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Geometric Complexity and Relszsted. Problems
D. T. Lee

Intreducation

We in the report shall deal with problems that arise meostly inp
computational geometry and other related areas. Since its introduction by
Shamos [Sh75] in 1975, computational gecmetry has become a popular field of
research and tramendous amouﬁtrof progress has been made and hundreds of
research papers produced by researchers in the field. There zre two main
rzasons for such incredible activities in this field. . Firstly, most
geometric problems érise in various’ other disciplires, inciuding
computer—aided design, computer graphics, operations research, pattern
recognition, robotics and statistics,and efficient aléorithms for these
‘problems are desirable. Secondly, issues of how difficult the problems are
to compute under certainm computation models are also of interast to

theoretical computer sciemtists. A recent survey [LeP84a] of the state of

the art of the field includes more than three hundred research articles as of

+

August 1984, Nevertheless, the list of.references is by mo means complete.
In this survey the field is counveniently classified into five major problem
areas —— convexity, intersection, searching, pfoximity and optimization, and
seven problem—solving paradigms -— incrementsl construcrion, plane¥sweep,
locus, divide—~and-conquer, geometric transformation, prune-and-—search and
dynamization are discussed. Several open problems are included and

directious for future research suggested.

2. Lower Bound
In complexity thecory omne usually measures the difficulty of a
computational problem in terms of the number of "key" operationms required by

any algorithm that "solves' the problem in a certain computation model. For



EXample; sorting of n numbers in the decisiom trée model [AHU74} requires
{i{vlog n) key operations, namely, comparisons between pumbers in the input.
When the cowputation model changes, the "complexity” of the problem differs,
For instance, the maximum gap problem, i.e., given n numbers find the maximum
differemce between two successive numbers when these numbers are ordered,
requires Il(nlog n)'comparisons [MT82, PrSt384] im the linea; decision tree
model, However, when floor functions are allowed in the wmodel, the problem
can be solved in 0(n) time [G75]. On the other haﬁd, when an algorithm is
given for a problem, it provides an upper bound on the difficulty_of the
problem.- A fupdamental question‘cfteﬁ raised by ccmputer theoretitians whe?
confronted with a computational problem is whether or not aﬁ a;ymftoticzlly
optimal algoritﬁm'can be ob;ained, i.e., an algorithm whose camplexity
maﬁches the lower bound of the given problem. When the answer is
affirmative, the complexity is referred to as the intrinsic difficulty of the
problem. For example, the ﬁroblem cf finding. the intersectioﬁ of n
half-planes in the plane has complexity €©(nlog n} in the algebraic
computation tree (ACT, for short) model of Ben—Orr[ESB]. When there is a gap
between upper and lower bounds of a given problem, there is potential for
improvement. In the survey [LeP84] we have included a list of problems, most
of which have _fﬂhlog n} lower-bounds in the ACT model. Some of the probiems
have 8(nlog n) as their complexity, since O(nlog n) algorithms for them can
be obtaimed. The proof techniques are mostly by pfoblém transformations.
That is, if.problem A is- knowm to require f£{n) time and is g(n)-time
transformzble to pfcblem B, then problem B requires at least f(n) - cg(m)
time for.some positive cons%ant ¢. - Sipce we have a kernel of problems that
require (){nlog n) time in the ACT model, by probiem transformatiocn we are

able to comstruct a class of problems that are as hard as the problems in the



H.:

o)

kerpel. This has a2 strong analogy to the NP-hardmess result [GJ79] in the

~sense that if a problem in the ¥P~complete (NP-hard) class is polynomial-time

transformable to another problem; then the latter problem is as hard as the

Former and is therefore im the class of NP-hard problems. We hope to

establish a similar catslog of problems that require (J(nlog n) time in.the-

ACT model. For convenience we shall refer to the problems requiring (}(Z(n))

time in the ACT model or others aé f(n)—hard and to those‘f(n)~herd problems

solvable in 0(f(n)) time as f(n)-complete. Specifically, the complexitf of
the following problems is of interest,

Problem Z.i Smallegt, enciosing ractangle [Fr873)]: Given a sét of n peints
in the plame, determine the smallest {(aresa) rectangle enciésing
the set.

