Maximize MIN({ Lipa , DaTpi })

st. pi€eg . “

mpi = MAX({ r | reep and p; is visible from r }) and
lpi = MIN({ /| Iceq and p; is visible from [}).
(2) Find R’ = MIN({ rp; | i=1,2,..,0-1 }) and
L' = MAX({ L | i=1,2,..,n—1 }).
We have {s1,82 }.= {LL", KRR} (see Fig. 2.11)

With a little difference from Section 2.2, we define the visibility relation diagram

as follows.

Definition.  According to the visibility of points-on e, and ej, domain egxe; can be
partitioned into two equivalent classes, say Rei.and R " For any pair of points (po,pi) in
Rei, pois ﬁsible from pj; if (po,psi) is in R & they can not be seen from each other in the
simple polygon P. The visibility relation diagram of e;, short for VRDe; , is the partition
of domain eqxe; defined by visibility between the points on edge ey and edge ¢; (see Fig.

2.12).

The relationship between the geometric meanings and visibility relation diagram

are

Fact 1: (boundary) : ~

The boundary of Rej and R $ on domain epxe; is typically made up of pieces each
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of which is a section of hyperbolic curve. It has two non—intersect parts both of which
are ménotone/decreasing. For convenience, we define the upper boundary Fi(z) as the
concatenation of hyper.bolic functions fi;(z) and the lower one Gi(z) as the concatenation
of hyperbolic functions gij(z). Furthermore, each fij(z) or gij(z) can be defined by the
following condition (see Fig. 2.13):
[a+by—vj]x[ctdz— vy =0
(collinear of the points on edge €, points on e; and vertex ;)
where vj is the location vector of vertex vj , and
a+by and c+dz are points respectively located on edge ey and

edge ej .

Fact 2: (tﬁe 1 and type 2 segments on domain egxe; ) .

In Fig. 2.12, Fi(1) is ri.q while G5(0) is & Hence, if Fi(1)>G(0), the type 1
segmenf of e is GR(OVFI(1); if F3(1)<Gi(0), Fi(T)Gi(0) is the type 2 segmént of e;. For a
- point p; on e; , Fi(pi) is rpi of p; while Gi(p1) is & of ps.

Fact 3: (local optimal solution)
Let a and b be two points on edge e; , such that in domain epx[a,b], Fi(z) and
Gi(z) are tespectively defined by a single fz) and a single g(z) {see Fig. 2.14). Assume 1

that s;, should comtain L while si; contains R. For segment [,b}, the local optimal

solution is to 1
Minimize  MAX{ si1, Si2 }
s.t. ' segment @b is visible from si; U sia.

In other wozds,

(1) if pne [ﬂb)'gg(b) 1 f(ﬂl;g(ﬂ) 1,
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then p; € [a,b] such that lf(Pil'JPmI = | fpi)pal,

i.e. s;=Lg(py and s; = [pi)R

(2) if pmﬁ![ﬁ)%w,ﬁ%@],
CASE 1. when () > ¢(a) (type 1 segment),

if pm<ﬂ—b—%—ﬁﬂ, then s, = fO)R and s;=1L;

if pm>ﬂ—a)%9-(—g)-,then s; = Lg(a) and s3=R.

;‘ CASE 2. when fb) < g(a) (type 2 segment),

If pa < b—;— b ,' then sy = fO)R and s;=1L;

3 If pm>m'-2t@l,then sy = Lg(a) and sa=R.

Actually speaking, Fact 3 is obtained by solving the fo]lowing équa.tions:

§ [ at+byy —vj ] x [ c+dz— Vi] =0 (vertex v; and points on ¢ and ¢; are collinear)
[ a+bys — vx | x [ e+dz—vi] = 0 (vertex v and points on & and e; are collinear)
[a+by;—pu]=[a+tby—Da] (optimal solution)

Here we parameterize the points on ¢q as a.+by1; a+by, and points on e; as c+dz.

Y Pm is the position vector of midpoint pa.

vj and vy are the position vectors of vertices ¢ and v respectively.

According to above observations, the optimal solution should satisfy the following
lemma.

Lemma 2.14 The optimal solution of 2—cruising guard problem is a pair of segments

(51,32);

such that ¥si,8i1C8 and VSiz, 8i2C 82
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Now we formally outline the algorithm.

