TR-87-014

A DEVELOPMENT METHOLODOGY FOR
OFFICE INFORMATION SYSTEMS
BASED ON THE SOCIETY MODEL

Wi

0074

TR-87-014
A DEVELOPMENT METHOLODOGY FOR

OFFICE INFORMATION SYSTEMS

BASED ON THE SOCIETY MODEL

B OA BB &

=
iﬁ X OB ET oy o

X %

T RAER T RAENE N
INSTITUTE OF INFORMATZION;SCIENCE

ACADEMIA SINICA

FHERE ktA FAA

Contents -

Abstract

1. Introduction .

2. A Survey of Software Development Models

3. A Development Methodology for EKnowledge-Based Office
Systems -

4. Prototyping OAC as a Knowledge Table System

5. Summary |

_Appendices
A The English Version of the 6AC Script

B Knowledge Tables Representing OAC Script

C Knowledge Tables Produced/Used by OAC Script

References

Abstract

A general framework aiming at the development of a society
model based office information system is developed. It in-
cludes a modeling toocl and associated developing environ-
ment. The modeling tool is based on the society model which
advocates the concept of knowledge-based office agents for
constructing an office system so that the system can acgquire
sufficient knowledge from its environment and successfully
cope with real world problems. To improve the knowledge
engineering process, knowledge tables are used as a unified
knowiedge representation method to accommodate knowledge of
various ‘types of office agents into a single framework. A
systematic, society‘ model based methodology is then pro-
posed, which is tailored for the development of knowledge-
'Baéed office systems. It features a kndwledge-based suppbrt-
ing environment to help manage fhe whole system development

process and to facilitate the rapid prototyping of a knowl-~

edge-based office system.

1. Intreoduction

We have developed a sociéty model in [HOB6, KUOB5]1 for
office systems; which can accommodate various aspects of
knowledge of a real-world office. A knowledge representation
structure, knowledge tables, which can represent various
types of knowledge in a unified structure has been developed
in [CHANB6aj. Thié report will combine these concepts to-
gether and develop a methodology which includes an automated
supporting environment for the development of a knowledge-

based office system.

Section 2 starts with a survey of current software
development models. Based on the.study, aloﬁg with +the
requirement of a knowleage-based office system, -we then
develop' a society model based methodology for tﬁe develop-
ment of an office ihformation system in Section 3. Section 4
designs a component of the knowledge-based support system in
the methodology called Office Automation Consultant as a
knowledge table systeﬁ. Finally developing a whole office
system through the Office Automation Consultant is summa-

rized in Section 5.
2. A Survey of Software Development Models

The main purpose of a software development model is to

provide a framework for problem scolving within which various

methodologies and technigues can be applied to improve the

quality, efficiency, productivity, manageability, maintaina-
bility, and evolutionary capability of the developed soft-
ware system. Several models associated with a variety of
technigues " have been proposed. Each of them has its own
feature. We will investigate four of them ranging from the
conventional human~-oriented model to the knowledge-based
computer-oriented model [RAMAS87]. This observation will
serve as a foundation for the development of an appropriate

methodoldgy for knowiedge-based office systems.
2.1 Conventional Models

The most salient feature of the conventional software
development model 1s that it is .geared to program ' develop-
ment and project management by huﬁans. This human—oriented,
management-directed featurelmakes early stages of the devel-
opmént process focus on the specification of external behav-
ior of the problem domain as well as the design of overall
intermodule mechanisms. Voluminous documentation might be
produced during these phaseé. If no common understanding is
enforced on these documents, any misinterpretation might

seed errors into the design process.

The maintenance and enhancement of a software system

developed under the model is performed on the implemented

program. Usually, it makes +the maintenance stage a cost

intensive phase in the whole development process. A simpli-

fied general structure of the conventional model is 1llus-

trated in Figure 1.

| Problem domain

Regquirement analysis
and problem definition

| Requirement specification
v (External behavior specification)

Design (preliminary
and detail designs)

[Implementation-oriented
v design specification

Fmm e ————— +
| Implementation]
Fom e ——— e
| Implemented codes
v
Fm———— +
| Testing]|
Fomm————— +
| Prototype
v
e — e ————— +
Maintenance
and evolution|{=-=--+
e +
| Solution system
v

Fig. 1 Conventional Model

Five stages are incorporated in the conventional model.
Each stage has documentary output that serves as the input
to the next stage. Basically, early stages specify an infor-

mal behavior abstraction of what is computed. This abstrac-

tion is progressively refined in the later stages into a

fdrmal implementation of how the behavior can be realized.

Specifically, the model begins with the reguirement
analysis and problem specification. Ideally, both nonfunc- : !
tional requirements and functional requirements have to be
identified and specified. Nonfunctional requirements refers
to various constraints imposed by users, for instance, sys-
tem performance, zreliability, gquality, securit#, system
working environment, maintenance contract, cost constraint,
etc. (éee [YEHB4] for a more complete list). Functional'fe-
guirements specify what the target system does. Both of the
reguirements ﬁere specified informally, e.g., using natural
languages, during the early years of softwarer engineering
partly because of the lack of suitable technology. Although
naturai languages'are easy for humans to uﬁderétand, they
are not rigid enough to eliminate any ambiguity. A variety
of specification technigques and/or automated +tools with
predefined common terminology for the specification of prob-
lem domains have been proposed trying to "formalize" the
specification and reduce ambiguity. Most of them are aiming
at functional requirements due t¢ no comprehensive theory or

methodoclogy for nonfunctional requirements specification.

