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Abstract

L3
4

Automatic fitting to digitized curve'by quadratié B-spline func-
tions 1is discussed. Due to its-simplicity, it is possible to find a
quick fit within a given error tolerance bound which is defined as the
maximum distance between the fitted curve and thevoriginal -curve.
Again due to the simple form of a quadratic polynomial, some compli-
cated computations 1n computer-assisted aﬁimation such as.hidden‘ :

L

line removal can also be easily handled.

Keywords: Computer graphics, B-spline function, computer-assisted ani-

mation, curve fitting.

Most of this research was. done while the first four authors were
visiting the Department of Electrical and Computer Eagineering,  I1li-

nois Institute of Technology, Chicago, Illinois.
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NS I Ihtroduétion

~

Representing curves by B-spline functions was suggested by
Riesenfeld [13] and has been‘found to be vefy useful in many areas
such as.computer-a;ded desién, éomputer grabhics, and pattern recbgni—
tion. In particular, a B;spiine function represented by guiding points
can save a fremendous amogntrof memory for curve storage and genera-
tion. There are quite a few;a;éilable methods for constructing a B3-
3pline function to fit ? Eiven curve. However, most of them are con-
centrated on a cubic spline function. For example, Wu, Abel, .and
Greenberg [16] developed an interactive system to fit a curve by a

cubic spline . They used the basic 'relation between knot points P_ ,P

0
T geae,P

n 2and their guiding points VO , Vl gos ey Vm
‘ 4 N ! N f ~
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for an open curve. The derivation of (1) and (2) and some details of a

x

cubic spliﬁe function can be found in a recent book by Pavlidis .[12].

Yamaguchi [17] found an iterative method to solve (1) and (2) for
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.» .large m and his method was later adabted by Lozover and Preiss [10] to

develop an automatic scheme for cubic B-~spline generation. However, no

error analysis between the orlglnal curve and the fitted one was ~dis-

cussed. Herce their metnod

is not fully automatic given a required

error tolerance, Although a quadratic B-spline function is simpler and

spline‘to the naked eyes ( see for exam-

(161 ),

constructions seem lacking in the literature. Part of the reason would

almost as smooth as = cUbiCr

ple, Fig. 11.8 of Pavlidis [1“] and Fig. 3 of Wu, et al. their
be that the formulas corresponding to (1) and (2) for a quadratic
B-spline are generally unsolvable. If one follows ﬁhe relation betwean

then (1)

the guiding pdints and knot points of a quadrétic spline,
‘dbecomes -
/ N\ N 0N
100 . . .1 VO P0
110 .. .0 Vl Pl
= | 011 0 v, (=P,
0 11 Vm_ Pm .
N SN 4 s ‘
This matrix becomes singular fbr m > 3. The first part of this paper

is to fill this gap by a different approach.

One of the méﬁn advantages of using a quadratic B-spline

representation over z cubic one is that in quadratic B-~spline the

positions of the actual curve is much closer to the guiding points (

see Fig. 8.9 of Ballard and Brown [11). Hence it is easier Lo pinpoint

the curve's position by its quadratic spline guiding points. Also,

other parameters of a curveisuch as the enclosed area of a c¢losed

curve or the perimeter length of a curve are much easier to compute in

a quadratic spline representation. For example, the curve length of a

R S
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coordinates of its guiding points ( see Appendix F ), while that fer
a cubic spline numerical integration seems to be the only solution,
Similariy, for nidden line removal , the intersection Oof &wo quadratie

r

splines «can be examined by analytic formula ( see Appendix E ), while

‘the intersection of two cubic spline functions can only ‘be done by

iterative procedures. ?

L]
+

One important reason for representing a given curve by a simple
function 1is for easy picture alternation. Computer-assisted animation
is a perfect example. There havelbeen several systems in computer ani-
mation ( see Burtayk ane Wein [31), but none of them used B-spline
function for curve representation. Part of the reason again seems to
be that most literature on B-spline functons has been concentrated on
the cubic B-spline function which makes some computations in animation
such as the hidden line removal and the unequal guiding péint matching
very time consuming. The computation is much simpler in the case of
quadratic B-splines. Cartoons developed by this method were shown to
school children and it was considered to be good from their point of
view. However, it is not the intention of this paper to solve ﬁhe
artistic problems stéted in Catmull [4] or some other problems such as
aliasing in rapid m;vements stated in Korein and Badler [T]. We feel
that most of these types of pfoblems are basically trade-offs between
the animator's time and the cutput quality of the product. They are
usually hard to quantify. Rather, we emphasize on the feasibility of
this new method which hasiprovided a new avenue in computer—assisted

animation design.