Algorithm 2.2 (2—cruising guard problem):
(1)  Compute L and R by Algorithm 1
(2) IfL>R then we need only one guard and can put him on any point of RT;
(3)  For each e; , compute its Visibility Relation Diagram VRDe; ;
(4)  For each VRDy; , partition it to O(n) subdomains as described in Fact 3, and
compute their (s;1,812);
(5) Let s;= the longest si; obtained from step (4);
55 = the longest i, obtained from step (4);
(6)  Output (s1,52).

As mentioned in l—cruising guard problem, step (1) needs only O(n). Steps (3)
and (4) can be accomplished in k<O(n) + (n—k)xC time, where k is the number of
pockets in polygon P and C is a suitable comstant. For step (5), the pair of longest
éegments, s; and sg, can. be found in limear time. Hence, the time compiexity of

Algorithm 2.2 is bounded by O(kn).
9.3.4 Remarks on Future Research

In this subsection we presented two algorithms for respectively solving 1— and 2—-
cruising guard problems. Recently researching resulis [31] show that k—cruising guard
problem can also be solved by 2 polynomial time algorithm which is bounded by
O('2kn3logn). In the same technical report Tu and Kao proved the boundary curves in
visibility relation diagrams form a Mobius group of functions with degree 2. By

induction the critical segment is the one cruised by the [(k+1)/2]th guard if %k is odd, or
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by [k/2]th guard and [(k/2)+1]th guard if k is even. Hence we can find the optimal
solution either on the locations which minimize the length of critical segments or on the
intersections of the curves on visibility relation diagrams. A final, more general problem,
which is a patural extension of our work, is: "Instead of edge eq we allow that k guard
can cruise on a set of edges. Dose there exist a polynomial algorithm to minimize the

longest segment 7"
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3. Dynamic Computational Geometry

Another direct use of the locus approach is dynamic computational geometry. The
term "dynamic computational geometry" was original coin‘ed by Atallah’s [2] to denote
the study of some geometric problems which were reconsidered under the assumption
that the coordinate of each input point is a function of a time variable ¢ The word
dynamic was referred to the situation when the input geometric objects are moving in a
prescribed manner and the word static for the case when they are fixed. Thus, some of
the techniques for solving static computational geometry problems do not seem io help
in the dynamic case, éspecia.lly when we are trying to continuoilsly update over time the
information we have about the moving points. Since the paths of the moving objects are
pre—defined, to answer the queries at a given time interval, we can draw 2 diagram by
tracing their loci on domain fxz whicﬁ is defined by time space t and a specific
considered space z. Of cause, Locus a,pprdach does this work well. For example, in this
section, we focus our attention on the separability problem. For the static case, it has
been shown that linear separability is a linear programming problem, and can be solved
in time O(n) where n is the cardinality of the set of input points [15,16,24]. In dyna.mic
case, the problém becomes much harder. Since the given points are moving, ‘the
separability crucially depends on the function of each moving point. Thus, we draw the
locus of each point on domain ¢x 6, where §is the angle that the path of the moving point
makes with the z—axds. Then, according to the diagram on domain ix4, we can subdivide
the time space into several time intervals in which the given two point sets are linearly
separable.

This section is consist of two parts. In the ﬁ'rst\part we introduce the direct use of
the locus approach in dynamic computational geometry by an example: separability

problem. Given n red points and m blue points having l—motion in plane, the obvious
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brute force approach gives an O(mn(m+n)log(m+n)) time solution [2]. In Section 3.1,
we prdpose an algorithm to find the time intervals in which the red and blue points are
separable. For the points having A—motion in the plane (2-D), the’ algorithm can be
accomplished in time O{mNogmN+nMlognM+mN+ni), where N is O(A(n4k)), M is
X A(m,4k), and A(7,7) is the length of the ma.ximai (4,7) Davenport—Schinzel sequence. If
the points are moving on a line (1-D) with k~motion, the complexity can be reduced to
O(MogN+ MlogM+ N+ M) where Nis O(A(n,k}) and M is O(A\(m,k). For a more special

case, in which points are restricted to 1-motion on 1-D, we have a linear time algorithm

for deciding whether they are separable. Our algorithm consists of two major parts.
First, we use the method proposed by Atallah [2] (which solved the dynamic convex hull
problem) to obtain a set of time intervals in which the red points are 10t in the interior
or boundary of the convex hull of blue points, and in the'saz‘ne Wway W€ Can enumerate
the time interval set of blue poﬁnts. Then, in the second part of our algorithm, these two
sets of time intervals will be merged to be one final set of separable time intervals.

