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Abstract

. -
F o
We consider the real-weight maximum cut of a planar graph: Given

an undirected planar graph with real-valued wéights associated with its
edges, find a partition of the vertices into two nonempty sets such that
the sum of the weights of the edges connecting the two sets is maximum,
The conventional maximum cut and minimum cut problems assume nonnegative
edge weights, and thus are special cases of the real-weight maximum cut.
We develop an Cﬁ(nw2 log n) algorithm for finding a real=weight maximum
cut of a planar graph where n is the number of vertices in the graph.

The best maximum cut algorithm previously known for planar graphs has

the running time of 0(n3).
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Fig..l. Illustration for Lemma 1l

Fig. 2. Illustration for Lemma 2
Fig. 3. A star substituting vertex Vv
Fig. 4. Graphs Gd and G'

Fig. 5. The star for vertex v in G'/v




1, Introduction

Convéntionallg, thermaximum%;ut problem and the minimum cut problem
for undirected graphs have been treated differently. In fact, for
general graphs finding a maximum cut is NP-hard [6] while the winimum
cut problem can be solved in polynomial time by findiné minimum
(s,t)-cuts or equivalently by finding maximum flows [8]. When the graph
i{s restricted to be planar, the complexities of both problems are
reduced: the maximum cut problem can be transfq?med Ifito a maximum
weight matching, thus is polynomial~time solvable [7] [1]; the minimum

cut problem can be solved more efficiently since a minimum (s,t)—-cut can

be found by finding shortest paths [9] [l4].

In this paper, we take a unified approach to the maximum cut and

. minimum cut problems for planar graphs. We consider the following

real-weight maximum cut problem. Let G = (V,E) be a connected
undirected graph. Assume that each edge e & E has an associated
real-valued weight w(e). The real-weight maximum cut problem is to find
a partition of V into two nonempty sets such that the sum of the weights
of the edgeé connecting the two sets is maximum. It is apparent that
the conventional maximum cut and minimum cut problems (with nonnegative
edge weights) are special cases of the real-weight maximum cut problem.

(A minimum cut of a graph corresponds to a maximum cut of the negated

graph.)

Hadlock has demonstrated that for planar graphs the maximum cut

problem can be reduced to finding a maximum weight matching for a




complete graph [7). This approach thus yields an algorithm of time

O(ns) where n is the number of vertices in the graph {41 [10]. ©On the
P g

other hand,. a minimum cut of a planar graph can be found by finding O(n)
minimum (s,t)-cuts [8]. Thus the minimum cut problem has an upper bound
of O(n2 log2 n} [l4] [15]. It should be menticned that none of these
algorithms can be applied to the more general real-weight maximum cut

and we are not aware of any algorithm that can.

We investigate the real-weight maximum cut problem=via a classic
result in the planar graph theory: A conmected graﬁh G = (V,E) is planar

iff 4t has a (combinatorial) dual G (Vd,Ed); i.e. there is a

d

one-to-one correspondence f:E—E., which maps a2 minimal cut of G to a

d

simple cycle of G.d and viece wversa [3]. We shall generalize this

well-known result to establish a one-to-one correspondence between the
.cuts of G and the even-degree edge sets of Gd' Then finding a wmaximum

cut of G is equivalent to finding a maximum (weight) even-degree edge

sot of Gd'

We propose an algorithm for finding a maximum even-degree edge set

of G The algorithm consists of two parts: If there 1is a positive

4
cycle in Gd, then the problem can be reduced to finding a maximum weight
matching of a sparse graph. By applying Lipton and Tarjan's planar

graph separator theorem [11] [12], such a maximum weight matching can be

found in O(nw2 log n) time [13]. On the other hand, if Gd has no

positive ecycle, then a maximum even-degree edge set of Gd corresponds to

a minimum cycle in the negated graph Gd— of Gd where Gd— contains no
12

negative cycle. An 0(113 log n) algorithm has been presented for



detecting a minimum cycle passing through a specified vertex in a planar

graph [13]. We shall modify this algorithm for detecting a minimum

cycle in-G,- in the same time complexity. Consequently, we have an

d
'O(nw2 log n) algorithm for finding a maximum even—-degree edge set of

In other words, a real-weight maximum cut of a planar graph can be

372

Gd'

found in 0{n log n) time.

In the next section, we introduce basic definitions and demonstrate
the correspondence between cuts and even-degree edge sets. In Section
3, a planar graph is triangulated so that its &ual becomes a cubic
planar graph. Then we characterize a maximum eveﬁ_degree edge set in
such a cubic graph. The reductions that relate a maximum even-degree
edge set to a maximum weight matching and the algorithms_ will be

described in Section 4. Finally, we make some concluding remarks in the

last sectiom.