2. Notations and methods of curve fitting

quadratic B-spline ecan be represented by an elementary function of the

Tpoa



In this paper we use ( x, y ) to denote a point in the plane. If,
G, = x. , v, ), i=1,2,...,m are m consecutive guiding points of a
gquadratic B-spline function, then it is well known ( e.g. PaVlldlS
[12], p.266 ) that the curve generated by thesée’ gbldlng p01nts are
plecew1se parabolas passing through the middle pointsiof the neighbor-

ing guiding points. More precisely, let

P, = (G, ,+ G, )/ 2e,‘"_i.=1,2,...,m. - .(3)

Then the quadratic B-spline funection will pass through all the Pts and
tangent to the polygon formed by the adjacent guiding points. The

Plecewise parabola between Pi and Pi lis

C.lw= (G, | =26, +G. Ju? 2(G_ -G, Ju + (G, +« G,  )}/2, (4)
i i-1 i i+] i i-1 i i-1 ) .

where u £[0,1]. Apparently (4) is easier to implement and it also has
an intuitive appearing in curve generating. (see Chaikin [5] and

Riesenfeld [15]).

The contour fitting process is divided into two basie steps. Each
step is given an error toierance €59 i=1,2. Let the original digitized

contour be listed consecutively as

e. =(x ), fé1,2,...h, (5)

i i ’yi-l

and the fitted spline curve bé S. Then we wish for any i=1,2,...,n,

HS - & ||< € * €5

where |3 - eil[denote the distance between point e. and curve S, i.e.

1S - ejl= min d(z, )

zZ & 8
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- and d(z,ei ) denotes the Euclidean distance between a point ze¢ S and

" the point e; . Since the user may require only |[S - ei][<sfor some € ,
a natural choice of € and. 62' is €)= €y &2. 4

In the first step, parabolas are generated to J?EE? the points' ei
si=1,...,0. Note that a parabola is a special case of a conic curve,
and its construction has been §tudied by many authors.f Bookstein [2]
derives a least-squares method for conic curve fittiné, Liao [8] uses
a two stage procedure first by fitting the digitized contour with a
polygon and then fitting the polygon with a conic curve by the least
séuares method, and Pavlidis [13] gives an iptens%ve discdséion of the
relation between a fitted conic éurve and its guiding polygon. Howev-
er, none of these methods discussed the exacf ‘disténcé between the
fitted curve and tﬁe original data points. Booksﬁein's and Liao's
methods are not suitable for our purpose because for given knot points
and the continuity requirement of tangents, the parabolas are hniquely
determined. The fitting method by Pavlidislf13] can be adzpted here.
We modify it as follows:

Let m, and m, denote respectively the slopes at points zlz (x ,

1
Y1 ) and z, = ( X, y2 ) and the equation of the fitted parabola be
expressed as
(x + By 4+ Dx + Ey + F=0. (6)

The values of B, D, E, and F are given in Appendix A. Formula (6) is
not as convenient as (%) for curve generation, but it is easier to

compute the distances as required in the rest of our procedure.

The choice of knot points can be done sequentially. For a closed
curve the first knot can be arbitrerily chosen, but for an open . curve

it is the first data point. The rext knot will be picked starting at




a

.7 «the third data peoint from the first knot. The slope at each knot will
" be the average of the two neighboripg slopes, i.e. for points A:(xl,yT

), B:(xé,yzi, C:(XS’YS)’ the-Slope at the center point B is

<
[\S]
1
~
=

Y - Y
m-;:‘-flzc P S 2 (8)

% Xz~ X

and if the knot point is the first or the last point of an open curve,
then the sfope will be computed from one side only. For example, if A

is the starting point, thén the slope at A is
m= — . (9)

Sometimes it would be impoftantﬂand necessary £o preserve some
sharp turns of a curve at a cusp point by using a double guiding
points ( see Pavlidis [12], p 268 ). In this case the tangents at both
sides of this knot will not be the same. To what extent a turning
angle is considered as sharp enough for double guiding-points has to
be determined by the wuser. When the angle at B, computed by the
difference between the arctangents of the two slopes at both sides of
B, 1s larger than a given.threshold, double guiding points.will be
used.