I_n the second part, since the Davenport—Schinzel sequences plla,y an important
role in the analysis and calculation of the lower env.elope of collection of functions in the
separability problem, we introduce its lower bound and uﬁ:per bound with some

applications in Section 3.2.

4
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3.1 Separability Problem

This subsection is organized as follows. After introducing our notation and
definitions, we present an algorithm for separability problems with &—motion in 2-D.
Then we discusses the special case, separability problem in 1-D. Concluding remarks are

given in the final part.
3.1.1 Notations and Definitions

For convenience, in the following subsections we assume the input points are
moving in chh’dea.n space. A set of points are sald to be with k—motion, if every
coordinaté of every moving point is a polynomial function with no more than k degree iﬁ
the time variable . Thus, for genéra.l d—dimension, each input point p; can be described

as follows:

pi(#) = (Xad(t),X12(2),--, X1a(£))

where each

Xij(t) = Cyjxte+ Cijxate-th- -+ G500, 13K,
and Cijp are constant coefficients of polynomial Xi;(£) for 0<h<k. At time instance £, the
configuration of input point set P is denoted as P(%).

For separability, we define the follows.

Definition. Two set of points R and B in Ed are said to be linearly separable at time
instance t; if there exists a (d~1)—dimension hyperplane L such that R(%,) and B(%,) lie
on opposite sides of L.

The separability problem in dynamic computational geometry now can be stated
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as: given two éet of points having k—motion in d—dimension, try to find the time

intervals during which R and B are linearly separable. A separable time interval is a time

interval [¢,,£;] during which R and B can be linearly separated . !

In the following we would like to introduce some notations related to convex hull
which will play an important role in this section. F1g 3.1 illustrates the convex hull of
point set B. Let CH(B) déenote this convex hull. For the vertices on the convex hall, such
as v, ¥p,%, ¥, and vs in Fig. 3.1, we name them convez points, and classify them into
four types: {op, bottom, left and right according to the following specifications.

(1) A convex point is a top convez point if no other points lie above it, i.e. the top
convex point has the largest y—value among all points. We choose the rightmost
one to be the top convex point if there are more than one point with this y—value.
In Fig. 3.1, v is a top convex point.

(2) A bottom conves point is a convex point of the smallest y—value. If there are more
than one convex point with this y—-fralue, we choose the leftmost one to be the
bottom convex point. In Fig. 2.1, v3 is a bottom convex point.

(8) A left convezr point is a convex point on the counterclockwise path from fop
convex point to bottom convex point. v, is a left convex point in Fig. 3.1.

(4) A right convez point is a convex point on the clockwise path from top comvex

point to bottom convex point. vs and vs are right convex points in Fig. 3.1.

Let | U| be the length of an (n,s) Davenport—Schinzel sequence (also see section
3.2 for details) [13,25]. Then, the function

A(m,s) = MAX { | U] : Uis an (n,s) Davenport—Schinzel sequence }.
Suppose that F={fj,,..../n} is a set of n real-valued continuous functions defined on a

common interval I, where for every two distinct functions f; and f, they intersect in at

most s points. We define [t} = MIN {fi(¢) : i=1..n and €1} to be the lower envelope of
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F. Note that {{) is typically made up of "pieces" each of which is a section of £(£). The _
length of a lower envelope, |{#)], is the number of pieces in [¢). Attalah [2] showed that
A(n,s) is the upper bound of |{¢)]. Attalah [2], Sharir [13,25] and Hart [13] have proved
the following bounds.

A(m1) = n, and A(n,2) = 2n-1; :

AMn,3) = 8(n- o)), and A(n,s) = O(n-a(n) O(a(n)53))

These results will be used in the rest of this section.
3.1.2 Separability of #~motion in 2—dimension

In this subsection, we first state some properties of separability, and then
iteratively use Attalah’s method (which solved the dynamic convex hull problem) to
obtain the set of separable time intervals for two given point set.

Let R and B be two given sets of points with k—motion in 2—D plane. Assume
that |[R|=n and |B|=m. A crucial criterion for linear separability is provided by the

following theorem.

