VIPS: A Visual Programming Synthesizer

K.Y .Cheng, C.C.Hsu, M.CLu, M.S.Hwy, and I.P.Lin

Institute of Information Science
Acadernia Sinica
and
Department of Computer Science and Information Enomecnno
National Taiwan University
Taipei, Taiwan, ROC

HE
3
2§15
Y
b
!

LY
PV
4
}
I

37
L

EHmEE R

I IHIIIIIIHIII

00005

0053

IIII!IIIWIIIIIH\IIIVHIIIHII\I

m._;é«—m)/




ABSTRACT

In this paper, we propose a Visual Programming Synthesizer as a vehicle for
nonprogrammers to develop their application programs, Here, the visual forms
(V-Forms) dealt with contain text {in particular Chinese characters), graphs,
bit-maps, animations, rules, and vojces. Based om the V-Form model, a
two-dimensional non-procedurai interfacing language, consisting of a V.Form
Definition Language (VDL) and 2 V-Form Manipulation Language (VYML), is
defined. VDL is used to define the logical and visual structure of V-Forms, while
VML manipulates the contents of V-Form instances. After V-Form instances have
been interactively sketched, a consistent internal structare and control flow for
each applicaiion can be synthesized. V-Form instances that are text-only can be
directly executed by VIPS interpreter, while V-Form instances other than text are
ireated as a series of procedure calls delivered to graphical and veice systems for
execution. A complete CAl example is illusirated to demonstrate the features of
the synthesizer.




1. INTRODUCTION

The importance for the study of Visual Language has been recognized in the United States and
Japan in recent years [7,12,15,16,17]. The major issues of the study are to provide a programming
environment for NP-professionals (Non- -Programmers) to develop their own application programs
visually. This kind of applications can be seen widely in the design of Office Information Systems
[3,9,10,14,18] and others such as Computer Aided Instructions {1,3,13]. In these applications, the
visual language is used to describe vision data - a news, a menu, a screen layout, an engineering
drawing, a typeset report, a font of type, and their abstract data type such as hierarchy, condition
statements, and rule-based knowledge. In visual programmin 8, they are represented as data objects
in the shape of forms because people are familiar with forms.

In this paper, we propose a VIsual Programming Synthesizer (VIPS) as a vehicle for
nonprogrammers to develop their own application programs. Here, the forms dealt with contain text
(in particular, Chinese characters), static graphics (line drawing and bit-map), dynamic graphics
{animation), rules, and voices. In order to distinguish them from office forms, we call them the
V-Forms.

Just like other form models [15,16,17,18], our V-Form model consists of a V-Form type and a
V-Form instance. A V-Form type describes the structure of a V-Form system, while a2 V-Form
instance is obtained after filling values into the contents of the described V-Form type. The V-Form
instance is a program that fits the concept of embedded procedures for computational and controlling
requirements. Hence, facilities for conditional and unconditional control switches are also included
in the V-Form model.

Based on the V-Form model, VIPS contains a two-dimensional non-procedural language as a ‘

user-friendly interfacing language to define and manipulate V-Forms on the screen. This interfacing

language includes two parts: 2 V-Form Definition Language (VDL) and a V-Form

Manipulation Langnage (VML). VDL is used to define the V-Form type (logical and visual

structure of a V-Form) and V-Form instance. Once V-Form instances are obtained, VML can be
invoked to display, insert, delete, update, group, and degroup these V-Form instances.

After processing VDL and VML, a complete internal form for cach application can be synthesized,

* V-Form instances that are text-only can be directly executed by VIPS interpreter, while V-Form




instances other than text are treated as a series of procedure calls delivered to graphic and voice
systems for execution. In VIPS, rules are represented in predicate logic and properly arranged in a
V-Form text that can easily interface to another system developed in the Al Laboratory of the
Department of Computer Science in National Taiwan University. A rule in a V-Form text is
translated into a Horn Clause and then delivered to a PROLOG interpreter [2,5,11] for execution,

In the following, we describe the language environment of VIPS in section 2, the V-Form model
in section 3, the structure and syntax of V-Form Definition Language in section 4, and the V-Form
Manipulation Language in section 5.