The fitness of each parabola will be measured by the maximum dié—
tancg between this p;%abola and all the points in (5) it represents.
The computation of this distance is desqribed in Appendix B. If this

maximum distance is smaller than e the next data point will be

1 ?
picked as a new knot and the above process will be repeated until the

fitting error is greater than e then the previous peoint will be con-

l H
sidered as the end knot of the current fitting and the starting knot
of the next piece of parsbola.

Now suppose we have fitted the digitized curve with piecewise



* \parabola Pi i=1,2,...,m and each-parabola Is represented by the

general form (6). Let the coefficients of the ith parabola be ( B,
1

y B
1

F.

1

3 fit these by

). Then the present. step is to a

parabolas

B-spline satisfying o

H
K
Ns

max |[8 P

-—

[} < Ez0

vhere S represents the B-spline and P represents the parabolas, and

max means the maximum distance between S and P. This can be done by

the following steps.

1. Find the inte;sections of 'all the tangents at the knot points

these intersections ‘will be used as the lnltlal guiding points,

Because two tangents of a parabola can never be parallel, the

tersections are guaranteed.

Find the maximum distance between the fitted spline and the parabo-

la accordlncr to the procedure descrlbed in Appendix C.

If the maximum distance is smaller than e« the should

2 process

!’

stop. Otherwise add one more guiding point to the existing guiding

points and go back to step 2. The procedure of adding a new guiding

point to a spline, function as well as the proof of its cdnvergence

v .

are given in Appendix D.

3. An Example in Curve Fitting

Since the parabola fitting is quite straightforward, we will dis-
cuss our example starting from the second step.
Figure 1 is a curve that is composed of 11 parzbolas. The joints

of these parabolas are Ql’ Qz,..,, qi and the coordinates ani slopes

ali these . points are given in Table 1.

) D,

1

and

inf .




A;cording to the step 1 of the'guiding points findiﬁg procedure,
the initial points are the intersections of the tangents at these knot
poiﬁts. They are shown as G, {1, 1 ) in Table 1. The notation Gk (1,3
) dfnotes the jth guiding point for parabola i at the kth 1teratlon

{ When Gl (i,1) are used as guiding points, the B-spline fuhction
produces a maximum discrépancx of 1.696 at the 11ith parabola ?k see
fab%e 2 1st iterétion column ). Suppose £3< 1.696. Then the gLiding
points of parabola 11 needs to be modified. Using the procedure
described in Appendizx D, we found the new guiding points for parabola

11 to be;
02(11,1):(6.296,"’15.681), G (11,2)=(8.1,11.3).

From Table 2 we see that the largest discrepancy ﬁow is 0.87 at para-=
bola 9. If the error tolerance e,is 1.0, then the 12 guiding points
are now acceptable for the spline approximation. The original parzbo-
las and their present fit are shown in Figure 2. When this process is
continued once more the maximum discrepancy becomes 0.347 at parabola
7. The spline for €, ='0.2 is achieved at the 8th iteration. The last
two iterations are given in Table 3 and the fit at the 8th iteration
is given in figure 3.3

Now we shall ill&gtrate how a quadratic B-spline can be used in

animation.
4. General 2-D Animation Hierarchical System

We would like to describe a general 2-D computer-aided animation

- System as a sequence of completely or partial drawn key frames which

Wwill be completed and interpolated by a computer.‘Without loss of gen-

erality, we need only to discuss the generation and the interpolation’

8

i
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©of two consecutive key frames. Subpose the first key frame is com-

pPletely drawn and'the second key frame is either compietely drawn or
spﬂ01f1ed by the user with some ideas of how it saould differ from the
fir st. From our expe*lence of animation generation, three basic operau
tionsé shifting, rotation, and scaling are enough to descrlbq the
loca;wchanges of two consécutivé frames. Moreover, we have fouﬁd it
conveﬁient if the frames are descrlbed as a hlerarchlcal system walch
will be illustrated by anp example.