Theorem 3.1 ([30] Store and Witzgal (1970), Theorem 3.3.9) Two sets of points R and
| B are linearly separable if and only if their convex hulls do not intersect and the interior

of these two convex hulls are mutually disjoined.
We immediately have Corollary 3.2.
Corollary 3.2 If R and B are linearly separable at time instance ¢, then each point b; of

B is a convex vertex of the convex hull of set RUb; at £, and each point r; of R is also a

convex vertex of the convex hull of set BUr; at £y, i.e.
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bi(te) € CH{ R{t) U bs(te) ) for¥ ;¢ B,
and  rj(te) € CH{B(t)Uri(t)) forVreR.
. '
Since Corollary 3.2 is only a necessary condition, it is.not strong enough to detect
the intersection between the interiors of two comvex hulls. Fig. 3.2 illustrates a
counterexample in which R and B meet the requirement of Corollary 3.2 but are not

linearly separable. Hence, we propose the following theorem.

Theorem 3.3 R and B are linearly separable at time instance # 4ff one of the following
conditions is true .

(i) each point bi(to) of B(t) is a top, bottom, or right convex point of CH( R(%)Ubi(ty) )

H

)
and each point rj(to) of R(to) is a top, bottom, or left convex point of CH{ B(#)Urs(ts) );
)

(ii) each point bi(to) of B(to) is a top, bottom, or left convex point of CH{ R(%)Ubi(ts) ),

and each point rj(fo) of R{o) is a top, bottom, or right convex point of CH{B()ur;(4o)).

Proof: Here we-prove condition (i) only.

If sets of points, R and B, are linearly separable at time instance %, by definition, ‘

there is a line L, say y=az+b, such that R{t,) and B(%) lie on its opposite sides.
Without loss of generality, assume that the points of B(%,) lie on the half—plane y<az+b
while the points of R(%,) lie on the half~plane y>az+b. Let 1, and yv be respectively the
largest and the smallest y-values of points in R(#). It is easf/ to see that set B(%) can be
classified info three subsets, B¢, By, and By, where

By ¢ {(x,7}| y<az+band y>y: },

Br ¢ {(x,¥)} v<az+b, y<y, and y>p } and

Bb € {(x,y)]| y<az+b and y<yp }.
Condition (i) is a immediate consequence of above statements and Corollary 3.2 (see Fig.

3.3).
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Conversely, if condition (i) holds, we will claim that the convex hull of set R(%)
and the convex hull of B(%,) do not intersect, and the interiors of these two convex hulls
are mutually disjoined. Let 3. and 3, be respectively the largest "and the smallest
y—values of points in R(%). Since condition (i) holds, once again we can subdivide set B
into three subsets, say Bi, By, and By, where

By {(xy)| v>w }

Brc {(x,5)] y<yrand y>yp } and

By ¢ {(x)] v<m }-

Suppose that b3(Z9)55{%0) is an edge of CH{B(ty)), which intersects CH(R(%o)). By the fact
that bi(to) and bj(fo) are the top, bottom, or right convex points, 5i{%0)5j(%0) should
intersects CH(R(%y)) on two and exactly two edges (see Fig. 3.4). This implies that there
exists époint x(to) of R(#o) where |

(a) its y—value is between the y—values of b5(fo} and di(), and

(b) it is located on the right side of 5i{%)b;{%)-

(a) and (b)-obviously contradict to condition (i), "point n(te) is a top, bottom, or left

convex point of CH( B(fs) U n(ts) )-" Thus, CH(B(4s)) should not intersect CH(R(t)).
For the interiors, if these two convex hulls do not intersect with each other, but parts of
their interior are in comnion, there is only one case meeting this requirement : one
convex hull with its interior is properly contained in the other one. This also contradicts

to the assumption of convex points. Thus, R and B are linearly separable at time

instance fo. g

Our next goal is to compute the time intervals during which a given point belongs

to the convex hull.

>

Let #(t) be the angle determined by N t)ri(t)” and g—axis at time ¢ where

—7< B35(t)<+m. Define e, fi, 711, and 6; as follows [2]:

—41 —




oi(t)=MIN{ &5;(2) | 03;(2)20 }

Bi(t)=MAX{ 65(2) | 05(20 }

7i(&)=MIN{ 83(2) | 85;(£)<0 }

oi(t)=MAX{ b5(2) | 655(2)<0 }
If all #3(¢) are negative, oi(#) and fi(f) are both undefined. Similarly, if all 4;;(%) are
positive, 4i(£) and &(¢) are both undefined.

Lemma 3.4 For CH{ R(t) U bi(£) ), point b5(2) is
a right convex point iff a;i(t)—&(¢)>,
" a left convex point iff fi(£)—7i(2)<,
a top convex point iff ai(t) and fi(Z) are undefined, and
a bottom convex point iff 7:(£) and 63(¢) are undefined.