This problem is known to have an O(nlog n) solutiom [Tou83]. We expect
this problem to be nlogn—caﬁplete.*

Problem 2.2 Weighted il-center: Given a set of n points, Qi with a positive
weight wy, i= 1,5;:;.,n, find the cenoter ¢ suck that the maximum
weighted distance fran ¢ to the set is minimized, i.e., minimize
max; wid(c,pi), where d(a,b} is the Euclidean distancé between
point=s a and b. .

‘Tnis problex has an O{nlog n) solution [Co84]; whereas its umweighted
counterpart (i.e;, wi = 1 for all i) can be solved in O(z) time [Meg83].
Apparently the weights play a crucial role in determining the complexity and
must be iﬁolved in the p‘roof‘..'

Problem 2.3 Smallest enclosing 01rcl= for lipe arrsagement: Given p,lires
in the plane,_ fird the .smallest circle that encloses all the
intersection points. |

There are in general 0O(an2) intersection points determired by these n

%Y. T, Ching has proved that this proolem requlres fN{nlog a) time in the linpe
desicion tree model.

ar
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lines, but only 0O(n) extreme points are relevﬁnt} nemely, the two Tarthest
intersection points on each lipe, With this observgtion we are zble to show
that :the prﬁblen of finding tke dizmeter of these n liznes, i.e.,‘the two
farthest intersection points, is nplogn-complete [ChL83}; The O(nlog =)
algorithm for finding the dizmeter [Chi83] eczn bDe used to sclve this problen
within the same time bound. facall that the diezmeter problem arcd the
spallest enclosing circle proﬁlem for n points aré, respectively
nlogn—-complete (Seé, e.g. [LeP84z]) and r—complete [MegB3]. We belie#é,
however, that this problem is also nlegn-complete,

Problem 2.8 Triapguiation of a simple polygon:rGiven 2 simple polygon with
n vertices iﬁ the plane, triangulate its interior into n-2 triangles.
without adding pew points.

This problem has been studied by many authors and the worst-case
complexity of the algorithms obtained is O(niogn) [Ch82,CnI83,GJPTTS,HM83].
For certain spe;ial ciéssés of polygons o(nlog n)ralgofithms are knowm
[ScV80,Tous82,ChI83]. The problem of triangulating an arbitrary set of
n points has been shown to.ﬁe nlogn—-complete [Sh75]. Of interest is the
following outstanding question: wheﬁher or not the fact that fhe points
form a simple polygon helps reduce the complexity. As demonstrated in
[ChI83], an O(nlog s) algorithm can be obtained, where s is the
sinuosity oflthe polygon, pamely the number of times the boundary
alternates between complete spirals of opposite direction. The
parameter § in a way givgs the shape complexity of the polygon. We
conjectuyre that tﬁis problem ig nlogn—-complete, i.e., the fact that the
points fo;m a simple polygon does not help. Unlike the convex hull

'problem for simple pblygons, where certain global informaticno of the

input enables one to disregard points and obtain an 0{n) algorithm
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(MeCATY, Le80a2,Gry81] as oppased to teing nlogn-complete [Sh75, vESO, Ya81,

Ki382,.Kis83] for general Point sets, the loczl irfermation of ezeh vertex
must be examined. Exactly what local informztion is relevant to the problem
wWill be investigated. Along the szme line the following two problems zre
conjectured to be nlogn-complete.

Problem 2.5 Closest Fair of a simple polygon: Given-a simple pelygon with
vertices in the place, find the two olosest vértices.