Let there be a tail wagging dog playing on a moving car. Then

this picture can be represented by the hierarchical system in Figure

4. In this figure, the centers do not necessarily mean the geometric

center of an element. They are the'axés of rotations. For instance,
the center of the tail should be at the body end of the tail. For any-
point, there are two coordinate systems ; one related to its center
for the animator's convenience and the other is the screéﬁ coordinate
system for display. The two coordinate systems are related in a very
simple way. Suppose a point A has coordinate (x,y) with respect to its
center O which has coordinate ( XO s Y. ) in the screen system. Then

0
the coordinate of A is

( X+ X %+~§ ) (10)

with respect to the screen system. We define (x,y) as A's local coor-

dingte and (10) as its screen coordinate.

Each curve or contour in the picture is assigned to a center in
the hierarchical system and so is each center. Fpr éxample, the ceﬁter
of the dog's body and theicontour of the ecar, excépt its'whee;s, are
controlled by the first hierarchy center 1 in Figufe 4, while the main

body of the dog, except the moving parts such as the tail, the ears,

o 9
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? .and the legs, is controlled by the second hierarchy «center 3. The

-~

movement of each curve will be controlled by its center as well as a2

movement function. Let P(t) denote the local position of a poin® -P at

éﬁime- t. In computer animation, we usually let t=0 for thé‘ff?s% frame

and t=1 for the second one. If n-1 intermediate frames are to!be gen-—

erated, then we need the coordinates of

bd

P(t), t=i/n, i=1,2,...,n-1.

In order to describe the detail of P(t), we need a time function to
describe scaling, shifting, and ;opation- for ‘each curve. Let 3(t)
denote the local shifting of the-center 0(t), @(t) denote the rota-
tion angle, and a(t), ao(t) denote the loecal Scaling and the scaling
Proceeding to this hierarchy respectively. Then the neﬁ local coordi-

nate with respect to its center 0(t) is
P{t)= ao(t)( a(t)ACEIACD) + 3S(t) ]

cos 8(t) sina(t) 7
A(t) = (11)

-sine(t) cosa(t) |,

Again in Figure 4, éﬁppose that the car moves with constant speed v (
L . .

a vector ) and away from the viewer. Then we have

S(t):vt ¢
s(t)=0 ,

altl)= 1 - zt.

where £ is the shrinking factor of the car because it is moving away

from the viewer. Now suppose the dog will move and rotzte according to

10
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where Vd sy o , and Edare self-explanatory. Then any .pcint that is
. £
directly controlled by the dog at time t , according to (11), is

b

P(t)= (1= gt)[(1- eLIACE) P(O) + v, t ]

d

[

cos wt s&h wt
ACE) =

-sinwt cos wt |.

Note that the center for PCt) is ( 1- g¢)[ Od+ vt], whére O& is the
center of the dog at time 0. Similar computation can be easily derived
in the lower hierarchical 1level. A movement function needs not be
linear. For example, Parke [11] has found that a cosine function ean
describe facial muscular movements better than a linear function in
animation. However, for pure scaling and constant speed shifting, the
implementation caﬁ be simplified, i.e. all the local movements can be
omitted in the computation.

i
H
g

Theorem 1. If n-1 eQual time intermediate frames are to be generated

and all the movements in the hierarchical system involve only scaling
and constant speed shifting, then a point, with secreen coordinate ( x

r N ) in the first frame and ( x ) in the second, has the fol-

2 1 %
lowing screen coordinate at time t,
X X --X
(-5 e e (20N (12)
71 2" N1
The proof is quite easy. Moreover, (12) is a good approximation if the

11
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7 rotation angular velocity is small , i.e. << 1.

-The quadratic B-spline representation has some properties that

are particularly important in.animation.

T. It is easy to patch curves by the guiding points. For example, sup-
pose the cartbonist wants the dog's tail to fly away from its body in
the second .frame.. Then. heuﬁas to patch the empty sbace on the body
left open by the tail. A sTooth pateching, in;eractive with a computer,
is not simple. But thé B-spline function after losing the guiding

points of the tail can patch the open space smoothly using only the

guiding points of the body.

2. Hidden line removal can be solved by algebtraic formula. Hidden line
removal is one of the most cumbersome and time consuming procedures in
computer animation. For example, when the dog's ears are flipping, it
continually covers some, but different portions of its background. A
general hidden removal algorithm for intersecting curves is usually
complicated and slow ( see e.g. Little and Peucker [9] ). But with
quadratic B-spline representation, the work is much easier. The detail

is given in Appendix E.

5. Implementation and- dn Example
T A

Since all curves are represented by the guiding points of a qua-
dratic B-spline function, we will first show a vrelation between a

changing curve and its guiding points.