Proof: Dirécﬂy derived from Lemma 4.7 in [2].

Note that each of the functions ai,' Bi, 71, and 6; contains O(n) tramsitions and
jump discontinuities, hence, each of them has no more than A(n,4k) pieces. If we count
the time needed to find the roots of polynomial with O(k) degree as O(1), a
divide—and—conquer algorithm, in time O(A(n,4k)logA(n,4k)), can compute the set of
time intervals during which &;(£) is a top, bottom, left, or right convex point of CH{ R(¢)
U 5(f) ) [2]. Denote the set of these time intervals as Ipi. After executing the
computations for all b;(¢), we have n sets of time intervals, say Jvi, Joa,-.,Jon (see Fig.
3.5). Now intersect these n sets to be a new set of time intervals /, in the following way.

(1) A time interval ¢y} belongs to Iy if [£1,85]C[a,b], where [a,b]€ly for =1,2,.. 0.
(2) A time interval [¢1,2,] in Iy is assigned to "R—type" if every b;(¢) is either a f0p,
bottom, or right convex point of CH( R(&) U b:(£) ) where €[ty ).

(3) A time interval [t;,%] in Jy is assigned to "L—type" if every bi(f) is either a top,
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bottom, or left convex point of CH( R(£) U bi(£) ) where t€[t;,t].

'Fig. 3.6 illustrates the set Iy, obtained by intersecting all Ii’s according to above
steps. In the same way, we can compute I for each rj(¢), and get their ’intersectmn I.

By Theorem 3.3, it is easy to understand that the final result J, the set of
separable time intervals for sets R and B,_ can be obtained by intersecting I, and I; in
the following way (see Fig. 3.7):

a time interval [41,85)€Tif [t,5]C0,8] and [é1,22]C{c,d] where [a,b]€ ] and [c,d]eL.

In the following, we shail summarize the algorithm, and give an analysis of its

time complexity.

Algorithm 3.1 . Given two sets of points R={ry,rs,..,mn} and B={b!.,bg,..,bm} having

k-motion in 2-D. We compute the set of separable time intervals.

Step (1) For each b;, compute Ini, the set of time intervals during which b; is a
convex point of CH( R(%) U b5(¢8) );

Step (2) Intersect all Tvi’s to get Iy, the set of time intervals with either R—type or.
L—type;

Step (3) For each 7, compute I, the set of time intervals during which ry is a
convex point of CH( B(%) U () );

Step (4) Intersect all Irj’s to get I, the set of time intervals with either R—type or
I—type; ‘

Step (5) Intersect I, and I to get the final result J, the set of separable time

intervals.

+ The running time of this algorithm is clearly polynomial in 7 and m. Let M be

(A(m,4k)) and N be O(A(n,4k)). Specifically, Step (1) can be accomplished, for each &;
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_ in time O(Mogh), in overall time O{m- NlogN) {2]. In Step (2), we need to merge m sets

of time intervals produced in Step (1), and identify the type (R—type or L—type) for
each time interval. Since each Iyiis a sorted list with O(N) timé inter%rals, this step can
be carried ouf by a linear merging algorithm for m sorted lisis in time O(m-N-logm). In
the same way, we know that Step (3) and Step (4) need O(n- MlogM) and O(n- M-logn)
time respectively. Since Hét Iy has O(m-N) sorted elements while there are O{n-M)
sorted elements in list I, Step (5) can 2lso be performed by a linear merging procedure
in time O(mN+nM). Hence, totally Algorithm 3.1 can be accomplished in time
O(mN-logmiN + ni-lognM + mN+nM).

In [25], Sharir gave the almost linear upper bounds for ¥ and M :

M= O(m-a{m) O(a(m)ék-s)) and N = O(n-a(n) O(a(n)‘*k'ﬂ)), where of7) is the
functional inverse of Ackermanﬁ’s function. The function a(z’)-is very slowly groﬁng,

but tends to infinity with 4. Note that o{i)<4 for all KA which is a tower with 65536 2’s,

. * 2
ie’ 4= 22" _—— with 65536 2’sin the exponential tower.
Thus ofi)<4 is suitable for all practical purposes. Assume that the sizes of sets R and B
are almost equal. The formula of time complexity for Algorithm 3.1 can be simplified to

O(C- n2-logn) where Cis a function of a(n).
3.1.3 Separability of ¥—motion in 1—dimension