For instance, HIPO advocates a function-oriented decomposi-

tion technique to elicit functional requirements from users

_

[JONE76]. SADT provides a decomposable dataflow method as
well as a specification language SA for system behavior
specifications [ROSS77a, ROSS77b]. They are further support-~
ed by fhe automated tools in PSL/PSA [TEIC77]. These +tech-
nigques share a common feature of specification methods in
the cénventional model: they all focus on the external
behavior specification of a target system and leave +the

internal structure of the system as a black box.

According to the specification, an- overall system
structure is first proposed as a preliminary design. It is
then refined into more detalled modules, a top-down approach
[WEGN79], subjected to the underlying implementation enwvi-
ronment. That is; the design ppocess.tfies to manage envi-
ronmental resources to meet specified requirements. Note the
output of the detail design process is the behavior specifi—r‘
catién of each module. The internal structure of each module

is still a black box and left to the implementation stage.

Implementation phase turns the ‘design specification
into an implemented version using implementation 1anguages.
Either +top-down or bottom-up approach can be applied to
implement a system. Briefly, the bottom-up approach codes
each module first followed by the integration of them as a

whole. The top-down approach instead realizes the intermod-

ule mechanisms by "s%udding" each module before the actual

implementation of each module is done.

Implemented codes have to be verified (to know that it
works) and to be validated (to know that it works as users
required) before being termed as a prototype. Testing is one
of the commonly used techniques to debug the iﬁﬁlemented
codes. Since the testing process is performed on the implef
mented version, the most detailed level of the system, it
becomes one of the most time consuming phases in the con-

ventional model.

Maintenance and evolution is a stage to keep the imple-
_mented system working well and growing well as environment
changes. The reason for that is the software development
cost has become the dominant factor of the whole_ system
vdevelopment. A software system of evolutionary - capability
can mean ;a significant reduction.of software development
cost. In fact, as software becomes larger and larger the
requirement of reusability, adaptabilify, and evolutionary
capabiiity becomes.indispensable. However, +these features
are heavily dependent upon the methodologies and techniques
"used in a software development model (or'used in each stage
of a model if the model is life-cycled). Various technigues
have been introduced into the conventional model to satisfy
this trend. For instance, wide spectrum languages with the

nature of easy transformation from specification phase to

design phaée have been advocated to imprbve the adaptability
of a solution system [RAMA86]. Kernel-based@ implementation
facilitates the réusability. It also increases the degree of
evolution by constructing a family of systems with the same

kernel and (slight) different portions of modification.
2.2 Operational Mecdels

The most salient feature of an operational model is

that it incorporates a formal specification method which

‘enables users to make a specification in internal operation-

al structures [ZAVEB4], - so- that the specification could be
executed in the early stage of the development process. The

external behavior reguired by users becomes implicit since

it can only be exposed through the execution of the specifi—-

cation. Due to this executable nature of the specification,
it can be used as a rapid prototype to speed up the software

development process.

One common nature in this approach is that an automa-
tién—based support environment is regquired. With the hélp of
this environment, users may execute the specifiéatioﬁ!rveri—
fy the specification, .and éhange the specification in the
early stage of the development. That is, potential incom-
pleteness, inconsistency, and ambiguities inside the rapid

prototype can be solved earlier.

A . general structure of the operational model could be

JE ;

sketched as Figure 2.

| Problem domain ——-=—eemmm—m e +
v 1
o e e e e i + v
|operational specification|<--==~~-m-—--- + dmmmee e +
e + | Verification
Problem-oriented operational +-- |and validation
specification (internal e +
behavior specification) -
v (Rapid prototype) ---—--——r——————---————= +
o ————————_—— e +
Translation
Fmm +
| rransformation |
fmmm————— +

| Implementation~oriented
v (transformed) specification
e +
Realization
{implementation)

| Solution system
v

Fig. 2 Operational Model'

‘-Bésically, the model consists of two major steps, name;
ly, operational specification and tfanslation. dperational
specification deals with +the description of the problem
domain in a formal, internal-structure-based Jlanguage. No
implementation related factors, e.g., number of processors,
their configuration, etc., are being considered during the
_step. This problem-oriented version of the spécification (or
a processed variant of the specification} will be used as

the rapid prototype. Users then can run verification on the

prototype against their own intent.

Translation refers to translating the specification
into a real implementation. The best way to do this is via a
compiler to translate the spécification language into an
implementation 1angua§e automatically. However, it is quite
difficult, since space of possible implementation is +too
large to search and the influence from local optimization on
global optimization is still unknown [BALZ83]. These knowl-
edge-intensive events normally need pebple to make high
level decisions. This observation implicitly partitions the
step into two substeps, namely, transformation and realiza-
tion. Wherein, transformation takes into account the global
strategies-in implementing the-sysfem, e.g., selecting algo-
rithm, control ;tructure, data representation, and ipterfac-
ing techniques under én existing environment, using buffer-
ing technique to improve performance, andrso__forth. This
process will output an implementation-ériented (transformed)
specification from the original problem-oriented specifica-
tion. Computers then can translate the transformed specifi-
cation into an implemehtatipn at the realization step and at

the same time does some local optimization.

Many recent researches are concentrating on the devel-
opment of operational specification languages using concepts
from, for instance, functional programming [HEND86], Petri
nets, or transition.diagram. All of them are supported by

appropriate automation tools for the verification process.

implemented as an ‘"encapsgulated" entity with associated

operations.