Theorem 2. The animation transformation (11) to any curve 1in a gqua-
dratic B—sﬁline function ié the same as taking the transformation on
the guiding points first and then generating the curve by the guiding
points. |

12
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* Proof. Let a curve C{u), 0 < u < 1, is guided by three guiding points
G+ G, , and G; . Then by (1), '

-~

cw= = u’c + [ 2 (v~ bH%16, « 2 rem?ey ocuct. (13)

2 4 2 2 1
Thus, the point C¢(u) at time t is, by (11), = %

Celul= et)l a(t)ace)clu) + S(t)] : (14)
Since )

2
1 2 3 1
-u + [ =1,

2o Cu- =) 1+ Y1yt
2 4 2 2

after substituting (13) to (14}, we get

2
: 1
Co(w= w6 (8) + 17— (u~ ) loyte) + & ey ce)
2 1 4 2 2

with
Gi(t)=00(t)@ (£)ACE) Gi + S(t) 1.

Hence, one quick way to generate intermediate pictures is to first
find all the intermediate guiding points, thén use (13) to generate
the curve.

Sometimes a f%gure ;n kKey frame 1 may disappear in frame 2 or
a figure not in fgéme 1 emerges in frame 2. Since the two pfoblems
are reciprocal, we consider only the former. A figure may disappear in
the screen by shrinking to zero or by moving out of the screen from
the edges. Both cases can be easily handled. A& point can be represent-
ed as @(t)=0 in (11). Thus if the curve is first transformed to a
point and then the point is ;emoved from the next frame, it has van-

ished. For a f{figure moving out from the edges, one needs to enlarge

the frame and consider the screen as a window of the enlzrged one.

<

13
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-.Thﬁs tﬂe problem of disappearing and émerging is solved.

Another more compliéated problem appears when it is necessary to
use unequal number; of guidihg.points to represent the same curve at
the two frames. The detail of this type of‘iﬁ%erpolation is gi%en in
Appendix F. Since considerable computing t?me is necessary in this
case, unequal guiding points for éorresponding consecutive curves
should be avoided as .much”-as possible. But since bending guiding
points can richly change the shape of a curve,. we seldomly found it
necessary to use unequ;l guiding poiﬁté to represent the same curve
with slight variations.

Figure 5 is a simple animationrpicture. Only the first picture
(1} is completely drawn and the other frame (1) is draﬂn from the
hierarchical system in Fig. 6. All the other pictures are interpola-
tions. The details of the implementation is given in Table 4 . The
hidden line removal procedure described in Appendix E-is used in the

ear, leg, and head movements. Parts of the body, bowl, and mouth are

removed when necessary.

i4
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. Appendix A. Fitting a parabola to two given points and slopes -ﬁ
To find the parabola that passes through two given points (x1, Yq)
and (x

2y ¥2) with slopes my and mzréspectivély at these two points is

straight-forward., Tke B, D, E, F in (6) can®be shown to be

o+
4

(y2-Y1) (x22~x12)(m2—mi)+2(x2—x1)(xzﬁamx1m2)—2(x2mxi )(Y2 -Y1 )
B=_ ; .

2 2 ' . .
(xz-xl) (yz—yl)(mzfml)—2(y2—yl)(yzml—yln§)+2mlm2(y2-yl)(x2~xl)

D=2[(x2@fﬁim2)+8[(yzml-ylmz)+mlm]ﬁxz-xl)I+B?mlm2(yz—yl)}/(mz—ml)

_ } _ } 3 ) o )
E_2{(x2 xl)+B(y2 Y KW, xlml)+ B (y'zml y.l‘mz)}/(m2 ml)

- 2 _ -
F= (xl+Byl) Dxl Eyl

Appendix B. Finding the minimum distance between a point and

a parabola

Let the point be ( X 1 yo ) and the parabola ke

2 . -
(x+By)“+ Dx + Ey + F=0 _ (B.1) X J
. |

The following transform will transfer (B.1) into the standard form

Y'=X'2. ::'.r:
X! X h
= a(A + )
Y' Y . k ¥
Where

15
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cos3 sing
A = o :taﬁd,B, and !e|< T/2;
Tsine cost '

| , :
h=d/(2a); a=1+B ; k=(F-h/2)/e;

A,

a=-a/e; ?'
al |p "
e E | - , (B.2)

Let ( x, s ¥ ) be transferred to ( x§ s A ) by (B.2). For simplicity,
we retain the notations ( x,,y,) and y=x°. To find the minimum dis-
tance between ( xo, ¥y ) and y:x2 is the same as to find an x such
that (xq - x)?+( Yo~ x2)? is minimized. By differentiation, x shﬁgld

satisfy
2x3 + (1-2y J)x- x =0
0 0 ?

which can be solved by the root formula for a cubic equation.