We now consider a more special case, where input points are specified to be
k—motion in 1-D. Suppose that one point can run over another point without collisions.
Each point p; can be described as follows.

pi(t) = Cictk + Cixgtk™t - -+ Crof?
where each Cin is a constant.coefficient. At timq t, define .

bnax(f) = MAX{b:(1)},
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buin(f) = MIN{5(1)},
raax(t) = MAX{ri(9)} and
Tuin(t) = M%N{rj(t)}..
Since CH(R()) = {7aax(f),Tmin(?)}, 0:(f) is a convex point of CH(R(t)ubs(?)) if and only

if b3(£)<Tmin(?) or bi(t)>Tmax(f), where the first condition specifies bi(t) to be a left
convex point while the second condition classifies bi(f) into the set of right convex

points. Hence, we can immediately deduce a more simple property from Lemma 3.4.

TLemma 3.5 Assume that the points in R and B are k—motion in 1-D. At time 2y, R(%o)

and B(t,) are linearly separable iff one of the following conditions is true

(i) bwax(fo)<rain(to) Or (ii) bmin(fo)>Tmax(to)- ' '

By Lemma 3.5, Algotithm 3.1 can be simplified to the following version. .

Algorithm 3.2  Given two sets of points R={r,r2--,7n} and B={by,bs,.,bu} having
k—motion in 1-D. We compute the set of separable time intervals.

Step (1) -Com'pute Toin(t) and Taax(f) for t€[0,m), the lower envelope and upper lw

I il
envelope of R({) respectively; | ‘ |
il

Step (2) Compute bnin(t) and bnax(t) for #€[0,w), the lower envelope and upper |
envelope of B(¢) respectively;

Step (3) Comput fb, the set of time intervals during which rnax(?)<Buin(2);

| Step (4) Comput uy, the set of time intervals during which bpax{?)<7nin(2);

“, Step (5) Merge Lb and iy to be the final result I, the set of separable time it

intervals.

Since the enveldpe functions of R(£) and B(#) respectively have N and M pieces of
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polynomial functions, where N is O(A(n,k)} and M is O(A(m,k)), Step (1) and Siep (2)
can be performed by a simple divide—and—conquer technmique in time O(NlogN +
MiogM) [2]. To accomplish Step (3) and Step (4), we need only é(M+N) time by

executing a standard merging procedure. For Step (5), the time to combine Iy, and Fye

can be dominated by previous time order. Hence, the time complexity of Algorithm 3.2

is O( NlogN + MogM + M+N ). Assume that R and B have the.equal size, n. We have

a more simple formula, O{C-nlogn), where C'is a function of ofz).

For another special case of separability problem, we consider the problem of
which points are moving in 1-D with 1-motion. The position of each p; now is a linear
function of time {,

- pi(f) = Oyt + Ciot®  where Ciand Cio are all constaﬁt coefficients.
Hence, the .upper envelope of R(Z), say Tmax(£), is & concave piecewise linear function
while its lower envelope, main(f), is a convex one. Since there is at ﬁmst two separable
time intervals in this simple case, separability here can be transformed to a linear
programming problem as follows. Specifically, given two sets of points having l—motion
in 1-D, R={ry,rs,..,7n} and B={by,bs,.-,bu}, we therefore seek the two optimal solutions,

one for "Maximize t" and the other for "Minimize ¢", satisfying the conditions

(1) ] | < ri{f) where i=1,2,...;n
( > bi{%) where j=1,2,...,m
¢ > 0

and we also find another pair of minimum and maximum of { meeting the requirements

(2) y > 7i(t) where i=1,2,...,n

(Ve

Y bi(t) where j=1,2,...,m
I S

Without loss of gener-ality we assume that the optimal solutions of (1) and (2) are
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respectively fuaxs, ming, fmaxo, and fminz. It is easy to understand that [tnint, fmaxiy) and

[tming,i‘mug] are separable time intervals. For the time complexity, since Megiddo [15,16)
]

has proposed a linear time algorithm to solve linear programming problems with two

variables, the linearly separable problem withk 1—motion in.1—D can be solved in time

O{m+n).
3.1.4 Concluding Remarks"

In this subsection we proposed an algorithm to solve the separability problem in
dynamic computational geometry. For input points having k—motion in 2-D, our
algorithm can be accomplished in time O(mN-logmN + ni-lognM + mN+nM), where
N and Mis ahﬁost linearly proportional to the size of input set. In the spe-cia.l case, the
points are k—motion in 1-D, the complexity can be reduced to ((N:logh + M-logM +
N+ M). If the points are restricted to-1—motion in 1-D, our algorithm needs only linear
time O(m+n). |