2. THE VISUAL LANGUAGE ENVIRONMENT

A conventional programming environment concerns how to provide programmers some
convenient and useful tools to develop their application programs. In this environment,
programming itself is a specialized arduous task requiring detailed textual instructions that must
adhere to strict syntactical rules. As for non-programmers, using programming language to develop
their own application programs is almost infeasible (if not impossible). On the other hand, a visual
programming synthesizer concerns how to provide some kinds of tool for users who only need to
use their specialized knowledge to describe the process of how to get the desired e{pplications ina
manner of what-you-sketch-is-what-you-get.

Then, what is the visual language? Let D be the domain of what you sketch and y; be a sketched
object, y; & D. Suppose y; can be generated by an inferred grammar G; [4], then we can define
the visual language as: '

Ly={yjly;e D, andy, e L“"(G’Q}

where L(G;) = LH(G;) UL(G;) = { positive_sample } \ { negative_sample }. The positive
sample is an information sequence of L(G;) containing only codes from L*(G;) which is a set of
objects described by the user. On the other hand, the negative sample is the parasitical product of G;
and this 1s not included in the visual language. So, visual language L, in natureis to get the
desired applications from an inferredl grammar G; through interactive sketching.



There are some design methods for visual programming languages[7,12,15,16,17]. However,
systematic approach to a theoretical sound methodology is still under developing. VIPS is interactive
and application-oriented. It has the following features : (1) easy to use -- Various user friendly
facilities such as icons, pointing devices, and menus are included. (2) Visual directed objects --
V-Forms are used as the fundamental objects of VIPS because they are more akin to the user's view
point. (3} Non-conventional programming nature -- Users only need to describe the external
representation of objects instead of writing a series of instruction codes. (4) For non-programmers --
Since application programs are generated automaﬁcally by VIPS, users can concentrate in expressing
their knowledge to obtain a better presentation. (5) Portable - V-Form system generated by VIPS is
alwajfs consistent in its internal structure. To transport VIPS from one system to another is by
means of porting an interpreter which inferpretes the internal structure and contents of V-Forms.

3. THE V-FORM MODEL

VIPS allows users to open several windows on a screen. Each window is treated as a V-Form.
The informant presentation data in a V-Form may include text, static graphics, dynamic graphics,
rules, and voices. They are represented in V-Forms.

Iet T be a set of codes to be displayed, A be a set of alphanumerics, C be a set of Chinese
characters, f3 be a set of graphic codes, Q be a set of drawing attributes, and 2, =T VAU C U
5 U Q. Then, the content of a V-Form is a regular expression [6] over .

A V-Form is a pair of a V-Form type F and a V-Form instance I which are defined below. A
V-Form type consists of a scheme S and a template T for S.

[Defimition 1] A scheme S is the logical structure of a V-Form. It can be recursively defined
as: ' '

<S> t=<M> | <A>

<A> u= <S> <S>, <A>

<M> 1= <Type>_<Identifier>
<Type> n="Text | Graph | Bit-map | Rule

Animation | Voice | VForm



CAI_Course

Form._Yes

A

Fig. 3.2 Hierarchical structure for CAI Course

Text_Title Text Head
Graph_Snoopy

[Definition 2] A template T is a visnal structure of a V-Form that represents a
two-dimensional display format and visual properties of a scheme S.

The template for the scheme of Fig; 3.1 1is given in Fig. 3.3.

T T T T 1 - L LI T I L L L -
TITTITH T T T T T T T T T s s e e

Text_Title

Graph..Snhospi Text_Head

T T
LIt TR S SN0 NS TN I R et

T
1T TF

L3

T

3 VF orm_No:l : \'Farm_Yes:]

VDLy
BEGIM DEFINE EDIT ERASE £XIT EXTEND LOAD OPEN QT RETURN SAYE

Fig. 3.3 A template for the CAI_Course

A V-Form Fj is said to be a sub-VForm of F; if and only if F; contains Fj. It Fj is a sub-VForm

of F; and is not equal to Fj, then Fj is said to be a proper sub-VForm of F,.

Sub-VForms are also V-Froms. They may contain any number of other V-Forms. The proper




sub-VForms surrounded only by the V-Form F; are called the maximum proper sub-VForms
of Fi.. Two V-Forms F;, Fy, which are the maximum proper sub-VForms of F;, are called
brothers.