Appendix C. Finding the méximum distance bet@een the fitted

quadratic B-spline and the original parabola

Let us use Figure C.1 as an example. In fig. C.1, G G

_ 0’ "1f Gz’Gs ’
and G4 are 5 gui?ing points, Bl’ B2, Bsare the pieces of B~spline
function generated by these guiding points, and P , P ' Psare the orif
ginal-parabolas. It is well known that the quadratic spline with guid-
ing points Gl? GZ’ and G3 is the parabolsz paséing through the middle

points M2 and M3 of Gleand Gstand tangent to them ( see Fig. C.1 ).

Moreover, let the original parabola %. and P2 be tangent to Gle and G2

G3 at knot points Ql and Qz‘ We will first show that the maximum
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giécreﬁancy between P, and B, do not occur between M, and Q, or Q, and

M

3

Lemma C.1. In Figure C.2,

AB is a seright line. P; and Pé are two

parabolas intersecting at O and tangeét Lo AB at 4 and B respectively.

AC denote the distance from A to %:3nq BD denotes the qistance-from B |

to P,. Then the Maximum distance between P, and F, in ACBD is smaller

4

than max( AC, BD ).

Proof . Connect B and C. By the convexity of a parabola we see that AC l

.is larger than any distance on AO to P

the maximum distance in the DOB section. The lemma is proven. j

Now go back to Fig. C.1. We now know that
between B, and P, occurs either at the boundary points Q2 and Q3 or at

a possible local maximum between Q2 and Q3 .

occur Dbeftween

of M's and Q's. In Fig. C.
To find the distance between a point and a parabola has been discussed

in Appendix B. To find the local maximum between

can

two parabolas be '

)
2
y=x

f(x,y):(x+Byf + Dx +

Suppose that in Fig.
1s f(x,y)=0. Then by the

that the distance between

Mz and Msor one M and one Q depending on the positions

transfer one of the two parabolas into the standard form. Let the

, Similarly one can show BD is L

the maximum distance !

( Note: The maximum ecan a

1, the maximum occurs between the two Q's. )

two parabolas, one

Ey + F=0.

c.2 P1 Is the standardized parabola and P2

convexity of P and % it can be easily seen

any point on the EG section of P2 and Pl is

17




q'né larger than max( EF, GF ). Naturally; we choose F to be the poirt
so that EF has the (minimum) distance between Pl and % at E by tre

method described ini Appendix B. Thus, the distance between P1 and A

can be estimated to any azscurany pg increasing the number of c¢ivisiors

on B, . N o d
) (]

Appendix D. Add one guiding point®to existing guiding points

Take Figure C.1 again as an ekample. The reason that there is g
discrepancy between 82 and % 1s because Q2 , M2 and/oz"‘(?é:‘i ,M3 do not
coincide. If Mzzgz, and MS:QS’ then there would be no diﬁcrepancy. One i
way to reduce .the distance between'M2 and 02 or Ms'and QS is to add h

more guiding points for G1 , G or G3 . For example, if Giis reblaced

29
by two guiding points Glland G12’ then the distance between Q2 and the I
new midpoint M; will be smaller than M2Q2 ( see Figure D.1 ). .Thus
the fit is better. In general suppose n guiding points are needed for
a parabols y:x2 with knots at ( a, a2 ), and ( b, b2 ), with a<b. Then

the n guiding points should be the intersections of the n+l tangents

2
at ( uy,uy ), i=0,1,2,...,n, where

u; =a + AL, A = (b-2)/n. o (D.1)

' .
The guiding points for a general parabola (6) can be found by (D.1)

and transformation in Appendix B. To prove that the guiding points e

constructed by the above procedure actually generate the original par-

2
abola, we let the intersections of the two tangents at ( u_l, u.l), (u
‘ i- i- i
,ui ) be Giz( xi,yi). Then it is straightforward to show that the mid-

point requirements

18




,
b QT ~21u, =0

1 1+]1 1 )
S U __2u§=o, i=1,2,...,n-1,

and the slope requirements
%

¥, -y, - 2ui(x -x, J)=0, 1;0,1,,°o,n«1,

i+l i i+l i

i T sk s

are satisfiéd.