2. Cuts and even-degree edgé sets
» e * )

In -this paper, all graphs and multigraphs are undirected.
Multigraphs can have self-loops and parallel edges but graphs cam not.
Given a comnected graph G = (V,E), let E(4,B) denote the set of edges of
G that connect two disjoint vertex sets A and B, An edge set C S E is a
cut if there is a partition of V into two nonempty sets X and X (=V-X)
such that C = E(X,X). A cut is minimal if nome of its proper subsets is

-

a cut,

Lemma l. The union of two disjoint cuts is a cut.

Proof: Let C = CIUC2 where C1 = E(X,X), C2

Consider the vertex sets XNY, XNn¥, XN Y and X N Y as shown in Fig.

= E(Y,Y) and c,NC, = ¢ .

1. Since 01(1 02 = ¢ s, we have
EXNY,XNnD =EEXNY,XNnY) =9,

E(XNY,XNY) UEEXANTY.XEN ?) and

C1 =
C, = E(Xn Y,XnY) UEENY,XNTY).
Thus C = Cl U 02 is a cut separating XN Y) U (XN Y) and
(XNT) U XN Y). _ : Q.E.D.
Lemma 2. Let C1 and C2 be cuts of G and Clg; CZ‘ Then C = CZ - “1 in

also a cut of G.

Proof: let C. = E(X,X) and C., = E(Y,?). Consider the vertex sets XN Y,

2 1
XNY, XNY and XN Y as shown in Fig. 2. Then

c, = EXNLENYD VEENLENT) UEERNT,XNY)

UEBEXNYIZNY).

Since C, € C, and C, is a cut separating Y and Y, we have

1 2 1

c, S EEXNYLINY) UEERNY.EAY) and




EXNY,XNY =EENnY.XNnY =¢&.
Consequently, C = C2 - C1 = E(Xrﬁ;x,irﬁ Y)_U E(XN Y, X I) and C is &
cut separating (Xl% DUEND and XN UENY). Q.E.D.

Applying Lemmas 1 and 2 repeatedly, one can decompose a cut into

minimal cuts.

Lemma 3. An edge set CC E is a cut of G (V,E) iff it is a union of

disjeint minimal cuts of G. -

Now we consider a connected multigraph Gd = (Vd,Ed). A unonempty

edge set D C E, is said .to be even-degree if each vertex of Vd is

d
incident to am even number of edges in D. Obviously a simple cycle is

an even-degree edge'set and none of its proper subset is even-degree.

(A self-loop is a simple cycle.)

The even-degree edge sets have essentially the same properties asn

the cuts. We just state the result without proof.

Lemma 4. An edge set is even-degree iff it is a union of disjoint simple

cycles,
In the planar graph theory, the minimal cuts of a planar graph are
associated with the simple cycles of its dual graph [3]. The following

lemma relates the cuts to the even—degree edge sets.

Lemma 5. Let G = (V,E) be a connected graph and let Gd = (Vd,Ed) be a



T

connected multigraph. Assume that f:E-— Ed is a one-to-one
correspondence, Then the followingftwo conditions are equivalent:
# o
(1) For C € E, C is a minimal cut of G iff f(C) is a simple cycle
in Gd'

(2) For C € E, C is a cut of G iff £(C) is an even—degree edge set

of Gd'
Proof: (2) is implied by (1) due to Lemmas 3 and 4. Next we prove that

(2) imples (l).

Assume that C is a minimal cut of G. Then f(C) is an even-degree

edge set of Gd by (2). If f(C) is not a simple c}cle, then £(C) has a

proper subset D which isi a simple cycle. Consequently f-l(D) is a

proper subset of C and ful(D) is a cut of G by (2). This contradicts

the fact that C is minimal. Thus £(C) must be a simple cycle.

To prove the conversé, let f(C) be a simple cyele in Gd' Then C is
a cut of G by (2). If C is not minimal, then C has a proper subset C0
which is also a cut. Consequently f(CO) is a proper subset of £(C) and
1s even-degree by (2). This contradicts the fact that f£(C) is a simple

cyele. Thus C must be a minimal cut. Q.E.D,

Note that (1) characterizes Gd as a combinatorial dual to G [3].

Thus we have the following theorem.