Problem 2.6 Simplicity test: Given a Ssequence of n points where successive
two points define a lipe segment, determipne if the sequence of line
segments dafines a simple curve, i.e., if any two nonecnsecutive
Segments intersect, ; -

For these two problems if théminput is an arbitrary set, both
problems are known to be mlogn-complete [ShH75,ShH76]. Worth
investigating is the crux of why an "ordered" input may not reveszl
enough useful information.to render more efficient algorithms. There
are instances, howevér, in which additional properties of the input have
been shown a;ymptotically to be algorithmically "useless". For example,
the problem of sorting n triangulated points in the plane, ‘say in
Xx-coordinates, remains nlogn-complete [Se84]. In other words, given a
triangulation of a set of n points in the plame, to sort the set of

N
points is asymptotically as hard as sorting the samé set of points
without triamgulation. We remark here that should not necessarily
restridt ourselveé to proving the nlogn lower bound. Nontrivial lower
bounds other than nlogn are of even greater interest. One reason for
the study of the nlogn Tower bound is that the bound 1s relatively

easier to derive than other bounds and is of interest in its own right.



3. Constraiped ProzXimity
Froximity probleus that we are concerned with in this section are those
with "constreaipts.® Counsider, for example, the closest pair problem in the
plane, Given is 2 set of n points, and the proolem is to determine the
oclosest pair. In otker words, w2 waaot to fal..ud the shortést line segment
connecting two of the given points, where the length of & segment is
measursed in fterms of the Euclidean distance be L-a'a-en the two endpolnts of the
segment. A constrzined versiom would ﬁe to consider a sat of- n points arnd a
set of obstacles representad as polygons, cor cireles, and :“ind the two
points such that the path copnecting th-es'e two points without crossing any
or thf_- obstacles is the shortest, The closest pair problem ".}ithout_
canstraints 13 known to be nlogn-complete [ShH7S]. We therefore cannot hope
to have an o{nlog n) solution for the consirained closest pair probiem.
‘ A special case of the constrained closest pair prodles is the problem of

finding a shortest path conneciing two given points in the presence of

obtacles. For the comsirained shortest path problem we have the follcewing

resul ta, If the obstacles are line segments which form a simple f);:lygon
with n edges, the s.hortest- path connecting two points in the polygen can be
found in O(niog n) time [LePB4]. Note that if the polygon nzs been
triangulated, 0(n) time suffices. Thus, & lower bound for this problem 13
alsg a lower bound for the triangulation ‘problen (Problem 2.4) If the lize
segments are parallel or more generally, if ‘there exists a line such that

the projections of these line segments onto the line are pairwise disjoint,

then the problem has been shown to be nlogn-ccmplete (LeP84]. If tke lire
segments are in genersl poaition, the best known solution runs in 0(nz_log n}
time [Le781. An outstanding problem has been to see 1f one can obtain an

o(n2log n) algorithm for the general problem. For obstacles other thag lire

segments see [LaLi81, Let#3, Snssihj. A relatsd problem studied by




O'Dunlaiﬁg__t:_iﬂl. {08¥83], Lozanc~FPerez and Wesley [LcoWT79], and Schwartz and
Snerir [3c382] ariées in motion planming, in which the objects to be moved
have positive méasure (rather than points) and only = Tfezsible path 1s
sough t. Specif‘ically-', giyen a set of polygopal obstacles ip the plane and

two plazcements of anobject, determine if one can move the object froaz one

plzcement to the other, If the object i3 a disk, O'Duniaing eb al. have

ohtzined an O{nlogn) algorithm using the Voronoi diagram approace [KiT9}; if

‘the objeet is & lire segnent then the best known solution runs in O(nzlogn)

time [0SIB3].

For -the constrained closest pair problem onme c¢zn resert to a2 gereral

approach of constructing the so-called visibilitv or yiewsbilitv graph and
solving the graph—~theoretic "all pair® shortest path problen, (The

O0(niogn) solution for the constrained shortest path problem is based on

such a technique.) The question is of course whether or not one can do

bhetter. Since the constrzined closest pair problenm is much harder than the -

shortest path probles, unless efficient algorithms can be obtained for the
latter we cannot hope for amy good soiutioms. Thus; we shall resfriet
ourselves to the following problems, wihich are special cases of the general

problem.