In Fig. 3.3, the maximum sub-VForms of the V-Form: CAI Course are all the V-Forms shown
and they are all brothers, where Text Title, Graph Snoopy, and Text Head are atoms, but
VForm No and VForm Yes are not. '

[Definition 3] A V-Form instance for a V-Form type F is defined as a mapping which assigns a
value to each atom of F. The value of 2 V-Form may have the following types: text, graph,
bit-map, animation, and rule.

One of the V-Form instance of Fig. 3.3 is shown in Fig. 3.1.

As stated above, a V-Form type can be filled with different contents to obtain different kinds of
V-Form instances. Therefore, a V-Form type is just like a language, from which a user can write
many programs, which, in this model, are V-Form instances.

4. THE V-FORM DEFINITION LANGUAGE

As mentioned in section 3, a V-Form consists of a V-Form type and a V-Form instance. Hence,
V-Form Definition Language (VDL) is divided into two phases, namely, a skeleton phase and an
editing phase to define V-Form type and V-Form instance respectively.

4.1 Skeleton Phase

Once a user has prepared his/her own well-written sheets in V-Forms, he/she can use skeleton
phase to define the V-Form type. In this phase, a user can directly manipulate the screen visually.
The basic commands provided in skeleton phase are summarized below (Table 1).

Table 1. Basic commands in VDL Skeleton Phase

<VDL>  := <BEGIN> [<COMMANDS>] <END>




<COMMANDS>  1:= <COMMAND> [<COMMANDS>]

<COMMAND>  ::= <DEFINE> | <EDIT> | <ERASE> | <EXTEND>
| <LOAD> | <OPEN> | <RETURN> | <SAVE>

<BEGIN> = BEGIN <IDENTIFIER>

<DEFINE> ::= DEFINE <IDENTIFIER> AS <TYPES>

<TYPES> ::= TEXT | GRAPH | BIT-MAP | ANIMATION
' RULE | VOICE | VFORM

<EDIT> i~ EDIT <IDENTIFIER>

<ERASE> :=ERASE <IDENTIFIER>

<EXTEND> ::= EXTEND <IDENTIFIER>

<LL.OAD> »=L0OAD <FI[..ENAME>

<OPEN> = OPEN <TYPES> AT <POSITION> WITH

_ <SIZE> [<OPTIONS>]

<POSITION> n= <INTEGER> <INTEGER>

<SIZE> 1= <INTEGER> <INTEGER>

<OPTIONS> = AS <IDENTIFIER>

<RETURN> 1= RETURN

<SAVE> = SAVE <FILENAME>

<END> = EXIT | QUIT

For convenience, all interactive sequences are illustrated in line-mode commands. But actually in
VIPS, a mouse is used as a menu-driven device.

For the V-Form type given in Fig. 3.3, the interactive sequence is as follows:

VDL> BEGIN CAI Course

VDL> QPEN TEXT AT 14 1 WITH 55 3 AS Title
VDL> OPEN GRAPH AT 5 5 WITH 18 11 AS Snoopy
VDL> QPEN TEXT AT 30 5 WITH 45 11 AS Head
VDL> OPEN VEFORM AT 5 17 WITH 14 2 AS No
VDL> OPEN VFORM AT 37 17 WITH 142 AS Yes
VDL> '

k

The EXTEND command can be used to stretch the V-Form node to define V-Forms inside 2

l
A




V-Form. Thus, the command

VDL> EXTEND Yeg

will clear up the screen, then give out a command menu and a prompt. After giving a series of
OPEN commands similar to the above interactive sequence, the screen of Fig. 4.1 is obtained.

Trrrree ey ulilli[lunuuqll||||in|nn ||||§|H|'nul|n|]ﬂ‘l‘r‘i
[ Text.ProbStat VForm_Exit
[ Text_Ex

X YForm_Ready
VDL»

ACTION_BYE COND EXIT_FILL G6OTQ PROC__QUIT _SET

Fig. 4.1 After using EXTEND and a series of OPEN commands

on VForm_Yes of Fig. 3.3

RETURN command can be used to set back to the previous V

VDL> RETURN

in Fig. 4.1 will display Fig. 3.3 again.