Several features of the model deserve notice. First,
objects associated with their operations are encapsulated.
It enforces the information hiding and a limited wvisibility
of objects. That is, +the behavior of an object can only be
decided by its response to the stimuli from environment. One
consequence of that 4is the improvement of the degree of
system modularity. Second, an object contains both activity
and state of an entity. Thus it repfesents a comélete entity
of the real world. The éorrespondence'between the model and
the teal world becomes more direct and more natural, which
is one of the most attractive traits of the model [BORG85].
In géﬁeral, the object~oriented model ﬁay help develop a
software which dis more comprehensive, more maintainablie,
more enhanqéable, and meore suitable for evolutionary en-

hancement.

Examples of object-oriented model starts with the very
first commercialized syétem Smalltalk-80, which provides a
programming envirconment as well as a language to facilitate
the development of an object-oriented software [KRASB3].
[BOOC83] shows how to use Ada as a tool for object-oriented
software developments. By surveying and comparing various

object-oriented langliages, [BYTEB6] serves as a good intro-

11

11 B ey

£ L e A B

T R Ty

duction to the concept of object-oriented model.

2.4 Knowledge-Based models

. [BALZ83] argues that computer-based automation support
for software development can overcome two shortcomings of
conventional model, namely, poor manageability and maintai-
nability. The former stems from the informal, large documen-
tation during the development phases centered on the human
aspect. The later comes from the maintenance on the source

code level. One way to alleviate the situation is to shift

from conventional human-centered process to computer-based

approach. Thus, the central concgpt in computer-based auto-
mation support is to develop a knowledge-based assistant
which works as a coordinating manager duriﬁg the wvarilous
phases of software developmént to facilitate the management
and maintenance of ‘the software‘ [WEGNB4]. The assistant
itself is not constraiﬁed to any predefined model. Instead,
it provides a framework for the automation of various types

of software development model.

Applying this concept to the software development needs
the development of the support environment first. It cou;d
be looked as a two-step process. Firstly, formal activities
for each phase of a chosen model are set up. Then, a knowl-
edge-based -assistant is developed. The assistant will aid

developers in performing and coordinating those activities,

12

and in recording the documentation of the system's develop-
ment. Since many phases of the software development are
kﬁowlédge-intensive activities, e.g., requirements specifi-
cation, 4implementation refinement, etc., a suitable human-
machine interface allowing the developers and the assistant

effectively working together is necessary.

A general structure ofrknowledge-based model may con-
tain following expert systems [FRENB5]:

(a) A "Reguirements Specification Assistant" to help
the process of requirement acquisition and modifi-
cation;) B

(b) Various "Activit;es" to_pérform specification sim-
plification, consistency check, validation, expla-
nafion, and so forth: '

(c)AAn "Implementation-oriented Decision Suppoft" to

help users define globél implementation policies as

well as local implementation optimization;

(d) A "Monitor" to measure performance, efficiency, and

various statistics, e.g., execution freguency of
program and data structures, which could be used to
help optimization of the implementation;
(e) A "Development History Manager" to record changes
to modules a;ongrwith rationale for the changes;
(£f) A friendly "User Interface" to support the activity

of sophisticated explanation and tutoring;

13

(g) A "Coordinator" serving as a glue to invoke and

coordinate all modules of the support environment.

3. A Development Methodology for Knowledge-Based 'QOffice

Systems

Last sgction shows the progressive history of software
development modeis. It implicitly brings out the pros and
cons of each software development ﬁodel. For instance, we
realize that operétional models seem suitable for rapid
prototyping. However, to directly specify the whole internail
structure of a large system is quite a labor-intensive Jjob
[ZAVE84]. Since the concept of "processes" used in oﬁera-
tional models is only a hprojection“ of system "objects™
[YEHB4], we can employ the object-oriented decomposition

technique to alleviate the situation.

[BORGB5] advocétes.that the use of symbols and defini-
tions in a model ‘should correspond to concepts and entities
in the real world. The structure of fhe model should also
mirror the structure one perceives in the real world. Such a
"world-oriented” concept in fact speaks for the soclety
‘nmodel - we developed'fof office information systems. Recall
the components used in the society model. They are carefully
selected and termed to reflect entities and structure of

real world offices.
As we pointed out in [HO87], the scociety model combines

14

| , '
L 3
: 3
; E
3 3
] 2
: k-
;
A
e
i
e
1
K
i
o

the concepts from object-oriented approach and knowledge-
based épproach. (Imagine office agents as system objects and)
represent objects as knowledge-based entities.) Some fea-
tures accfu%ng from the combination of these approaches are;
(a) A direct, natural correspondence betweeﬁ the model-~-
-ed system and the real world office can be estab-
lished. Any further decomposition of office agents

may follow object—oriente@ approach;
(b) System objects are viewed as knowledge-based enti-
ties. Thus, "knowledge engineering"” technigques can
be applied to éhe development of these knowledge-

based systems.

‘In'géneral, knowledge engineering, “which is concerned
with tpe the development of a khowledgé-based system, refers
to following activities [FEIG78]:

(1) Understanding the problem task (same as convention-
al programs development):

(2) Selecting suitable knowledge-based systems develop-
ment tools (e.g., program organization, inference

- methods, knowledge representations, etc.) for the

task;

(3) Eliciting knowledge from users and organizing it
for use by the program;

{(4) Refining ang reconceptualizing the system if systém

performance degrades too much as knowledge in-

15

creases;
(5) Making interface comfortable to users and system

behavior understandable and controllable by users.

