TR-87-009

SHAPE FROM SHADING: A.NONLINEAR APPROACH

Jun S. Huang
Computer vision Laboratory
Institute of Information Science

. Academia Sinica -
Taipei,; Taiwan, Rep. of-China

May 30, 1987
=t e 2

1\||\II\N\|||||\“ll\\\lll||“||ll)ﬁl\|ﬂl\|lﬂlllcﬂlllﬂl il

0069

E‘ms et L S




1. INTRODUCTION

"Shape from shading is crucial for computer vision research
simply because many objects have smooth and featureless regions
that constitute the three dimensional shapes,-and the only one way
to inference these shaves is by the analysis of shading information
since the classical stereo vision is helpless herell]. Obviously
to understand the shape from shading needs the understanding of
light intensity which leads to Horn's method of shape«=from shading
[2-5]. The trouble of Horn's method is that to eétimate the shape
made by a particular material requires the reflectance map of that
“material. In general applications we do not have prior information
of the material,and hence the reflectance map of that material is
not available or not well chosen from vast of reflectance maps.
Thus many researchers try‘to:limit the problem to some proper
domain such as Lambertian gurface[ﬁ-B], and some mathematical

results are derived and their interpretations are excellent.

However, I consider the natural surface's characteristics
propably can be inferred from the quantum nature of light. From
the lighting characteristics one can tea;h computer to learn and to
understand the relationship between tne surface's characteristics
and the lighting characteristics. Then we'll.be able: to solve the
shape from shading problem without the need of reflectance map,

perhaps by some new stereo visiomn analysis.



In this report I consider the Lambertian case and have developed
some new methods for accessing shave from shading. Althongh Pentland
[7} and, Lee and Rqsenfeld [6] have also derived many meaningful = oon
results by assuming Lambertian surface,”they actually appfbximate a
surface patch by a sphere which has center at origin. This approximation
i1s too strong. Here Te relax this approximation by an ellipsoid and
a saddle surface with arbitrary orientation and also arbitrary center
point. By using more than ten points in a small image patch T& can
estimate its surface orientation, its center point, its three principle
parameters, and also the light direction. The major technigue used here :
is the nonlinear least squares, which is difficult to programming and
testing. However some meaningful results are obtained through several
experiments. The generalizations to specular and glossy surfaces[3,9]

are also discussed here in detail.
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2. IMAGE FORMATION

Let a small patch of a surface be illuminated by a distant

-point-source light with direction L as shown-in Fig. 1. Let the

surface normal be N and the viewer direction be V. Assuming the patch
surface is Lambertian, which is the idealization of rough, matte
surface, a surface with a Lambertian reflectance function scatters
incident light isotropically. Under these assumptions the image

intensity I(x,y) is given by

I(x,y}= §X (N-L),
where N= (%N, Yi 5 ZM)’ L= (4,,8,,4), and § is the albedo ( or
reflectivity) of the surface and A 1is the intensity of the
illuminant. The assumption of Lambertian surface is valid for a variety
of surfaces. Similarly the distant point-source light assumption is
not too restrictive;.we know that any constant distribution of 1llumina-.
tion is equivalent to a single distant point-source illumination;
this follows from application of mean-value theorem as pointed out
by Pentland[7].

1
.)OE source L

“il normal N

S
viewer V

Fig. 1% A simple model of image formation.




If the surface is not Lambertian, then the reflectivity'P depends
on the incidence angle i, emittance angle e and the phase angle g
as shown in Fig. 1. A ceneral model of reflectivity for svecular

and glossy surfaces is given by Horn[31
. n
I, y)= A9 k(N-LY +L,p (1-k) (n+1)[2(N-L) (N-V) - L.V] (1)

where k is in the range [0,1] representing the relative weights of the
Lambertian ;nd sbpecular compoﬁents, and n determines the sharpness of
the specularity. The first term of Eq. (1) gives the Lambertian compo-
nent and the second term glves the specular component. Another model

given by Pentland[9] is

n
I(x,y)=Ap k(N-L) + Ap (1-k) ﬁﬁ” (2)

If the difference between two times the surface normal and the viewer

direction is perpendicular to the light direction then the specular
term 1s zero. If the difference has the same direction as I then the

specular term has maximum,




3. SHAPE FROM SHADING FOR SMOOTH OBJECTS

VBecause of simplicity we only consider the smooth ( may not be
convex ) surfaces.. Instead of approximating each surface point by
a sphere centered at the origin, we approximate each surface patch
by an ellipsoid or a saddle surface. Let the approximation surféée

be

where a, b, ¢ may be negative; in case a, b, ¢ all positive, the
surface is upper ellipsoid. Now for the consideration of surface
orientation; we rotate-the principle axis by an angle ©