Theorem 1. A connected graph G = (V,E) is planar iff there is a
multigraph Gd = (Vd,Ed) and a one-to-one correspondence f:E-—)-Ed which

maps a cut of G to an even—degree edge set of Gd and vice versa,




3. Regularizing the graph

Let §_= (V,E) be a connectedﬁplanar graph with n (= IVv]) vertices,
Assume that a real-valued weight is assigned to each edge. To find a
(real-weight) maximum cut of G, we first triangulate G by adding.some
new edges. A triangulation Gt = (V’Et) of G is a connected planar
graph satisfying

(i) E "C‘Et’ |

(ii) Fach wvertex of Gt has degree at least 2, and —

(iii) Gt can be embedded in the plane such that each face of Gt is

enclosed by a simple cycle of three edgés.

And we assign zero weight to each new edge in Et - E.

Lemma 6. A maximum cut of G = (V,E) corresponds to a maximum cut of

Gt = (V,Et), and vice versa.

Note that Gt can be constructed from G in O(n) time and Gt still

has 0(n} edges as G does. Let Gd = (Vd,Ed)'bg a dual of Gt' Then Gd

can be constructed from Gg in O(n) time and G, is a cubic planar graph,

d

i.e. each vertex of Gd has degree 3. We assign to each edge of Ed the
same weight as its corresponding edge of Et' Then due to Theorem 1,
finding a maximum cut of Gt is equivalent to finding a maximum (weight)
even-degree edge set of Gd.

In Gd = (Vd,Ed), a cycle is said to be positive (negative,

nonnegative) if its total weight is positive (negative, nonnegative). A

cycle is minimum (maximum) if its total weight is minimum (maximum).



The following lemma characterizes a maximum even-degree edge set.

a- 1f Gd contains

a monnegative cycle, them D is a union of vertex-disjoint nonnegative

Lemma 7. Let D be a maximum eveﬁldegree edge set of G

cycles. If Gd contains no nomnegative cycle, then D is a maximum cycle
in Gd'

Proof: Since Gd is a cubic graph, each vertex of G, is adjacent to 0 or

d

2 edges in D. Thus D is a union of vertex-disjoint cycles in G The

4

claim then follows from the fact that D is maximum. — Q.E.D,



4, Reductions and algorithmé
E o ’ i
In this section, we consider the problem of finding a maximum
even-degree edge set in a real-weight cubic planar graph Gd = (Vd’Ed)'
We first show that this problem can be reduced to finding a maximum

weight matching provided that Gd contains a positive cycle.

A matching M of graph G = (V,E) is a set of edges no two of which
have a common vertex. If [M|= [E[ 72, then M is calded a complete
matching. Assume that each edge of G has an associated real-valued
weight. A maximum weight matching (minimum comﬁlete matching) is a

matching (complete matching) of G whose total weight is maximum

(minimum) .

To find a maximum even—degree edge set of Gd = (Vd,Ed), we
construct a graph G' = (V',E') from Gd' Each vertex v of Gd is replaced
by a "gtar" in G' and ??Ch edge e of G, has a surrogate in G' as
depicted in Fig. 3 and 4. Define the edge weights of G' as follows: the

surrogate of each edge e € Ed has the same weight as e; and all new

edges in stars have zero weights. It is apparent that G' has 0(n)

vertices and O(n) edges and G' can be constructed from Gd in O0(n) time.
Similar constructions have appeared in [16], [10], [13]. We have the

following lemma.

Lemma 8. Let M C E' be, 2 minimum complete matching of G' = (V',E'). If

E - M+ #, then E,
s

Proof: Let M € E' be any complete matching of G' such that Ed -M# 2.

-~ M is a maximum even~degree edge set of Gd'




If M does not contain edge (u',u") in a star substituting a vertex v of
Gd (see Fig. 3), them M must conta%n (v',u'), (v",u") and all the edges

incident to v in ﬁd and hence v has degree 0 in the subgraph of Gd

induced by E, - M. On the other hand, if M contains (u',u"), then v has

d

degree 2 in the subgraph. Thus Ed - M is an even-degree edge set of Gd.

Conversely, let D be any even-degree edge set of Gd. As shown in Lemma
7, D is a union of vertex-disjoint cycles in Gd' Thus from the
construction of G', one can easily observe that there exists a complete
matching M of G' such that D = Ed - M (see Fig. 4). Clearly the weight

.

of E, - M is maximum if and only if the weight of M is minimum.

d
Q.E.D.

A minimum complete matching of G' can be found by finding a maximum

weight matching of the same graph except that the weight w(e) of each

- -edge-e-€ E'-must ‘be replaced by a new weight W - w(e) where W is a large

constant [10]. . Lipton and Tarjam have presented an O(nw2 log n)

algorithm for finding a maximum weight matching of a planar graph by

--applying ‘the -planar separator theorem [11] ‘[12]. Fox graﬁh G' = (V',E")

which is not always planar, the same “"divide—-and-conquer" method can
still be applied as K. Matsumoto, et al. have pointed out [13].