'ERASE command is used to erase the V-Forms on the screen. DEFINE command can be used to
change the type of 2 V-Form. SAVE command can save previous

LOAD command reloads a prewritten V-Form type.

-Form, for example the selection of

V-Form type just constructed.




4.2 Editing Phase

The editing phase 1s to fill in each V-Form instance. The basic commands in editing phase are
given in Table 2.

Table 2. Basic commands in VDL Editing Phase

<EDITOR > = <EDIT> [<ED_COMMANDS>] <ED EXIT> >
<ED_COMMANDS> := <ED COMMAND> [<ED COMMANDS>]
<ED_COMMAND> = <ACTION> | <COND> | <FILL> | <GOTO>

| <PROC> | <SET>

<ACTION> ;= ACTION [{IS | ARE}] <Statements>

<COND> :=COND [{IS| ARE}] <Statements>

<FILL> n=FILL <CONTENTS> ~Z

<GOTO> ::= GOTO <IDENTIFIER>

<PROC> ::=PROC [{IS| ARE}] <Statements>

<SET> = SET <IDENTIFIER> <ATTRIBUTE>

<ATTRIBUTE> =BOLD | FLASH | NORMAL | REVERSE
| MIXED

<ED_EXIT> :=BYE [EXIT | QUIT

FILL command is used to fill values into each atom. Let us consider the template shown in Fig,
3.3.The following interactive sequence of commands:

VDL> EDIT Title
VDLS$ED>FILL /* cursor is now at the beginning of VForm Text_Title,

user cannow keyin text Linear Programming' */

VDLS$ED> SET Title BOLD
VDLS$ED> EXTY

VDL> EDIT Snoopy
VDLSED> FILL

VDLS$ED> EXIT :
VDL> EDIT Head




VDLSED>
will generate a V-Form as shown in Fig.3.1.

If an atom has procedures embedded as in Fig. 4.2, then while in editing the upper-right corner,
we can specify the procedures as follows:

VDLS$ED> PROQC /* Prompt Procedure: ,user can keyin statements as follows */
Procedure: Printx' y 7z, VARY x FROM 0 TQ i20 BY 20 .y is RANDOM , 7 i§ 2x+y.

‘ 3 z T Y u T 1 T 7 T T T T T T
T T T T I T O T T O T T[T T (VT O YOI [T TR [TITT [ FITE T

r 'Y (56100) For F(xy)=2z+y, randomlygenerates

C & set of points (iy}in R as follows
N X v Fixy)

3 A F:11) 3 1

[

r oy

[ {Notice that, 270 in the

[ [table is max Any other

b iboint in R is Jess than

[ {270. Have 2 try to verify?

el (3] R

VDLYED>

ACTION BYE COND EXIT FIL{ GGTO PROC QUIT SET

Fig. 4.2 Procedures embedded example

COND command is used to specify the conditions of performing acﬁons/procedures.
ACTION command is used to specify actions to be performed. Unconditionly transfer between
V-Forms is given by GOTO command.

The resulting CAI_Course V-Form instance is shown in Fig. 4.3. Then, this V-Form

instances embedded with procedures/actions can be executed by a VIPS interpreter according to
the synthesized control flow of Fig. 4.4,

10




Linear Programming

The following topic is the
Graphical Solution of Linear
Programs in iwo variables,
Do you want to try it ?

(a) F1

Problem statement :

Given a close region R enclosed
by a set of lines, how to find
the maximum value of 4 function
Flzy} ?

Example;
Suppose =0, V=0, y=100,
X+¥-150¢=0, 2-y-90:=0
Find the max vaiue of F(xy)=2iy

(b) F2

Fig. 4.3 V-Form instance of template CAI Course

11




1Y (50.100) ForF(,y}=2x+y, randornlygenerates
a sttof points {xy) in R a3 follows
X ¥ Fzy)

{120,30) . a
X %%
{s0.0) 3 63
Notice that, 270 in the 2 e
table is max. Any other 28 . 219
DointinR is less than 30 270

270, Have a try to verify? e

(c) F3

TY (59,100} )y F(X,Y) 2284 e
A At =45, =78

{12030 Then,
X S Flxy)= 163« 270
0

270 at vertix (120,30)
is maximun.