-
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Y! -51inb cosb Y

Then the better approximation surface is

Z = C,/l - ( xcosf + ysin® )2 _ (_-xsin® + ycos® )2
a b

with unknown parameters a, b, ¢, 8. Since the center of the
approximation surface may not be at origin, we can shift the center

to some unknown new point { X,, Y ,, Z, ):




Z = Zy +

CJ 1 _ L(xX-%x0)cosB+(y-yo)sinb)2 _ (= (X-Xo)51_§IEEEEEz§§§§zE

a e (3

~wWith unknown parameters &, b, ¢, 8, x,, Yoy Zgo

Now we assume the surface is Lambertian, hence the shading

equation becomes: for image intensity I(x,y),

I(x,y) = A N-L
~li1z, - lozy + 13
=7,{Zx2+zy2+1 ’
where, from (3),
Zyx = —Jgj{[(x—XQ)cose+(y—yo)sine}cose/a + [(x—xO)Sine—(y—yo)cose]sinefph
T .

dy = :9([(X—xo)cose+(y—yg)sin8]sin8/a + [—(x—xo)sin8+(y—yo)cose]cosefb}

=

and T =1 - ((x—xo)cose+(y—yo)sine)2/a - (—(x—xo)Sine+(y—yo)cose)2/b.

After simplification,

_ =C cos?29 sinZg 3in26 1 1

Zy —j% {CX*XO)( 2 + 5 ) + (y-yo) —3 2" % )} ,
_ 81n29 1 1 _ Sin?g cos3g

y _'ﬁ_ {(X Xg) 5 ( a b ) + (y-yo)¢( 2 + b )} ,

and sz + Zy2 + 1 =1 +

2 cos?g $inZg sin22g. 1
= _ - 2 (=== 4 e V2 _ =y = = 2
T {Gexg)? [(29878 , sine,, e R R
arcSin%p . cos?g,, sin%2¢ 1 1 ,
(y-y4)21[¢( e g (5 - F )+

1

(x~X4)(y-y,)sin2g¢ lg -~ 57 )

’




C2 {(x-x%x¢)2f 1 1 i1 }
L+ 2 aZ T bZ T cos28( 73 - 37
- 2 l 1
+ ¥-¥o)? {-%+%_—00828(E§'~b—2)_}
. 1 1
+ (x-%4)(y-¥o¢)sin26( 27 T BT )] ...... (4)
?

2 in2 T2 2
where T = 1 - {(x_x0)2(99§—§ + §lﬁ_§) + (y-yg)2(3iR e , cos e) .

a b

o

(x-%4)(y-¥o251in26( % - % )}
Hence Z_ 2 + Z.2 + 1 = S
x y T
where-- S—= (X_X“)2£f0022e‘_sigze +uczcgszecm%%'_ %? )+ %i<%? + %?)1
+ (Y—'Yo)z[';—z( 2+ - S cos20( I3 - £7 )- sin?f _ Coﬁze]
+ (X-X0)(y-Vo)sin26[c3( %? - %E ) -‘% + % ] + 1
The final form for I(x,y) becomes:
10x,7) = 33 B-f1icl(x-x) (SO520 4 SINZ8) (. y()SIN20C 2 2 )
+ lgo [(xoxe) 2220 (L Loy (y gy 228, 20878

Now for a small neighborhdod or small patch of the surface, we can




consider each image point (Xi,yi) i=1,2, ..., n and its intensity

I(Xi’yi)’

I(x;5,y5) =42 ( “Byilt nylz + 1s ) , e
sziz + Zyiz + 1

wﬁich has simplification as (5). We can estimate all unknown
parameters (§A is treated as one parameter) by nonlinear regression
if n is large enough. Since 1,2 + 1,2 + 132 = 1 and f) is treated
as one unknown, we have ¥A, 1., 1., a, b, ¢, 8, X5, Yo, Zg totally
ten unknowns; i.e. n > 10.

In fact, we can devide the estimation procedﬁre into two step:
the first step is linear regression and the second step is nonlinear

regression.