The difference between the technique and general soft-
ware engineering techniques stems from fhe difference be-
tween a knowledge-based sYstem and a general software pro-
gram. Note that all knowledge except some "control" informa-
tion is extrécted from conventional programs and treated as

another set of "data" (in fact, knowledge) in a knowledge-

based system [KOWA79]. That makes tools seledtion and knowl-

edge attribution +two ‘“ecritical" processes [FEIG78]. By

which, we mean these two processes will profoundly "affect

-the performance of a knowledge-based system.

It is our belief that'if egquipped with suitable +tools,
the agony of transfef of expertise (the process‘of éiiciting
knowledge from users andg attributing it into the program)
can be ;elieved. -Knowledge table systems developed in
[CHAN86a], which include a unified knowledge representation

method, different knowledge inference models, knowledge

editing tools, . etc., can serve this purpese. By the employ-

ment of the unified representatlon method provided by the

knowledge table system, knowledge of a whole offlce system

can be -prototyped through .a -singile tool, which further

speeds up the system development.

16

This retrospection leads us to forming a "mixed"” meth-
odology for +the development of a knowledge-based office
system:

(1) Use the society model as a world-oriented modeil for

office information systems to define and specify an

office as a set of office agents;

(2) Use object-centered decomposition technigue to
refine office agents to more primitive objects if
necessary (e.g;, an agent refined to a set of
ks's): '

(3) Primiti!em%nbjects_a:e_theh_protﬁtyped_as_knnwledgeu____mvf

'2 : table systems [DOYL85]. As a matter of fact, accom- |

| ﬁqdating other advantageous models, e.g;, opera-

tional models, at this step for the rapid prototyp-

.ing of primitiﬁe objects is as natural as we have

done with knowledgeltable systems;‘

(4) Set up a knowledge-based support environment to

support various aspects of the development process,
i.e., system specification, verification, evalua-

tion, and optimi-zation (see below for detail).

;f' Figure 3 depicts such a methodology, which is derived

from the methodology we described in [CHAN86b] for the

development of distributed knowledge-based information sys-

tems.

e

R

17

o |
‘B
3
&
i
El
k4

Office Designers/Users
3 .

* Knowledge-based supports]| *
L N +=======4 *
* |0ffice Automation Consultant|<---->|Scripts]| *
E e - ———— o e o + ES-L T T T T TP *
* incremental | initial prototyping *
* development temmememmee e + *
% *
e et gk e sk ok o ok ke ke vk e ok s ok ok ook ok o o ke ok b=cs=m=c—=4 *
| | * Office *
e ————— Fmmmet F e + system *
OKXs t=s=====y==+ |{-*->|Explanation|<->|meta- *
o ——— e + |Knowledge * |module knowl- *
Various bases of ¥ e + edge *
protocol various * ts======4 *
entities protocol Il e T T R *
toe="w—=wt jentities- * Other support modules *
t==="sa===+ * + knowledge bases for *
| {<=*->|verification, evalua- ¥
e ——— e + : * tion, and optimization *
e S ————————— + F e + *
l e sk o e e sk e vl s o s ok ok ok sk ok sk ok ok ok ke ok ok o ok vk e ol ok ok

e — N e e e e e e e e ey Y e i S e e b e e -+ +=================+

Knowledge bases <=+

of various agents

lVarious operational agents of
{==>

office information systems

Fig. 3 A Methodology for the Development

of a Knowledge-Based Office System

Note that the knowledge-based model is adopted to pro#
vide a knowledge-based support environment for the develop-
~ment process. It i1s shown in the figure as an asterisk

enclosure. The target office system is developed as various

office agents interacting through an Office Knowledge Ex-

'change System (OKXS) according to the society model. To

emphasize the knowlédge—based nature of the office system,

18

o e e WA

all modules shown in the figure are accompanied with asso-
ciated knowledge bases. That includes the OKXS system which
is characterized as a set of protocol entities and their
associated knowledge bases, which virtually provide +the
office Kknowledge exchange protocols. This approach thus

unifies the design of the whole system.

Two components of the knowledge-based support system
are singled out in Figure 3, namely, Office Automatién Con-
sulfant (OAC) and explanation module. OAC is a knowledge-
based environment working as the interface between office
users and the office system. It is the one which incre-
mentally sets up the whole system. 1In the initialization
stége it is used to fransfer knowledge ffom office users to
various components of Phe office system. It aléo works as an
aid for the verification and the enhancement prhases of the
system. A script of how to acquire knowledgé from users, how
to adeguately attribute knowledge into each agent. without
causing conflict, how to invoke othef modules for the opti-
mization of the system, etc. is associated with the consult-

ant as its knowledge base.

Explanation module is responsible for constructing and
explaining lines-of-reasoning of individual agent or a whole
office system to Televant users. It has knowledge of how the
office is configured, how knowledge is structured and pro-

cessed in the knowledge table system, etc., (termed as

19

3 1
B 7
E
|
i)
.
!
il
;

office system meta-knowledge) to facilitate the explanation
process. Users may understand the system operation and debug
system knowledge by following the lines-of-reasoning. Other
modules related to the verification, evaluation, and optimi~
zation of the office system can be _introduced into the

environment for further improvement of the support system.