Lemma 9. A maximum weight matching of G' = (V',E') can be found in

O(n?']2 log n} time.

Note that Lemma. 9 has been demonstrated in [(13] for a graph
slightly different from G'. But the same deductions can be carried over

for G'.




Directly from the proof of Lemma 8 is the following simple result:

d q " M # @ where M is a minimum

complete matching "of G'. Thus Lemmas 8 and 9 have suggested an

If G, contains a positive cycle, then E
-

efficient algorithm for the maximum even—degrée edge set of G, provided

d

that Gd has a positive cycle. In the case that Gd contains no positive

cycle, a maximum cycle in G, is then a desired maximum even-degree edge

d

set (Lemma 7). In the following, we assume that the weights associated

with the edges of G, have been negated. Thus we want to find a minimum

d

cycle in graph Gd = (vd’Ed) where G, contains no negative_cycles.

d

.

Finding a minimum cycle in G, can be reduced to finding maximum

d

welght matchings in certain graphs augmented from G'. Let v be a

specified vertex in G Denote by G'fv = (V'7v,E'7v) the graph

a
augmented from G' by adding two vertices and two edges to the star

substituting v in G' as shown in Fig. 5. {(Other stars remain as in Fig.

3.) We assign zero weights to the two new edges.

Lemma  10. Assume that M € E'fv 1is a complete matching of G'7v =

(Vv'7v,E'7v), Then M is maximum 4if and only if Ed - M is a

vertex—-disjoint union of a minimum cycle Z passing through v, and
possibly some =zero cycles in Gd = (Vd,Ed). (A similar result has
appeared in [13].)

Proof: Let M &£ E'/v be a complete matching of G'/v. As in the proof of

Lemma 8, we can show that each vertex of G, is adjacent to 0 or 2 edges

d
in Ed - M, but vertex v 1s adjacent to exactly 2 edges in Ed - M, Thus
E, ~ M is a vertex-disjoint union of cycles in G one of these cycles

d a’

passes through wv. Conversely, let D be a vertex-disjoint union




of cycles im Gd’ one of these cycles passes through v. One can easily
verify fhat there exists a comp;Ete matching M of G'/v such that
D= B, - M. Clearly the weight of M is maximum if and only if the
weight of D is minimum. Since D is minimum and Gd containsg no negative

cycle, D counsists of a minimum cycle Z passing through v and possibly

some zero cycles in Gd' ‘ Q.E.D.

Due to Lemma 10, one can find a minimum cycle passing through a

specified vertex by finding a maximum weight matching, which takes time

3/2-
o

log n). Thus a straightforward procedure for finding a minimum

5/2

0

cycle in Gd'would take 0(n log n) time. (For éach vertex v, find a

minimum cycle passing through v.) 1In the following, we shall develop an

372
n

0( log n) algorithm for finding a minimum cycle.

Lemma 11. Let vl,vz,...,vk be vertices of Gd = (Vd,Ed). Then one can

find k cycles 21,22,...,Zk in Gd in time 0(113]2 log n + kn log n},

where each Zj is a minimum cycle passing through vj, = 1,2,...5k,

-Proof: To find %k minimum cycles zl,zz,.:.,zk, we need to compute, for

each vertex vj, j =1,2,...,k, a maximum wéight matching of G'?vj. We

32 Joe 0

first find a'maximum weight matching M of G', which takes O(n
time (Lemma 9). Then for each vj, starting with M of G', we can find a
maximum weight matching of G'7vj in 0{n log n) time [5] [2] since G'iv
is constructed from G' by adding two vertices and two edges. Thus the
total rumning time is O(nw2 log n + kn log n). Q.E.D.

Lemma 12. (Planar Graph Separator Theorem [11]) Let Gd = (vd’Ed) be a

planar graph. Then Vd can be partitioned into three sets A, B and §




such that no edge joins a vertex in A with a vertex in B, [A[, |B] £

c1|Vd[,Aand ISl £ cledIN2 wher%hcl («({) and c, are two suitable

F A

positive constants,

Lemma 13. Let G (Vd,Ed) be a cubic planar graph which contains no

d=
negative cycle. Then a wminimum c¢ycle in Gd can be found in

O(nw2 log n) time.