Probiem 3.1 Shortest path problem in the presence of obstacles: Given a
set of k obstacles and two distinguisbhed points s and &, fiond a2
shortest path.connef:j:ing s and t without crossing aoy of the
obstacles. -

As indicated earlier, this problem in geperal can be solved in O(nzlogn)

time, where n is the aize of the input. For exzmple, if the cbatacles are

pairwise disjoint simple polygons, n is the totzl nutmber of vertices., 4

preiimimary study of a special case in which the obstacles are (non



degenerate) corﬁex polygons indicates that the ;;ime écniple:ci‘:_«,r of 0(1'1210@1)
can be, improved. When the obstacles are rectilirear rectangles, i.e.,
recté.ﬂgles whose sides are parallel tc the coordinatar axes, ard the
underlyir.-c‘ distance metric is the iq-—metric or Maphattan distancé, s;é.ha:fe
obtained a result [DLW8L] which sheows that the shortest path problem is
. niogn-complete, Spegifically it is shown [DLW343] that there must exist =2
path f‘r;m s te t that is monotone either in the x-direction or in the y-
direction. By using the plane—swéep techmique as in [LeF84], a shortest
path can be found in O(nlog n) time. We wish to generalize {he result to
the case whé.;‘e tha cbstacies are rectilipear polygons or convex rectilinesr

palygons.

Problem 3.2 Closest pair problem in a simple polygon: Given a simple -

polygon with k vertices and s set S of n points in the interier of
" the polygonm, firnd the two “c‘lo'sest“ points. .
Fo;' thi; problen we expect that the Délaunay triangulatign resut: of a
simple polygon [Lel84] ;anc_l_._t-_he "dual" technique used in [LeF84] for finding
a shortest path in a simple polygon may be useful. Meamwhile the notion of

the Voromnol diazgram with obstacies {(defined belew) is important for

conatraiped proximity probleus.

Constrained Yoronoi diasgrzms

Given 2 set S of n points and a set K of obstadles in the 'plane, the
constrained pearest neighbor Voronoi diagram VOD(S,K) is defined as follows.
VOD(S,K)} is a collecticn of‘ regions, each of wnich 13 associated with a

of points whose distapee fram the point is the

point of S and is the locus
shortest. Toat is, VOD(S,X) ={ R{(py)} p; € S i=1,2,...,n}, where R(pj)
={r{ d{r,py) = min‘j d(r,pj)} and d(r,p) is the length of a shortest path

frem r to p withcut crdssing amy obatacles in E. Figure 1 illustratea a




constrained Vorcnoi. diagram for & points with 3 line segments as obstacles,
Toe dotted lipes in the figure are edges of the Voronel cuagram without

oostacles, The cross-lined ares is the region a=socizted with 3 and any

point r in the region has s path to p3 that is the shortest among 231 psths

frocm r to the points in S, Notice the Veromoi polygon for p3 of the.

uneonstrained ‘Ioronoi_ diag_z*am has been altered with the presance of segments
‘AT}E and -E.-'_,_F In the diagrm the curved se@énts are portions of scme
nyperholae, 4s in thne ordinér'y Voronoi diagram {Sh’(B; Le80, Le8.2], the
canstrained Voronoid dizgrem containz a lot of proximity icformation in the
prasences Gf'. obstzceles. The diggrem is  a natural gensralization of the
ordinary diagram and is expected to ?lay an important fole in solving

constrained proximity problems. The problem of how such a disgram can be

constructed is thus of greai interest.- - - . -

Figure 1. Constrained nearest neighbor Voronoi diagram.
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" problem 3.3 Construction of consirained Voronoi diagrem: Given a sst 3 ¢f n
points and a set K of obstacles in the plane, compute the Voronol

diagrem defiped earlier, -

We expect that this notion of the Veronoi diagraz will open up & new

area of research, Abundant are problems about variztions of the diagrsm &an

[at

associated proximity problems. To just give & Tew exzmples, the underlving

metric for the dizgram can vary, and the set S can nzve geaueiric object

4]

other fthan points. The follcwing problem has obvious applications and is

wortiq locking into as well.