Another try ?

(d)F4

Fig. 4.3 V-Form instance of template CAI_Course (Continued)

12




s g

Do you want to try another function ?

(e)F5

Now, try ancther function
Flxy)=ax+ by
Whatisa &b ?

o =
[}

"
L= AN #¥)

Then, compute

F{xy)= 3x+ By
X=7? y=1

(Y Fo6

Fig. 4.3 V-Form instance of template CAI Course (Continued)

13




In the following, we will give you a quiz

Are you ready ?

(g) F7

Answer the following question:
Suppose X»>=0,¥»=0
Hay-120 &= 0, X-y+605:0
For axby=F(xy),
a,b, are any real numbers.

Which of the following can
never be the maximum 7

ihen] [k [0 o B

(h) F8

Fig. 4.3 V-Form instance of template CAI_Course (Continued)

14




Serry , itis a wrong answer.

Because what you chose i5 2 point
within R and

Any peint inside region R can not
be the maximum,

(i) F9

Congratulations!
You got it right !

Now, the next question is as foliows:
Suppose  %=0, ¥l
3y-1204=0, 3-y+60:=0
Which of the following points can
not be the max of F{xy)=3m5y ?

[

................ 003

() F10

Fig. 4.3 V-Form instance of template CAI Course (Continued)




Sorry, wrong again |
Check the following table, you will see why.

4 Vertix(xy) | Flxy)=3m5y
{0,0) ¢
{0,60) 300
(30,90) 540
(320,0) o380

k) F11

Godd, you got it right [

() F12

Fig. 4.3 V-Form instance of template CAI_Course (Continued)

16




Select Select

Fl

F3 L®<___
Select

F2 | ’ End
Sefect

5

Select @]

s o

Select  Select

Select / - N/

<

Select F6 B7
Select Select
[¥es]

Updat':e‘ data F8

v Select{7] v Select [1,2,45
S FL0 )
Select g
¥ v Select c
_ Select
!F“ | [Fiz_J[E]
Soloct Select |
elec
Bye
. By Upgate data
End ' 2

Fig. 4.4 Control flow of CAL Course

17




5. THE V-FORM MANIPULATION LANGUAGE

VML is a language to manipulate V-Form instances gotten from VDL. As described earlier, a
V-Form instance can be regarded as a user-defined program. Thus, VML, similar to a program
editor, can manipulate V-Form instances at will. It provides users the following opeartions:
(1)Displaying, (2)Inserting, (3)Removing, (4)Modifying, (5)Grouping, (6)Degrouping. Like other
form manipulators[14,15,16,18,19,20], the embedded components (conditions, actioné and
procedures) are manipulated by the operations(1), (2), (3) and (4), while Grouping and Degrouping
allow users to restructure the existing V-Form instances. The basic commands of VML are shown
below.

Table 3. Basic commands of VML

<VML:> n= <BEGIN> <COMMANDS> <END>
<COMMAND> = <LOAD> | <DISPLAY> | <INSERT> | <REMOVE:

| <UPDATE> | <GROUP> | <DEGROUP> | <SAVE>
<EMBEDDED> == COND|ACTION | PROC

<INSERT> u= INSERT <TYPE1> <IDENTIFIER> <DESTINATION>
AT <POSITION> WITH <SIZE>
| INSERT <EMBEDDED> <DESTINATION>
<TYPE1l> = TEXT | GRAPH | BIT-MAP | ANIMATION | VOICE
|RULE )
<REMOVE> = REMOVE <IDENTIFIER> FROM <IDENTIFIER >

| REMOVE <EMBEDDED> <NUMBERS>
FROM <IDENTIFIER>

<UPDATE> = UPDATE <IDENTIFIER>
| UPDATE <IDENTIFIER> <EMBEDDED> <NUMBERS>
<GROUP> »= GROUP <IDENTIFIER> IN <IDENTIFIER >

_ AT <POSITION> WITH <SIZE> <IDENTIFIER>
. <DEGROUP> ::= DEGROUP <IDENTIFIER> FROM <IDENTIFIER >
) TO <FILENAME>
<SAVE> 1= SAVE <FILENAME>

_ Fig.S.i shows an example of displaying operation. In Fig.5.1(a), LOAD command loads the

18




entire CAI_Course V-Form instance into the memory and displays the root V-Form on the screen,
then DISPLAY command displays V-Form (F8) on screen as shown. After keyin another
DISPLAY command to display the condition part of VForm_ 2, the resultant screen is shown in
Fig.5.1(b). The usage of other operations (Inserting, Removing and Modifying) is similar and need
no further explanations.