In d—dimension, the dynamic separability problems are much harder than static
ones. For static version, linear separability can always be transformed to a linear
programming problem [24]. Specifically, given two sets of points in d—dimension, say
R={r,79--.,7n} and B={by,bs,...,0n}, we seek a (d—1)—~dimension hyperplane

)% Ci-Xi = ( |
éa.tisfying the conditions

S C‘i.inrj
1

i

0 for jeR

Eil C’i.Xibj >0 for & € B.
This 1s cleariy a linear programming, which can be solved in linear time by Megiddo’s
algorithm {15,16]. On the contrary, the dynamic linear separability is not a simple "Yes"

or "No" problem. We need describe the whole set of separable time intervals. For the
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problems moving in 1-D and 2-D, by Lemma 3.4 and Le_m:aia 3.5, an efficient algorithm -
can be designed successfully. Although Theorem 1 holds for any fixed d—dimension, it is
still very difficult to use this iff c‘ondition to construct an algorithm, e:ren for 3-D case.
It coﬁld be an interesting future research topic to find good characteristics of linear

separability in dynamic computational geometry for high dimension.




3.2 Davenport-Schinzel Sequences
‘and Envelopes of a Set of Functions

Davenport—Schinzel sequences are interesting and powerful combinatorial
structures that arise in the analysis and calculation of the lower envelope of collections of
functions, and therefore have applications in many geometric probléms that can reduced
to the calculation of such an envelope. The sequence has originally been posed by.
Davenport and Schinzel [8]. Their interest in it arose from its connection to the analysis
of solutions of linear differential equations. Recently, Atallah [2] has raised it again
independently, because of its significance for problems in dynamic computational
geometry. For a formal definition [13], consider the following combinatorial problem: Let
n, s be positive integers. A sequence U = (uy,Us,..,un) of integers is ‘an (n,s)

Davenport—Schinzel sequence, if it satisfies the following conditions:

(i) 1<ui¢n for each i.
(ii) For each i<m we have Ui-F Ui
(iii) There do not exist s+2 indices 15i_1<ig<...<i's+25m su-ch that
U= U3=Ui5=...=8, Uj2=Uj4=Uig=...=0, and a#d.

We will write | U|=m for the length of the sequence U. Define

As(n) = max { [ U|: Uis an (n,s) Davenport—Schinzel sequenc;e }.
Roughly speéking, an (n,s) Davenport—Schinzel sequence is a sequence composed of n
symbols with the properties that no two adjacent elements are equal and that it does not
contain as a subsequence any alternation of two dist—inct symbols of lengtﬂ s+2. The
main goal in the analysis of these sequences is to estimate their maximal possible length
for any given values of the parameters » and s.

The important of {n,s) Davenport—Schinzel sequences lies in their relationship to

the combinatorial structure of the envelope of a set of functions. We briefly described as
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follow. For more details, please see [2,13,29]. Let { fi, f2,.-., /o } be a set of real—valued
continuous functions defined on the real line. Each pair of functions intersect in at most
s points. From the indices of the functions, we pick a sequence of indices in the order in
which these- functions attain their lower envelope from left to right. This sequence is
actually am (n,5) Davenport—Schinzel sequence. On the other hand, any (m,s)
Davenport—Schinze] sequence can be realized in this way fo‘r an appropriate collection of

. n continuous nuivariate functions each pair of which intersect in at most s points.
The crucial property of these sequences is that, for a fixed s, the maximum length

As(n) of an (n,s) sequence if "practically linear" in n [2,13,25]. More precisely,

A{n) = n, and Ayn) = 2n-1;
Ao(n) = &(n-a(n)), and Ag(m) = O(r- o(m) X(PI))

where of3) is the functional inverse of Ackermann’s function. The function af7) is very
slowly growing, but tends to infinity with . Note that of7)<4 for all %4 which is a tower
with 65536 2’5,

. -2 a - -
i.e. A= 2 —— with 65536 2'sin the exponential tower.

Thus o)<4 is suitable for all practical purposes.