Problext 3.1 Constreziped mipimum spaoning tree: Given a set S of points and
a set K of obstacles, find a shortest tree intsrconnecting the
points of § without crossing any of the ghstacles.

4 situstion where this problem is of importance ig that of connecting a
set éf e.z., computer work stations, to form a network such that ihe
interconnecting cables should not cross existing physical barriers.

Problex 3.5 Constrﬂne& De.l_aunay triangulation: Given a set § of objecis in
the plane, e.g., points, line sgments, or pAlygons, representad as a
graph G(V, E), find the Del‘ar.may- triangulation of &.

First of all, let us define the Delaunay triangnlation of a set of
objects in the place, A triangulation of a set of objects represented as a
planar straight-lize graph G(V,E) is a triangulated graph G'(V,E'), in which
emch face of the graph, except the exterior ope, is a triangle and E < E.
A Delaunzy triangulation of G(‘{,E) is a triangulation such that tke ci reum—
circle of ezch trizngle daes not“ contzin any vertex visible fram the
vertices of the tr‘iangle.r ;A vertex v in V is said to bte vizible frca
another vertex w if the line segment ¥,w does not cross any edge in E in the
interior. Triangulations have applications in Finite element method [CaTil,

interpolation [McL76] and terrain fitting [LeSc80]. The local extrema of &




terrai surface, i.2., peaks of mwmountains and pits of

~yzlliey, are

represepted a&s points and mountain ridges as edges of the graph G. The

triangulation that we sesk is one thai retains 211 the ridge line segments

and yet preserves the features of the Delaunay triangulatiori. Thus, the
gereraiized Delaunzy triangulation will define a‘ plecewise plaﬁr
approximation to the terrzia surface.

The Delzunay triangulation of a simple polygsn ig Pirst studisd by Lee
[Le78] where an 0(n®) time algorithm is given. lMaking use of the polygon
cutting thecrem of Chazelle [Ch82], we are able to improve the time _bounci Lo
O(nlogn). [Lai84b], In the same .raper [LelL84b] we also show thait the
neralized Delaunzy trianguiation of & set of points and a simple pelygon
can be .obtained in O(mlogn) time. Figure 2 illustrates the generalized
Delaunay triangulation of a =simple polygon with and without points. Probles
3.5 can be solved by the visibility graph appf'oaab. mentioned esriier, it is
easy to show that the generalized Delaunay trizngulation is a subgraphn of
the visibility graph, which. can be obtained in 0(n?logn) time, where n =
ivi. (Réaall that JE! is O(1V]), since we have a plapar graph.,) Ones the
vis:ilbility graph is availablie, the generélized Del aunay triaﬂgulation c2n be
found in O(n2) time. The question is whether ome can compute the generalize
Delaunay trizngmiation in o(nlogn) time. We hope to investigate this
problem further and see if it can be solved in optimzl time, i.e., O(nicgn),

as in the case when the set E of edges of the graph is empty.

Problem 3.6 Visibility polygon from an edge: Given a simple polygon P with
n vertices on its boundary and an arbitra_r;ily specified edge e, find
the region of P that 13 visible fram the edge. That is, find the
visibility polygon VISPOL(P,e) = { r | r,x € P for some x € e}.