Proof: We apply the planar graph separator theorem to Gd' Let A, B and

S (separator) be the vertex partition asserted by Lemma #2, and let GA

A

and GB be the subgraphs of GCI induced by A and B respectively. A

minimum cycle in G, is either a minimum cycle in GA or GB or a minimum

d

cycle in G, passing through a vertex in S. Thus a minimum cycle in Gd

d

can be found by recursively finding a minimum cycle in GA and a minimum

cycle in G and finding, for each vertex v in §, a minimum cycle in Gd

BJ

_passing through v. Let T(n) be the running time of the algorithm on a

graph having n vertices. Since S contains O(nllz) vertices, the minimum

372

cycles passing through S can be computed in O(n log n) time due to

Lemma 11, Then

2

T(n) log n)

T(nl) + T(nz) + 0(n3/

where ny + hz < n and nl, n2 < cln. An induction proof shows that

T(n) = O(nw2 log n).

Q.E.D.

Combining all the results we have obtained, we have the following

major theorems. ‘

Theorem 2. A maximum even-degree edge set of a cubic planar graph




. 3
Gd = (Vd’Ed) can be found in O(n

Theorem 3.~.A real-weight maximum

found in O(n?”r2 log n) time.

/2 log n) time.

e

cut of a planar graph G =

(V,E) can be



5. Concluding remarks

A

The _pontribu{ions of thi;* article are two-fold, First, the
conventional maximum cut and minimum cut are unified to the more general
real-weight maximum cut, and hence can be computed through a common
framework. Second, a fast algorithm has been presented for finding a
real-weight maximum cut of a planar graph. The algorithm makes
extensive use of recent results on maximum matchings and minimum cycles,

and achieves better performance than previous maximum cut-algorithms.

.



References:

10.

. - o
K. Aoshima and M. Iri, Comments on F, Hadlock's paper: Finding a

maximum cut of z planar graph in polynomial time, STAM J. Comput, ,

& (1977), pp. 86-87.

M. 0. Ball and U. Derigs,.An analysis of alternative strategies for
implementing matcﬁing algorithms, Networks, 13 (1983), pp. 517-549,
S. Even, Graph Algorithms, Computer Scieﬁce Press, Reading, Maryland,
1979. =

H. N. Gabow, Implementation of algorithms for maximum matching on
nonbipartite graphs, Ph.D. Thesis, Stanford University, Stanford,
CA, 1974,

Z. Galil, S. Micali and H. Gabow, Priority queues with variable
priority and an O(EV log V) algorithm for finding a maximal weighted
matching in general graphs, 23rd Annual Symposium on Foundations of
Computer Science, Chicago, 1982, pp. 255-261.

M. R. Garey and D. §. Johnson, Computers and Intractability, a Guide
to the Theotry of NP-completeness, W. H. Freeman and Company, San
Francisco, 1979.

F. Hadlodk, Finding a ﬁaximum cut of a plamar graph in polynomial
time, SIAM .J. Comput, 4 (1975), PP.221-225,

T. C. Hu, Integer Programming and Network Flows, Addison-Wesley,
Reading, Mass., 1969,
A. Itai and Y. Shiloach, Maximum flows in planar networks, SIAM J.
Comput., 8 (1979), pp.135~150.

E. L. Lawler, Combinatorial Optimization: Networks and Matroids,

Holt; Rinehart and Winston, New York, 1976.




11.

I2.

13.

14,

15.

16.

R. J. Lipton and R. E. Tarjan, A separator theorem for planar
graphs, SIAM J. Appl. Math., 3@,(1979): pp. 177-189.

R. J.-.Lipton a;d R. E. Tarja:; Applications of a planar separator
theorem, SIAM J. Comput, 9 (1980), pp. 615-627.

K. Matsumoto, T. Nishizeki and N, Saito, Planar multicommodity
flows, maximum matchings and negative cycles, SIAM J. Coﬁput.,
15 (198s), pp. 495-510.

J. H. Reif, Minimum s-t cut of a planar undirected network in
O(n logz(n)) time, SIAM J. Comput., 12 (1983), pp; 71=81.

Y. Shiloach, A multi-terminal minimum cut algorithm for planar
graphs, SIAM J. Comput., 9 (1980), pp. 219—224;

W. T. Tutte, A short proof of the factor theorem for finite graphs,

Canad. J. Math., 6 (1954), pp. 347-352.



C,
Xny Xny
Xny Xny

Fig. 1,

Illustration for Lemma 1




Xny

Fig. 2.

Illustration for Lemma 2




\'4 €1
r

v B €2
I

Vv ey

Fig. 3. A star substituting vertex v






Fig.

5. The star for vertex ¥ in G'/V