Let (6) be rewritted into

_I(Xiyyi)Q(Xi,Yi)

_inl; - Zyilz“+ 1,7 = > + €, 1 =1, 2,

where"éi represents the sum of measurement errors and approximation

errors and Q(x;,y;) =J Zx12 + zyi2 + 1 . Then forming this system

of equations by

1,
A |12]=B+ €
1j
-~ r b
. where ~Zy, Dy, 13 T(x1,y1)Q(x1,¥1)
~Zy, ~Zy, 1 . I(x2,72)Q(x2,¥2)
a=1. N and B = —% . ’
|2 2rn 1| (g 74)@0kq V)




We get estimates of 1:, 1., 13 by

‘_L‘\]_ dl

51 = ¢ara)y~tars = ?%_ ds since B has a factor ?%-
£ _ dy
Now since 1:2 + 1,2 + 132 = 1 we have
($A)2 = d;2 + dp2? + d,2,
or li=di//jd12 + da2 + d32 , i =1, 2, 3.
Substituting this into (8) we can use nonlinear regression to scolve

the estimation problem.




4. GENERALIZATION TO GENERAL REFLECTIVITY MODEL

The previous -discussion is-based on the Lambertian model, which
is more or less restrictive in real applications. The generalization
to the more general cases can be done by using equations (1) and (2).
Let V = (W1, V2, Vi) be the viewer direction, where
Vi2 +v,2 + 132 = 1. Then

-z, - VEZY + Vs

2 2
sz +ZY + 1

N+« V =

¥

where z_ and zy are given in section 3. Also
L - V=1;vy + LV + 13Vy .

Thus the image model is given by, from (1),

I(X,Y) = ?\j’k(—'llzx - 1zzy + ]_3)//\/ ZXZ 4. Zyz ¥ 1
1 [2(~llzv~12z"+13)(—vizv—vazv+1)
+ 5= A (1-k)(n+1) e 2

- 1Livi - 1V, - 19v3]%, 0 <k < 1.
This model is given by Horn[3] in 1977. A later reﬁised model given
by Pentland [9] in 1983 is, from (2),

—1lzx - lzZy + 1y
I(x,y) = XMk )
J Zy 2 + ZY2 + 1

~(2z + V1)l - (22y + V2)l2 + (2 - V3)ls

+ A% (1-k)
l\/ (2ZX + Vl)z + (2Zy +V2)2 + (2 - 1/'3)2

[0




The above two models are nonlinear in 11 parameters, assuming viewer
coordinate system, i.e. V = ( 1, 0, 0 ), and these two models can

be solved by nonlinear regression method.

H




4. EXPERIMENTAIL RESULTS

- The nonlinear regression is a tough- computational problem in

statistical literatures. The available computing package we Ffound
is BMDP: Biomedical Data Processing software package, which contains
a program named PAR for computing derivative free nonlinear regression.
Because the models we discussed are guite complex and the functional
derivatives would be too complicated to be derived. Thus we need
derivative free computational program PAR. The first experimental
image is a cylinder shown in Figure 2, with light-direction around
(7, -4, 6 )} in viewer centered coordinate sysfem. In the beginning
we have troubles for taking algood image data. Because the background
0of the cylinder is not uniform. Finally we decide to use a blagk
cloth as the background and this will make the object's background
aark enough to let the object data to be extracted. Also in order to
reduce the noises and enhance the signal we use GRABl_AV 4 in LIPS
command language to Take the same image 16 fimes and average them
together.

Having taken the cylinder image we find the image data size is
too large to be run for BMDP. So we deﬁice a program called
AVERAGE. FOR (See Appendix) to reduce the size of data. This program
will compute the ﬁyramid data structure by forming 2 x 2 averages
successively. By using Joystick and the command MENSUR we are able
to find the background gray levels. From this we can extract the
cylinder data.out successfﬁlly and the total data count is 607 for

averaging two times. Now by relaiing the working size LEN = 22000
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Fig.3.

Fig.2. The cylinder image.

ROGRAH TNSTRUCTIONS
PROBLEN TITLE='SHAPE FROM SHADING: MOMLIMEAR &PPRQACH’,

IHPUT VARTABLES ARE 3,

FORHAT 15 7{F8.3,2F5.0)".
FILE="TEN.PICY,
VARTABLE NAMES ARE FUN2, X, Y.
REGRESS DEPEMDENT IS FIRi2.
PARAMETERS ARE 10,

S FATAMETER TMITIAL ARE 288.,250.,360. 9000000 (60,,0,245.,0.6,-.¢ .

END.