A point r of P is (weakly) visible from 2an edge e if there exists a
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point-x on e such that the line segment r,x lies éﬁmpletely iz P. . Tois
problem is first studied by #fvis zrnd Toussaint {Av181], in which thsy are
concaerned with the viéibility issue of a simple polygon, i.e., Qetermining
whether or not the polygon is visib;e f;cm 2 gi?en edza. The region visible

from the edge, called the vizibility polygonm, is the region that & guard can

A
/1
/!
I

/

(a)

(b)
Figure 2. Delzunay triangulations of simple polygous without and with
points respectively.
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- "ses™ when it patrols back anrd forth zlong the-edge. This is a2 patfural

generalization of the visibility problem fram a fized point (sée, e, g,

[E1481, Le831). In [AvT81] an 0O{n) ¢time algorithm is given for the

visibility problem and the problem of finding the visibility polygon iz g(n)
time is posed 23 an open question. Since then, O(nlog n) algorithms for
computing the visibility polygon from an edge of & simple polygon %ith al
ve.rtices have been independently obtained [CnC8%, EL8%Z, Lel84]. We 'p;'ould
like to see if indeed O(n) &time is sufficient or if the problem is. actually
nlogrn-completa, '

A related problem, posed by Klee [H76] zzd kncwn as art gallery prodlem
or watchman problses, 1s to find a migimuz number of watchmen on ;he boundary
of a simple polygon {(zn art gzllery) such that the entire region is visible,
This problem was partially solved ty Chrvratal [{CovT5] that ln/3] watchmen are
alwa:ys suf' ficient. and this pumber is the best possible in acme cases {(Fig.
3). A aimpler; proof was later found by Fisk [Fi78] and it lends itself to an
O(nlogn) algorithm developed by Avis and Toussaint [AvT81al] for locating
these {n/3) statiopary watchmen. If‘.the polygon is rectilinear, i.e., the
edges of the polygon are either horizontal or vertical, Kahn et al. [KXXE0]
and‘O'Rourke [082a] have shown that In/8) watchmen are sufficient and
scmetimes necessary (Fig. ¥). Sack [Sa82] and Edelsbruoner e% zl. [Ec484],
based on thée results of [XXXB80] and t082a], respec.tively, have devised an
O{nlogn) algoritkm for locating these 1a/t] watchmen, The watchman problem
can be treatsed as one of the polygon decomgosition problems, in whiech a
polygen 1is to be _decomposéd according to vertex vi=ibility. Since the
visibility polygen from each watchman is a star-shaped polygon, the watchman
problem is equivalent to finding 2 mipimum nwmber .of star-shaged polygoas
such that the unioo of these star-zhaped palygons covers the entire polygon.

For polygon decompositions into varicus types of Yprimitives® and their
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Figure 3. A polygon that requires Ln/3_! watchmen.

Figure 4. A polygon that requires [p./&_i warchmen.

|—
(W



16

complexities, see, for example [CD79,FPT75,082]. In .the contesxi of the
watcoman problem Of Rourke {0831 showed that L[n/%] such mobile watchmen,
Wwhere the wabchmen can move zlong fixed line segmeats (the edges of the
poiygon, for example), are always sufficient and sowmebimes necesszary.
Recen‘t_ly-we have shown that the (stationary or mobile) wabchman problem for
simpie poiygons is NP-hard [LelL84a]. 4&n interesting problem is to see if it

still remaing NP-hard for rectiiinear polygons.

4, Qther Relaiad Problems

]

Tn this secticn we shzll address ourselves to the problems that eall fo
relationskip tetwesz two sets of objects. For example, the closest pair

problem between two sets of points is one in which we are given two sets of

8

points and want to find the two closest points,one fron each =et. is tyw
of i:roblens arises as a subproblem when solving problems by, for exzaple,
divide-and-conguer. Specifically consider the problem of finding all the
containment pair of a set 8 of n isothetic rectangles [Vw80,LeP82]. After
we have divided the set § into t;ro equal subsets S; and Sp and recursively
so;ve'these two subproblems, we have a subproblem of finding the contaimmernt
pair (Ry,Rj) of rectangies such that R; € Sq and Rj € 5.