N e e S e e e S e e e e e e

r TEX(...HEJ

[ | Answer the following question: | Graph 16— .
[T} Suppose x>=0,y =0 ¥

C X+§-120 = 0, 5-y+b e (30,00) R

L [ For axby=F{zy), Z\/

T 3,b, are any real numbers, (

- | Which of the following can

[ 1 tever be the maximum ? (120,0)

L VForm_t VForm_2 VEorm_3— Vrorm_d— vForm_S

L) 0] 12 (0,50) |(3)t?o 4} @300 [5(120,0)

VMLLOAD LINEAR.ING
VHLDISPLAY F8
LOAD DISPLAY INSERT REMOVE UPDATE GRILP DEGROWP SR¥{ EXM GUIT

{a) A V-Form

!Illillllillllil”l;llllilllliirlT]lllrillIliflEl[lll]iiltlill“ilnlillllilﬂ'fi

CONDITION:
IF error_count LESS THEN 2 /* first wrong answer®/

LUNLUS T M B e |

vrbDiseLAy YForm_2 COND

LOAD DISPLAY INSERT REMOYE UPDATE GROUP DWROUP SHVE EAIT QUIT

(b) Condition part of VForm 2

Fig. 5.1 ﬁxampie of Displaying Operations

19



Fig. 5.2 shows an example of grouping. The grouping operation adds a complementary course,
V-Form instance COMP.INS as in Fig. 5.2(b), to the node F2 of the V-Form instance
LINEAR.INS. The new structural relationship between two grouped V-Form instances can be
shown in Fig. 5.2(a). Fig. 5.3 shows the logical structure after grouping. Degrouping is just the
reverse of grouping. Notice that these two operations can only operate on independent V-Form
instances, i, the’ grouped/degrouped V-Form instances must be structurally unrelated.

B A L D A A A L R T AT TG LT . i
O Text M4
| “Proplem statement : VFUBTEEXIT

Given a close region R enclosed
by a set offines, how to find
the maximum value of a fonction

+

==
Fxy) ? | ¥Eorm _LOMPy
Text_145 7 r| CoMP i
ERAMpIS; L___"_.J

L1 Supposen0, yo=0, ye=100, s

X100, %-y-00ceg YFarm_READY
Find the max valte of F(Ry)=2my [ READY |

VHDEROUP coMP IN F2 AT 658 WITH 123
LOAD DISPLAY INSERT REMOYE UPDATE GROUP DESROUP SAYE EXIT Quil

T T T T T T T

(a)V-Form F2

g
=
5
;

Text M350
This is 2 complementary course of the problem.

We will give you some of the basic concepts
used in solving the linéar programming
problems.

YForm NEXT-y
NEXE

T YT T T Y r T T

VML DISPLAY F2
VHL>DISPLAY comp
LOAD DISPLAY INSERT REMOYE UPDATE GROUP DEEROLP SAYE EXIT QU

(b)V-Form COMP in COMP.I

Fig: 5.2 Example of Grouping

20



LINEAR.INS

COMP.INS

Fig. 5.3 Logical structure of LINEAR.INS after Grouping.

6. CONCLUSION

This paper has presented a visual programuming synthesizer which allows users fo define objcets in
what-you-sketch-is-what-you-get manner and synthesizes the sketched objects into a program
automatically. The contents of objects may include text, static graphics, dynamic graphics, rules,
and voices. In order to exploit the objects visually, we have proposed a V-Form model in which the
contents and structure of objects are explicitly incorporated. Based on the V-Form model, a V-Form
Definition Language and a V-Form Manipulatior{ Language are designed to support a visual interface
between users and the system. The system, then, structuralize these V-Forms into an unique internal
representation which can be easily interpreted by an interpreter. By this way, an automatic program
synthesizer 1s obtained.