ROSLEN TITLE IS
HAPE FROM SHADING: HONLINEAR APPROACH

BER OF VARIABLES TOREAD IN, . - .+ « v -

BER OF VARTABLES ADDED BY TRANSFORHATIGNS,
OTAL MUMEER OF VARIABEES . . v « & « .

HER OF CASES TOREAD IN, « v v v« u
ASE LABELENG VARTABLES « v v v v 0« -

BMDP instructions and the parameter initial values.




we finally are able to run BMDP — PAR. By properly choosing the
initial values of unknown parameters, shown in Fig.3, we get the

parameter estimated values shown in Fig.4.

The parameters are P; &« x;, = 288
P; «—= y, = 250
Py &~ a = 360
Py &= b = 8000000
Ps &= ¢ = 60
Pge=—>0 =0
P; «— fA = 245
Pg &= 1, = 0.6
Pg 6> 1, = -0.4

PZI.O(___} 13 = 0.7

. The second image to be analyzed is a stone .shown in Fig. 5. ¥With

properly chosen initial values the final estimated parameter values,
shown in Fig.q;are 256, 120, 100, 120, 100, 0, 245, 0, O, 1. The
image data is stored in file TEMS. PIC and the BMDP instruction set
is stored in file INSTRUC.DAT. The assumed Lambertian model is

stored in file FUN2.FOCR.



HE RESTDUAL UM OF SOUARES ¢ =

LLOWING PARANETER VALUES

[ARAKETER ESTIMATE

ASYHPTOTIC

STANDARD DEVIATION

1 288.000000
2 250000000
1 360060000
P4 3000900.000000
i 60.000000
i 0.000000
7 245.00000¢
3 0.600000
14 -0.400000
10 0.700000

04.000000
0.060000
0.42cc00
0.006664
¢.000000
0.660400
0.008800
0.000000
0.000000
0.G00000

2. JE4BREE+07 ) UAS SMALLEST WITH TE

COEFFICIENT
OF VARIATION

0.0000600
¢.4a0000
0.000000
0.000008
0.000000

¢.000040
0.00000¢
0.000000
0.000000

¥ * HIGH CORRELATIONS AMONG THE PARAMETER ESTIMATES
[AEVERTS COMPUTATION OF THE COMPLETE COVARTAMCE MATRIX
E FOLLOWING CORRELATIONS AND STENDARD DEVIATIONS ARE

ONDITIONAL UF

Fig.4. The estimated parameter values.

Fig.5.

The stone

image.

(5




RESIDUAL SUR OF SQUARES ¢ =  1.BBAY2GE+07 ) UAS SMALLEST WITH THE
GLLOMING PARAHETER VALUES

PARAMETER ESTIMATE ASYHPTOTIC COEFFICIENT
STANDARD DEVIATION OF VARIATION

286.000000 0.000000 - £, 000000
120.000000 0.000000 0.006000

|

2

1 106.000000 0,000000 0.000000

4 120.000000 2.000000 0.000200

§ 109.900000 £.000000 0.400909
§ 0.080000 0.000000

7 245,000000 0000003 ’ 0.000000

~0.000000 0.000000

0.000000 0.000000

10 1.000000 0.000000 ¢.000000

% % HICH CORRELATICNS AHONG THE PARAMETER ESTIMATES
AEVENTS COMPUTATION OF THE COMPLETE COVARIAMCE HATRIX
HE FOLLQUING CORRELATIONS AND STANDARD DEVIATIONS ARE
ONBITIONAL {PON SOKE OF THE PARAHETERS BEING HELD CONST

8
]

Fig.6. The estimated parameter values.




5. DISCUSSION

: The“nonlinear regression model used for solving the shape from
shading problem is clear and workable. However in general we do not
have "good'" initial values to run; theéé initial values are very
important to the success of the computer running. A general way of
choosing initial values is by randomly selecting a definite number
of initial values in some predefined region. Then choose the one
with the smallest sum of squares of errors. In our experience with
BMDP — PAR, this progéam does not workwell. The future research of
this topic will be a delicated program that can be adjusted fqr many
parameters such as the error tolerance and the number of iterations,
etc. A better way for writing this program is by APL language. It

may take some time to buy such language.

7
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Appendix. BMDP input files and related programs

/PROBLEM TITLE='SHAPE FROM SHADING: NONLINEAR APPROACH'.

,/;NPUT VARIABLES ARE 3.