In general, OAC takes part in all aspects of the office

system develbpment process:

(a) Specification: 1In the initialization stage, OAC
provides an office knowledge specification script
(based upon the society modei) for office users to
prototype each office agent iﬁcluding. the OKXS
system. During the enhancement (or evolution)
phaSé, new specification can be incorﬁo—rated into
the system by OAC through OKXSA h

(b) Vefification: Running a system with new posted
knowledge can be done by_knowledge table interpret-
er invoked by OAC, which provides a guick feedback
for verification. Explanation module plays an im-
portant role in this phase. Through its exposition
of system reasoning scenario, the verification
turns out to be easier. In addition, a variety of
verification tools can be calied by OAC during this
phase. For instance, correctness check on input

spécification supported by specification checker,

20

b |
.'

|
g
.

OKXS protocols verification, knowledge tables veri-
fication, agents' knowledge verification, etc;

{(c) Evaluation: OAC can invoke suitable modules to
perform system analysis capabilities such as static
evaluation, dynamic simulation, and so on;

{(d) Optimization: System global optimization such as
system configuration, system knowledge distfibu-
ticon, agént knowledge partition, and so forth, can

be achieved by proper modules invoked by OAC.

Thus, OAC works as a coordinator of thé support system.
It coordinates specific modules in the support env1ronment
to support specific capabilities for the development of a
knowledge-based office-system. In short, it works as a tool
for developing a knowledge-based office systém by rapidly
prototyping office system knowledge or as-& tool for the

evolution of an office system.

4. Prototyping OAC as a Knowledge Table System

One interest point of the methodology is +that the

supporting environment can be developed using the same tech-
nigue. For instance, OAC can be prototyped as a knowledge
table system using knowledge table editor "kted" described
in [HO87]. Once OAC is developed, the whole system develop-

ment can be bootstrapped since most office agents are proto-

typed through OAC.

Developing OAC as a knowledge table system may serve as
a pragmatical example of how we prototype a Knowledge~-baged
entity using kted. The very first step is the identification
of all knowledge that makes OAC work. Kted is then used +to
define +these knowledge as various knowledge tables. The
foliowing is a list of knowledge that OAC is expected to
consist of:

(a) Knowledge of +the society model and how the mixed
strategy is applied to the office systems knowledge
acquisition process; '

(b) Knowledge of consistency and/or completeness check
of acquired office knowledge;

(c) Knowledge of other modules which are respbnsible
for varioﬁs verification;‘ evaluation, or optimiza-
tion functions as well as knowledge of when +to

invoke relevant modules.

A script 1is designed for OAC which incorporates all
these knowledge. Basically, the script uses the soclety
model as a guidebook to seduce knowledge for each component
of the model -and uses objgct-oriented approach to refine the
épecification wherever office agents are encountered. The
script also ‘takes into account the verification, evaluation,
and optimization during or after the specification phase.

Thus, consistency an# completeness check on the specifica-

22

tion can be performed on the fly or when reguired from

users. An English description of the script is given in

aAppendix A.

The script consists of four acts, and each act in turn
contains several scenes. Although each scene gives a se-
guential 1listing of actioné that the OAC has +to foliow,
scenes are ﬁot necessarily connected seguentially. A specif-
ic act or scene is entered when its situation is satisfied.
Acts or scenes might be invoked by demon processes during

the execution of other acts or scenes.

- Now, we are ready to prototype the script into a knowl~
edge table system. Several ways to implement such a script.
For instance, .we may have an Ic-type table to group four
acts together. Each entry of the table then links to another
Ic-type of knowledge tablg describing each scene. Each'scene
cén be represented as an Fc-type table. Another way is to
directly implement each act as a separate Ic-type of knowl-
edge table. Thus, we will have four éeparate invocation
alerters to invoke them respectively. Since we expect commu-
nication between acts may exist, we prefer the first method,
which provides a whole view of OAC knowledge. Through the
kted, we can transform the script to knowledge tables and
store them into the database. Appendix B shows part of the

script knowledge tables.

23

The first run of the script will produce a prototype of:
the target office. In fact, the prototype contains various
knowledge tables +to represent knowledge of the target of-
fice. Next runs of OAC will modify the target office through
kted. Appendix C shows object definitions of some of +these
knowledge tables. Some modules are invoked by OAC for vari-
ous purposes, é€.g., verification, evaluation, and optimiza-
tion. Object definitions of knowledge bases of some of these
modules are included in Appendix C to help understand knowl-~

edge tables of OAC script.

5. Summary

A mixed methodology has been developed for the develop-

ment of a knowledgg—baSed office system. The ™ methodology

bases itself on the society model, which inherits merits

from techniques of object—orieﬁted approach and knowledge-
based approach. Thus, the methodology may help develop a
software system which naturélly mirrors the real world coun-
terpart. The specifibation'of a whole system also becomes
more tractable due +to the objecf—oriented decomposition

technique.

The kndwledge~ba$ed approach impacts the methodology in
two aspects. First, it introduces the knowledge engineering
technigues into the general framework of software engineer-

ing. The +techniques ehphasize the knowledge acquisition

24

process as well as the system behavior explanation aspect,
which facilitates the knowledge prototyping as welil as the
knowledge management of a knowledge-based system. By adopt-
ing knowledge table systems as a unified representation
method for the storage of the target system knowledge, the
methodology may further speed up the system development

process.