The convergence §f this prd;edure is not difficult to show
because the guiding points in the above procedure produce a perfect
¥if except at the junctions of two parabolas. As the number of guiding
points increases, the distance between the two neighboring guiding
points at the two sides of a knot point decfeases. It can be seen -in
Figure ' C.1 that the maximum discrepancy betwgen 82 and P2 cannot "be

larger than the distance from G, to the base M M. of the triangle M2 GZ

M3 . As the number of guiding points tends to infinite, the distance

between neighboring guiding points tends to 0 and so does the maximum

discrepancy.

Appendix E. Finding the intersections of two B-splines

Suppose curve Cl iﬁiguided by Gl’ Gz, G3 and curve C2 is guided by

Gl» G2, Gé . Let A=(Gl +G)/2, B=(G2 * G.)/2, At=(G] + G3)/2, and B'=(G} + GgJ/Z.

Then C1 and C2 will nof intersect if

1 t ?
max(A, P, B)x < min (A, P s B Jx
. T t 1
er minfA, P, B)x > max (A, P, B)x
. 1 1 ¥ (E"l)
or max{A, P, B)y < min (A, P s B )y
t

1 .
or min(A. P, B)y > max (A, P ,'B')y .

19
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;whére fhe subscripts x and y denote the x- and y- coordinates of the
" points. The reason for doing (E.1) is because it requires little com-
puting time. Any one of th? conditions in (E.1) implies that triangles
APB  and A'P'B' do --notéinter‘sect. Either do C, and C, . If none of
the four conditions is satisfied, thgn we need to find the possible
intersections of C; and Fz;by algebraic method. Let the functions of C1
and C, , described in (4) ; be
Cy = ajul+ bju + €]
C, :a u2+ b,u + ¢
2 2 2

2 .
where a; ,b;, and ¢ , are vectors, Then for any solution of

* c.2 - (E.2)

au2+b + C. = u2+bu
1 T B B Sl Bl e

with 0 ul$1, and O S_u2<1, it is an intersection of Cl and % . . Which
segment of the curve is hidden and should be removed from the display
is determined by the physical position of the two elements specified
.by the animator. In general (E.2) turas out to be a quartic equation
which can be solved by a standard formula. The formula, although com-

putationally simple, is too  cumbersome to be listed here. It canm be

found in most algebra book or in the CRC Standard Tables.

Appendix F. Matching\gf two B-splines with unequal numbers of
¥

5

guiding points

Suppose the first curve is controlled by guiding points Gl’ G2, ey Gm
and the second curve 1is controlled by Gi s Gé g weey G; and % is
corresponding to Gi and Gm to G; . There seems ho way to make some one

point to multiple points correspondence without introducing some

discontinuity, nor does there seem to be a way to force m=m' by adding

20
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. or reducing the number of guiding points without producing some

discrepancy. Our method is fi}st compute the total length of the two
curves ard then mak? a one Eo one correSpondencezproportionally to
their releztive positions in the curve. FortunateLygg_the computation
is still quite simple. Since the curves are piecewﬁse parabolas, we

may represent each piece'by

b e

a
P = x)u + 2{ x)u + ( x), 0 <u<1l1.,
o Zy By ¢

Thus the length of P(u) is.

1
_ 2 2
L= j{(Zaxu + b )+ (Zayu + by.) } du
| 2z 2 5 2 Cqun s 2 2
= af (1+b)y{14b) + ¢ -b‘;’a +¢ + ¢ In 1+b +/(1+b) + C }
' ' b+ Jb%+ ¢
with
2 2
a= J a_ + by
ab +ab
b= X X Yy y
2
a
2 4
e ( ab —-a b ) a
Xy Yy X

i P P P be L. and P' Pt
Let the length of the‘parabola guided by i1 Fi el be : o1 i

P' be L® . Then the’fengths of C. and C_ are réspectively,
i+l i b 1 2

. 1

L = L L R
: m-1

Thus, the point on Clwhich is ¢ from its starting point ( Pl + P2 )/2

will be assigned to the péint £ L'/L distance away from its starting

peint (%’ +%‘ Y/2.
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Table 1. The Initial Knots, Slopes, and Guiding Pionts
in Figure 1