—50 —




4. Conclusions

lIn this paper we have attempted to survey a number of diffefent paradigms for
the design and analysis of geometric algorithms by the generalized locus approach. In the
following paragraphs we shall make a conclusions on thié approach. This conclusion is
divided into three parts: design techniques, data structures and analysis techﬁiques

For design techniques, the main idea of the locus approach is to construct the

relationship between the objects we concern. Generally speaking, this relationship is

depicted by a combinatorial structure. Furthermore this relationship also defines a

equivalent relation on a specific domain on which we shall perform queries. According to
this partition, a query can usually be tramsformed to a 1ocatioﬁ problem in two
dimensional domain. Another important thing in using the locus approach is to find the
functions for boundaries of the subdivisions. Since the spirit of the locus approach is
based on the assumption that all the points, which are oﬁ the domain we concern, are
moving, we should choose the appropriate parameters to describe this phenomenon. For
example, in section 2.1 and section 2.2, finding all shortest path edge éequences on the
su,rfa‘ce of a convex polyhedron, we subdivide domain Z = e; x €, , all possible pairs of
starting and ending points, by shortest path edge sequences and define the boundaries ‘of

the equivalent classes by hyperbolic curves. By the same concept, we construct the

visibility relation diagram to solve the cruising guard problem in section 2.3. For °

dynamic computational geometry, especially for the separability problem, the partition
is on the time domain and is defined by the intersections of loci-of moving objects. Two
time inst.ances are in the same time interval if the blue and red point sets are sepa.ral?le
in the same configuration at these two time instances. Hence, there are two necessary

things when we use the locus approach: define the partition and depict the boundary of

each equivalent ¢lass.
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For the data structures, one drawback of the locus approach is that sometimes the
size of the part1t10mng structure that we need to compute is too large For example,
each visibility relation diagram occupies O{n?) space. If we want to construct a partition
on domain Z = fg x fy (section 2.2.3) to reflect the visible relationship between the
points on two faces, its space complexity may be even worse than O(n¢). On the
contrary, in dynamic computational geometiry we have a better results. Usually we
should compute the envelope of collections of functions and the size of the envelope if
almost linear, O{n-o(n)), to the number of functions we concern. To generalize the
partition on d dimensions, we need a tool to join, split, uniom, intersect equivalent‘
classes and still maintain the topological orders. These interesting topics can be found in
Dobkin’s paper [7] for three dimensions and Brisson’s paper (5] for ¢ dimensions.

The time comple:dfy of the locus approach crucially depends on two factors: the
number of equivalent classes on partitioq domains and the time to depict the boundaries
of equivalent classes. For exé.mple, the t.'ime complexity of finding all shortest path edge
sequences On the surface of a convex polyhedron is dormnated by the time to construct
visibility relation diagrams. Since each equivalent class in this partition is path
connected, the size of the partition equals to the number of equivalent classes, O(n2).
Otherwise, the upper bound can not be reduced [28]. To depict the boundaries, tﬁe
crucial point is the degrée of the boundary functions. In the examples of this paper, we
only discusses the hyperbolic functions. Hence, the time complexity to compute the roots
is assumed to be a constant time. If the degree of function is more than four, the solution
has no close forms. We need make another assumption on the time complexity when

solving the roots or intersections of these high degree curves.
The locus approach is widely used in computational geometry algorithms, and

plays a significant role in several problems. We hope that in time more and more tools

from geometry will be ipplied to this approach.
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Fig. 2.6 The weight-points located on the boundary of region.
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Fig. 2.9b The standard form of P. h‘
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Fig. 3.2. A counterexample of Corollary 2.7




Vi

Iy

ISRRR R R ERRRRRRY] JUNAINLNETE TN Rkl

FIRRERER I LRI T T aan eI N Enyndsg

ERERREEAREENRRERE R S TN T e TE a3 RN i s En LTIl nEnat Ittt

Fig. 3.3. A classification of set B.




‘i

Yo

4
® ® B
® t
Illtllllllllllll! N lllll'llillll!llIlllllIIIIIIIIIIIIIIIIIII!IIIIIIllllllllllllllllll
PN
T
k B
T
®
Illlllllllll‘llllllll (AR EE AN AN R E RN R R EAR R} ll‘IlllllillllillllllllllilIllllll’llll

b, By

Fig. 3.4. Segment b;b; intersects CH(R) on two.
and exactly two points.




bi |l l

Fig. 3.5. The list of I, .




WAL

e ap AR 102
b e e T

ey TTILATVLENNL

io. 3.6, Intersect all I ,;'s to be one I,

¥




o. 3.7. Merge I  with I,to 1.

ig.

.