The knowledge-based approach also influences the design
of the development tools. A knowledge-based supporting envi-
ronment is incorporated into the methodology to help manage-
the whole system development process. .Among them, OAC is
designed as a coordinator of the supporting system. It works
as a knowledge prototyping tool for the target office during
the system initialization and evolutional phases. A_system
behavior explanation module is included in the environment
serving as an interface‘fof thé understanding of the system
behavior as well as a debugging tool for the system knowl-

edge.

Once OAC is_developed, the whole office system can be
prototyped through OAC. That includes the OKXS system, which
is uniformly treated as a set of knowledge-based protocol
entities. The prototyping procesé of a target office system
follows the script of the OAC, which is more or less 1like
what we used to prptotype the OAC as a knowledge table

system.

25

Accommodating operational models inside the framework
of the mixed methodology is quite natural due to the gener-
ality of the society model. [CHAN86a] is an example, which
adopts the OPM model, rather than the micro society struc-
ture, to model office agents as a procedural description of
their activities. Since +the knowledge table is a unified
fepresentation method, the knowledge description in the OPM

model can be represented as a knowledge table system, too.

26

Appendices
Appendix A:
The English version of the OAC script

ACT1l: System specification.:
<situation (specification . {office-environment goal
missions regulations objectives facilities agents
structures activities))>
<demon: A verification on the environment will be run
through ACT2/Scene2>
Scenel: Office_specification:—‘;"—— -
{demon: Agents specified in this scene have
to be refined in Scene2>
l. Acquire office goals (office->goals);

2. Acquire structures which might refine

some of office goais (goal->subgoals);
3. Acguire structures related to all (sub)
goals (goal->agents);
/** Note that office facilities are
treated uniformly as office agents.
*k/

4. Acquire other structures if any;

,L; 5. Acquire applicable regulations;

- 6. Setup mew protocol entities for OKXS

(OKXS->agents).

27

/** Protocol entities are +treated as

agents too.

**/
SceneZ: Agent specification.

{demon: Agents +to be refined have been de-

fined in Scenel?>

1. Acquire agent goals (agent->goals):

2. Acquire ks "agent-descriptor";
3. Acquire structures related to all agent
goals (goal->ks's);
4. Acquire other structures if any;
5. Acqguire ks "micro-planner";
6. Acguire each activity ks.
ACT2: System verification.
<situation. (verification (explanation consistency-
check completeness-check testing debugging))>
Scenel: Explanation. ‘
1. Office-based explanation.
1.1 Answer office static knowledge guery:

/** For instance, statistics of some

office items.

*% /
<{demon: Need to run ACT3/Scenel?)>
1.2 Explain office reasoning.
/** For instance, Why this procedure

is used (or formed) by office

28

agents to deal with that office
goal?
k% /
<demon: Rerun a case (e.g., executing an
office procedure))
2. Agent-based explanation.
2.1 Answer agent-based static knowledge
query;
/** For instance, agent expertise.
**/
<demon: Need to run ACT3/Scenel?)> -
I2.2 Explain agent reasoning.
/** For instancé, Why the agent takes

this action instead of anocther to
complete that subgoal?

**/

{demon: Rerun a case>

Scene2: Consistency check.

1. Consistency check on "office->agent->
ks's" decomposition;
2. Consistency check on each office struc-
ture;
/*% For instance, poor 1labor matéh in
community structure, reflective rela-

tion "report-to”, etc.

**/

29

e

3. Consistency check on each micro structure
of esach agent;

/** For inétance, agent role conflict.
*% /

4. Consistepcy check on knowledge conflict
and subsumption on office level as well
as agent level;

5. Consistency' check oﬁ OKXS communications
using protocol verification technigues.

SqeneB: Completeness check.)

1. Completeness check on agents delegation;

2. Completeness check on ks's delegation:

3. Completeness check reguired and performed
by other modules.

Scene4: Testing.

<defau;t: Run &a random case (l.e., system_

chooses a procedure)?> | '

l. Acquire test target or default;

2. Run Scenel and/or 2 and/or 3:

3. ‘Debug.

ACT3: System evaluation.
<{situation (evaluation (static-evaluation dynamic-
simulation))>
Scenel: Static evaluation.
l. Acquire evaluafion model, evaluaéion tar-

jét, and relevant parameters;

30

<default: per procedure with predefined

parameters>
/** Examples of evaluation target: a-

gent, procedure, community, or of-

fice based query; data retrieval
frequency; turn-around time. Exam-
ples of parameters: time, probabili-
tv.
ek /
1 2. Invoke relevant evaluation module.
11; ' Scene2: Dynamic simulation.
‘!' l. Acquire simulation model, simulation tar-
1 get,.and simulation paramete;s:
/** Examples of simulation target: agent,
procedure, community, or office.
Examples of parameters: ' load distri~
bution, simﬁlation-time—scale.
*% /
2. Invoke relevant simulation module.
ACT4: System optimization.
<{situation (optimization (procedure-streamlining
structure-reconfiguration local-optimization global-
optimization))>
Scenel: Procedure streamlining

<demon: Structure optimization will be run

31

by Scene2>

l. Acquire a target procedure to be stream-

lined:

2. Acquire new or temporary constrains if

any;

3. Invoke relevant streamlining module +to
advise a new structure for the procedure

1§' - which will make better use of the system

resources.
Scenel: Structure‘reconfiguration
1. Acquire the target to be festructured;
/** A community or an office.

**/

|
|
| ,
: 2. Acquire new or temporary constrains if
. any; ' - |
3. Invoke zrelevant éonfigu;ation module to
advise é new configuration for the target

so that the performance of the restruc- ’

tured target meets users' reguirement.