Point ‘ Q : : Slope = G (i,

1 - (9.50,8.90) | -0.649 (8.30,9.60)
2 % (10.1,6.50) 0.300 (12.0,7.20)
3 " (8.50,3.70) ~5.000 (8.00,6.00)
4  (6.85,2.10) . =0.500 (9.00,1.00)
5 (5.50,5.50) . 8.500 (5.00,3.00)
6 (4.10,6.20) 0.152 (5.40,6.140)
7 (1.90,7.30) 1.467 ~ (0.80,5.70)
8 (1.85,8.70) ~1.640 (2.30,7.90)
9 (4.20,10.1) ' ~0.411 : (-0.2,2.00)
10 (5.60,11.2) 6.438 (5.40,9.70)
11 (8.10,11.3) 8.000 (7.00,2.00)



Table 2.
Para- 1st _
bola iteration
-~§ G. P.  Disec.
1 }8.3,9.6) 0.828
z (12.,7.0) 0.126
3 (8.0,6.0) 0.126
4 (9.0,1.0) 0.051
(5.0,3.0) 0.25t1
6 (5.4,6.49) 0.306
7 (0.8,5.7) 0.347
8 (2.3,7.9) 0.258
9 (=2.,12} 0.870
10 (5.4,9.7) 0.757
11 (7.0,20.) 1.696

‘No Change

a B-spline

2nd
v dteration
G. ?. Disc.

0.166

0.574

(6.30,15.7 0.051
.3

)
(8.10,11.3)

24

The First Three Iteratlons in Fitting Figure 1 by

3rd
iteration
G. P, Disc.

No change No change

-- 0.137
(0.89,10.3) 0.062
(4.20,0.10)-

- 0.240

-—— et



Table 3. The Last Two Iterations in Fitting Figure 1 by
: a Bmspliner

Fara- Tta o 8th
bola iteration " itgration
' G. P. Disc. G. P. Disc.

1! (8.3,9.6) 0.1548 No change No change

2 - (12.,7.0) 0.124  -- -

3 (8.0,6.0) 0.126 - 0.123

n (9.0,1.0) 0.206 (8.76,2.32) 0.048

(6.75,2.10)

5 (5.97,2.49) 0.107 -- 0.105
(5.50,5.50)

6 (5.4,6.49)  0.141 - .

7 (2.45,5.95) 0.015 - -
(1.90,7.39)

8 (2.3,7.9) 0.076 - -

9 (0.89,10.3) 0.062 - -
(4.20,0.10)

10 (5.8,9.7) 0.169 —-— -

11 (5.94,13.4) 0.015 -_— —_—

(8.10,11.3)
(6.28,114.5)
(6.61,15.7)

25




Table 4. implementation Information for Figure 6

Curve Guiding Points

bowl

body

head
mouth

ear (left)
{right)

leg (2 front)
(2 rear )

tail

eye

-~ ~a
LA un

Ky (9] oy -] oo NS un

Motion
none

shifting ( hopping ), shape
change

rotation ( eating )
shape change

shape change
shape change

shifting and shape change
shifting and shape change

rotation

none

26
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Figure 1. A Segmentation of the Original Curve by Parabolas.
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Figure 2.

1
i
LS

R

B-spline Fitting with Discrepancy <1.0.
Arrow signs show the original curve and the other is
the fitted curve by 12 guiding points.
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Figure 3. :‘E-spline Fitting with Discrepancy <0.2.
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L -

5 5!

6 6

Figure

-~

center of
center of
center of
center of
center of
center of

Key frame 2

1 H

. \ng:j . 21 ... : —7?7L

6]

the car

wheel 1

the dog

ofie of the dog's legs
the dog tail

the foot on leg 4, 4°

Hierarchical Structure of a Picture with Motion

#ff””ff/’ﬂgioiz‘~\\\A

. Front Head Rear Tail
Legs Legs
Mouth .Eye Ears !

Figure 6. The Hierarchical Data Structure for the Dog in

Figure 5

31



- —— .

i

e

s

(2)

o

R A=y

Carthy,
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-Figure 5.

(4)
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A ity

A sequence of-animation pictures.
for the demonstration of the
algorithms described- in section 4.
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Figure C.1

Adding a2 Guiding Point to Existing

Guiding Points.
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