"FORMAT IS '(F8.3,2F5.0)'.
FILE='TEMS.PIC'.
/VARIABLE NAMES ARE FUN2,X,Y.
/REGRESS DEPENDENT IS FUN2.
PARAMETERS ARE 10. . _
/PARAMETER INITIAL ARE 256.,120.,100.,120.,100.,0,245.,0.,0. ,1..
JEND.



100

e e

FUNCTION FUN2(X,Y,P)
IMPLICIT REAL*8(A-H,O0-Z)
DIMENSION P(10)
P1=1./P(3)
P2=1_/P(4)
P34=P1**2+p2%*2
P34M=P1**2-p2**2
Sl=(X—P(1))**2*(—DCOS(P(6))**Z*Pl—DSIN(P(G))**2*P2+P(5)**2*.5*(
DCOS(2*P{6) )*P34M+P34)) '
S2=(Y—P(2))**2*(P(5)**2*:5*(P34—DCOS(2*P(6))*P34M)—DSIN(P(6))**g*pl
-DCOS(P(6) )**2%P2) ,
S3=(X-P(1))*(Y-P(2))*DSIN(2%P(6))*(P(5)**2%P34M~P1+P2)+1.
S=S1+82+S3 .
T=l-((X—P(l))*DCOS(P(G))+(Y~P(2))*DSIN(P(6)))**Z*Pl
=(=(X-P(1))*DSIN(P(6))+(¥-P(2))*DCOS(P(6)) )**24p2
Sl=P(8)*P(5)*((X-P(l))*(DCOS(P(G))**2*P1+DSIN(P(6))**Z*Pz)
+ (Y—P(z))*DSIN(2*P(6))*.5*(P1—P2))
82=P(9)*P(5)*((X—P(l))*DSIN(2*P(6))*.5*(P1—P2)+(Y-P(2))*(DSIN(P(S))**

*P1+DCOS(P(6) )**2%p2))
IF(T.GE.0)GOTO100 -
TYPE *,'T < O ERROR'
FUN2=1.E10
RETURN
DSQT=DSORT(T)
SS=S1+S2+P{10)*DSQT
FUN2=P (7 )*DSQT*SS/S
RETURN
END



_4-q---------------I-------.!--!--!-...-!

BYTE IMA(512,480) AVERALE | pop

12

11

30
20

40
10

51

50

REAL.TEM(512,480),TEMP(512,480),KK,ISUM
LOGICAL*1 OFL(20)

TYPE * '—-—--INPUT THE SOURCE IMAGE-—-'
ACCEPT 1, (OFL(I),I=1,19)

FORMAT(20A1)

0PEN(UNIT=1,FILE=OFL,STATUS='OLD',ACCESS='DIRECT',READONLY
,FORM=’UNFORMATTED',RECL=128,ASSOCIATEVARIABLE=NREC)

NREC=32

DO 2 J=480,1,-1

READ(l'NREC)(IMA(I,J),I=1,512)
CONTINUE )
TYPE *,'-~-INPUT THE TIMES OF AVERAGE---"
ACCEPT * N
IX=512
IY=480
DO 12 I=1,IX
DO 12 J=1,1Y
TEM(I,J)=IZEXT(IMA(I,J))
IF(TEM(I,J).LT.30. JTEM(I,J)=0
CONTINUE
DO 10 K=1,N

DO 11 I=1,1X

DO 11 J=1,1Iv

TEMP(I,.J)=0

CONTINUE

IX=IX/2

Iv=1Y/2

DO 20 I=1,IX

DO 20 J=1,IY

ISUM=0
DO 30 II=2%I-1,2%I
DO 30 JJ=2*J-1,2%J
- - ISUM=ISUM+TEM(II,JJ)
CONTINUE
TEMP(I,J)=ISUM/4.
CONTINUE
DO 40 1=1,512
DO 40 J=1, 480
TEM(I,J)=TEMP(I,J)
CONTINUE
CONTINUE
TYPE *,'-—-—-INPUT THE QUTPUT IMAGE-~-"
ACCEPT l,(OFL(I),I=l,19)

OPEN(UNIT=2,FILE=0FL,STATUS='NEW',ACCESSz'SEQUENTIAL'

,FORM='FORMATTED',RECL=18)

II=2%%N
J1=0
DO 50 J=50,480
I1=0
J1=I1+J1
DG 50 I=1,512
IF(TEM(I,J).LT.15. YGOTO50
I1=IT+XI1 .

WRITE(2,51)(TEM(I,J),I1,J1)
FORMAT(F8.3,2I5)
CONTINUE
CALL CLOSE(2)
STOP
END