32 -

Appendix B:

Knowledge Tables Representing OAC Script

Table "script"

-—_—————---...——-——._———————————.—-——————-———-—-..—————....———

control-condition: office consultation | I-type
e e e e +
e +
[| factor-obj1|
+=======================+
| obj~name | NIL |
e T +
e e e e e L +
| | inference-id| exp | .cons]
+====.—.===+
obj-name | act-name | situation | action
obj~type | VAL[20] % | EXP[200] | KT[50]
e e e e e e e e o +

% Notation of "obj-type[m]" represents that the type of the

object is "obj-type" described at most in m characters long.

| act-name->20 | situation>200 | actionso |

| specification | (specifications | Lime(omecifiostion)]
‘verification | (verification* | 1ink(verifisation)
‘evalustion | (evaluation* | 1ink(evaiemiiomy
‘optimization | (optimization* | 1ink(oprimization)

e e e e e e e o +

(specification*=(specification (office environment. goal
missions regulations objectives facilities
agents structures activities))

(verification*=(verification (explanation consistency~check

33

completeness-check testing debugging))
(evaluation*=(evaluation (time probability static dynamic

simulation))

(optimization*=(optimization (streamlining reconfiguration

optimization))

1: Table "specification"

(office*=(office environment goals missions regulations .

e e +
e ,
| | | factor-obji|
EH +=======================+
|8 | obj~name | NIL |
4 b ‘ e e e e . B e e — -+
' e e e e e e e e e +
N | | inference-id| exp . | cons |
[+==+
I obj-name | scene-name | situation | action
I obj-type | VAL[20] | EXP[200] | KT[50]
; T e ——————— +
3 e e e e = ok o e e e -+
[| scene-name->20 | situation->200 | action->50 [
: +==+
i office-definition| (office* | link(office) |.
E. agent-definition | (agent* | 1ink(agent)
: e e e e ————— +
F
I

objectives facllities égents structures
knowledge-exchange-protocols)
(agent*=(agents micro-structures activities

knowledge-sources)

34

Table "office"

table-name: office

——————-—“——————-—--—--——---—--—”———_-

e e e +
e e e e e e +
| | obji | obj2 |
+======================================
obj-name . | step-name | step-action
obj-type | VAL[30] | ACT[100]
e e e e +
e e e e +
| step-name->30 [step-action->100
+==+
goals-spec . ' W|eval(kted,office—goals)

————-———_——-————-——————_—————————---————n_————-—_———-—_——_

...-.—————...—_—-———-_—_—-—-———--_——-—-—._————-————u———'——-.—_-—...————

———-—.—u————-—.—-——-—-.._———_—--————--——_—u———————-———-.—_——.-._—--.

n——_—-——...—_————_———_—-..—————-—————--—-_—-.——-———....—_——-..—————__

——_—...——-———.-——————.—-_——-——n-————u——————c—————..—.———.——.—————_—_—-—

T e S e e S S S G i g Wi e e T g M ey S e S

control-condition: linked | F-type

A e e e e e +
A e e e e e e +
| | obji | obj2 |

obj-name | step-name | step-action
obj-type | VAL[30] | ACT[100]
e e e e e +

35

| step-name->30 | step-action->100
+==+
goals-spec |eval(kted agent-goals)

36

Appendix C:

followed by a list of

(1) Office definition
i.1 office-goals
(F-type:

i.2 goal-subgoals

(F-type:
i.3 goal-agents

(F-type:
i.4 regulations

(I~type:
i.5 OKXS-agents

(F-type:

ii.1 agent-goals
(F-type:

(F~type:

(F-type:

(F-type:

(ii) Agent-definition

Knowledge Tables Produced/Used by OAC Script (table type

object names shown within parentheses)

office goals)
goal sgbgoals)
sub.goal agents)
Tule-sets)

OKXS agents)

agent goals)

ii.2 agent-descriptor

agent-static~attr role acquaintance-~rel)

ii.2.1 agent-static-attr

agent-id agent-name age sex birthday

expertise)

ii.2.2 acquaintance-rel

responsible-for report-to commands

familiar-list)

37

ii.3 goal-ks's
(F-type: goal ks's)
ii.4 micro-planner
‘(I—type: conditions actions)
(iii) Knowledge-table-alerters
iii.l alerters
(I-type: rulé-id conditions creator date
actions comment)
(iv) ﬁules for various check/verification
iv.1 office-check-rules

(I-type)

38

References

[ALFO77] Alford, M., "A Requirements Engineering Methodology
for Real-Time Processing Requirements, " IEEE Trans.
Software Engineering SE-3 {Jan. 1877}, 60-68.

[BALZ83] Balzer, R., T. E. Cheatham, and C. Green, "Software
Technology in the 1990's: Using a New Paradigm,
IEEE Computer 16 (Nov. 1983), 39-45,

[BELL77] Bell, T., D. Bixler and M. Dyer, "An Extensible
Approach to Computer-Aided Software Requirements
Engineering, " IEEE Trans. Software Engineering SE-3
(Jan. 1977), 49-60.

[BRUNSB6] Bruhb,' G. and G. ' Marchetto, "Process-
Translationable Petri Nets for the Rapid
Prototyping of Process Control Systems, " IEEE
Trans. Software Engineering SE-12, 2 (1986), 346~
357.

[BOOC83] Booch, G., Software Engineering with Ada
{(Benjamin/Cummings, C&, 1983).