Since VIPS provides the users a feasible programming environment to develop their application
programs visually, users, with or without any programming language background, can describe
their specialized knowledge as the process of how to get the desired applications. This will release
users from doing arduous and dirty works.

VIPS is only an experimental system in the study of visual programming techniques at the CS
Department of National Taiwan University. We expect to extend its capabilities so that more

21




knowledgable objects can be processed. But first, a theoretical understanding of visual perception is
needed so that a designer can devise knowledge representations for wider objects in a more general
manner.

REFERENCES

[1] Anderson, 1. R., Boyle, C. F. and Yost, G., 'The Geometry Tutor,’ IJCAI, LosAngles,
U.S.A,, pp. 1-7 (1985).

[2} Clocksin, W. F. and Mellish, C. S., Programming in Prolog, 2nd ed., Springer-Verlag, Berlin,
1984.

[3] Ellis, C. A. and Nutt, G. ., 'Office Information Systems and Computer Science,’ Computing
Surveys, Vol. 12, No. 1, pp. 27-60 (March 1980). _

[4] Fu, K. S. and Booth, T. L., 'Grammatical Inference: Introduction and Survey -- Part I, IEEE
Trans. on System, Man, and Cybernetics, Vol. SMC-5, No. 1, pp. 95-111 (1975). |

5] Gray, M. D,, Logic, Algebra and Database, Halsted Press, 1984.

[6] Hoperoft, J. E. and Ullman, Y. D., Introduction to Automata Theory, Language, and
Computation, Addison-Wesley, 1979. :

[7] Jacob, Robert J. K., 'A State Transition Diagram Language for Visual Programming,’ IEEE
Computer, Vol. 18, No. 8, pp. 51-59 (1985).

[8] Kearsley, G., et al., 'Authoring Systems in Computer Based Education’ Comm. of the ACM,
Vol. 25, No. 7, pp. 429-437 (1982).

[9] King, K. J. and Maryanski, F. J., Information Management trends in Office Automation,’
Proceedings of the IEEE, Vol. 71, No. 4, pp. 519-528 (1983).

[10} Kitagawa, H., et al., 'Form Document Management System SPECDOQ - Its Architecture and
Implementation,’ Second ACM-SIGOA Conference on Office Information System, Vol. 5, No.
1-2, pp. 132-142 (June 1984).

[11] Kowalski, R. A., 'Predicate Logic as Programming Language,' Proc. of IFIP 74, Stockholm
(1974). '

{12} Moriconi, M. and Hare, D. F., 'Visualizing Program Designs Through PegSys,’ IEEE
Computer, Vol. 18, No. 8, pp. 72-85 (1985).

[13] Reiser, B. J., Anderson, J. R. and Farrel, R. G., Dynamic Student Modelling in an Intelligent
Tutor for LISP Programming,’ I;JCAI, LosAngles, U. S. A, pp. 8-14 (1985).

[14] Shu, N. C,, et al., 'Specification of Forms Processing and Business Procedures for Office

22



Automation,' IEEE Transactions on Software Engineering, Vol. SE-8, No. 5, pp. 499-512
(Sep. 1982).

[15] Shu, N. C., 'A Forms-oriented and Visual-directed application development system for
non-programmers,' IEEE Computer Society Workshop on Visual Language, pp.162-170 (Dec.
1984).

[16] Shu, N. C., FORMAL: A Form-Oriented, Visual-Directed Application Development System,’
IEEE Compuier, Vol. 18, No. 8, pp. 38-49 (1985).

[17] Sugihara, K., et al,, "An Approach To The Design of a Form Language,’ IEEE Computer
Society Workshop on Visual Langunage, pp.171-176 (Dec. 1984).

[18] Tsichritzis, D. C., "Form Management,' Comm. of the ACM, Vol. 25, No. 7, pp. 453-473
(1982).

[19] Zloof, M. M., '‘Query-by-Example: A Data Base Language,' IBM System Journal, Vol. 16,
No. 4, pp. 324-343 (1977).

[20] Zloof, M. M,, 'QBE/OBE: A Language for Office and Business Automation,” IEEE Computer,
Vol. 14, No. 5, pp. 13-22 (1981). |

23