[BOOC8B6] Booch, G., "Object-Oriented Development," IEEE
Trans. Software Engineering SE-12, 2 {1986), 211-
221.

[BORG85] Borgida, A., S. Greenspan, and J. Mvlopoulos,
"Knowledge Representation as the Basis for
Reqguirement - Specifications," IEEE Computer = 18
(April 1985), 82-91.

[BRUNB6] Bruno, G. and G. Marchetto, "Process-
Translationable Petri Nets for the Rapid
Prototyping of Process Control Systems," .IEEE
Irans. Software Engineering SE-12, 2 (1986), 346-
357.

[BYTEB6] BYTE, "Object-Oriented Languages," Theme topic of
BYTE 11, 8 (Aug. 1986).

[CHANB6a]lChang, S. K. and C. S. Ho, "Knowledge Table As a
Unified Knowledge Representation Method," Illinois

Institute of Technology Technical Report (1L,
1986).

[CHANB6b]Chang, S. K., C. S. Ho, C. Y. Hsieh and L. Leung,

39

"A Methodology for Distributeg Knowledge-Based
Information System Design,"” In Proc. IEEE Workshop
Language for Automation (8ingapore, Aug. 1986).

[DAVIS77]Davis, C. G. and C. R. Vick, "The Software

[DOYLB5]

[FEIG78]

[FRENB5]
[HEND86]

[HO86]

[HO87]

[JONE76]
[ROWA79]

[KRAS83]

[KUO85]

[RAMABG]

bevelopment System, " IEEE Trans. Software
Engineering SE-3 (Jan. 1977), 69-84,

Doyle, J., "Expert Systems and +the "Myth" of
Symbolic Reasoning," IEEE Trans. Software Engineer-
ing SE-11, 11 (Nov. 1985), 1386-1390.

Feigenbaum, E. A., "The Art of Artificial
Intelligence - Themes and Case Studies of Knowledge
Engineering," In Proc. AFIPS NCC Vol. 47 (June 5-8,
Anaheim, CA, 1978), 227-240.

Frenkel, K. A., '"Toward Automating the Software-
Development Cycle," Commun. ACM 28, 6 (June 1985),
578~589.

Henderson, P., "Functional Programming, Formal
Specification, and Rapid Prototyping," IEEE Trans.
Software Engineering SE-12, 2 (1986), 241i-250.

Ho, C. 8., Y. C. Hong and T. S. Kuo, "A Society
Model for Office Information Systems," ACM Trans.
Office Information Systems 4, 2 (April 1986), 104~
131. :

Ho, C. S., Society Model Based Office Information
Systems (PH. D. Dissertation, National Taiwan
University, May 1987).

Jones, M. N., "HIPO for Developing Specifications,"
Datamation (March 1976), 112-125. .

Kowalski., R., "Algorithm = Logic + Controli,"
Commun. ACM 22, 7 (1979), 424-436.

Krasner, G., ed., Smalltalk-80: Bits of History,
Words of Advice (Addison-Wesley, Reading, Ma,

1983).

Kuo, T. 8., et al., "an Agent Society Model for
Office Information Systems, " Institute of Informa-
tion Science, Academia Sinica Technical Report TR~
85-005 (Taiwan, Sept. 1985).

Ramamoorthy, C.” V., "Issues in Software Engineering

40

for Automation,” Keynote Speech in IEEE WorkéhoP on
Language for Automation (Singapore, Aug. 1986).

[RAMAB7] Ramamoorthy, C. V., S. Shekhar and V. Garg, "Soft-
ware Development Support for AI Programs," IEEE
Computer 20 (Jan. 1987), 30-40.

[ROSS77a]lRoss, D., "Structured Analysis (SA): A Language for
' Communicating Ideas, ™ IEEE Trans. Software
Engineering SE-3 (Jan. 1977), 16-33.

[ROSS77b]Ross, D. and K. E. Schoman, Jr., "Structured
Analysis for Reguirement Definition," IEEE Trans.
Software Engineering SE-3 (Jan. 1977), 6-15.

[TEIC77] Teichroew, D and E. A. Hershey III, "PSL/PSA: A
Computer-Aided Technigue for Structured
Documentation and Analysis of Information Systems,”
IEEE Trans. Software Engineering SE-3 (Jan. 1977},
41-48.

[WASS86] Wasserman, .A. I., P. A. Pircher, D. T. Shewmake and
M. L. Kersten, "Developing Interactive Information
Systems = with the User - Software Engineering
Methodology," IEEE Trans. Software Engineering SE-
12, 2 (1986), 326-345. '

[WEGN79] Wegner, 'P., Research Directions . in Software
Engineering (The MIT Press, Ma, 1979). -

[WEGNB4) Weéner; P., "Capital Intensive Software Technology.
Part 2: Programming in the Large," IEEE Software
(July 1984), 24-32.

[YEH84] Yeh, R. T., P. Zave, A. P, Conn and G. E. Cole,

' Jr., "Software Requirements: New Directions and

Perspectives,” In Handbook of Software Engineering

(C. R., Vick and C. V. Ramamoorthy, eds., Van
Nostrand Reinhold, NY, 1984).

[ZAVEB84] Zave, P., "The Operational vs the Conventional
Approach to Software Development,” Commun. ACM 27,
2 (1984), 104-118.

[ZAVEB6] Zave, P. and W. Schell, "Salient Features of an
Executable Specification Language and Its
Environment,” IEEE Trans. Software Engineering SE-
12, 2 (1986}, 312-325.

41