Not many specific resul_ts for this class of problems are knowi. The
problems of finding closest pair and farthest pair beifween two sets of
points have been studied. Schwartz [Sc81] gives an 0(log2n) time algorithm
for finding the closest pair of polnts (ﬁot necessarily at the vertices)
between w0 coovex polygons with n vertices each; the result is later
improved to 0Q(leg n) by; Chin and Wang {C’JS\B]._ and Edelstrunner {232]
independently. If the closest pair of vertices betwesn fwo comovex polysgons

is sought, 0(n) is both necessary and sufficient [CW84, Mc¥XT83, Toud3a].
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Tne problem of finding the closest rpair of points between two aroitrary
sets, howsver, is nlogn-complete [LeFSlial. The farthest peir of . points
vetween two sets of points can be solved in O(rlog n) time; and in 0(n) time
if the points form each a comvex polygoun [BhT83}. Toe farthest padr problem
can also.bé snown to be nlogn-hard by transforming from the set disjointoess
problen [ReT72]. Revorting of pairwise intersections betwesn two sets of
line segments is anoﬁher problen in this claés that has been studisd. In
[MaS84], Mairson aﬁd Stolfi give an optimal O(nlogn +k) time algoritihm,
where k is the number of such intersecting pairs reported, when the two sets
of line sesments are each peirwise disjoint.

In genergl, we are ziven two sets A and B of objects and want to find a
relation R frem & tc B such that a certain property P is satisfied. That
is, R = {<a,b> | a € & b€ B, P(a,b)}, where ? is a prédicate. For
examgle, the problem studied by Mﬁifson and Stolfi can be formulaiad as one
in which A and B are sets of line segments and no two segments in the same
set intersect, and P(a,b)-denotes that segments a2 € 4 and b€ B intersect.
The detection of whether or not any segment of A intersects a segment of B
is ther eguivalent to testing if the relation R Qefined is empty. Within
this class of problems we would like to study, among others, the follaiing.
Problem 4.1 Segment intersection reporting: Given two sets A4 and B of lipe

segments, find R = {<a,b> | a € A and b&B intersect}.

This problem arises s a subproblem in the hiddensurfacs elimination
problen studied by Cau and Lese fcL83l. In [€L83] the edges of polygons
repﬁesenting the faces of a polyhedronr are projected to the view plane and
the intersection of the set of bhoundary edges and the set of boundary and
nonboundary edges need to be computed. {A boundzry edge 1is oue which

norders a front and a back face with respect to z glven viewpoint.) A fast



i8
solution of this problem may alsc be used to solve ‘the segment intersection
reporting problem defined in [LeP84al, ‘i.e., given a2 set of lire segments in
the plane, find all intersecting pailrs of segments.
Proolem 4.2 Half-planar range query: Given & set 4 of points znd 2 set B of
palf-plares, find R = {<a,b> | a € & 1lies in b€ Bi.
When |Bl= 1 and thé half-plzne is given as a query, the reporting

e =olved in optimal time (0(3og n + k), where k is the cutput

i

probl

L

can
size) with D(nlog.n) preprocessing and O(n) space [CGL831. But the technique
used cannot solve the countin_g problem, i.s., determining the size of R,
optimally. We hope to iovestigata the possibility of 'na‘;Ai“-c' such an op_timal
solution. The countipg counterpart of the general problem in which 4 is the
set of vertices of a aimple polygom zzd B is the set of half-planes
determined by the edges of the polygon 1s an instznce of the sc-czlled
discrete signature of a polygensl figure [0847., For the signature proovlem,
Q' Rourke gives an 0(n3/21cgn) algorithm and poses az open if O{nlogn) is
achievzble [084]. Whed B is the set of half‘—p;tanes determired by 0(n?)
lines connecting pairs of points in an n point set 4, the counting pfcblen
becomes an instance of-the multidiﬁ:ensional sorting problen studied by
Goodman and Pollack [GP83]. We would also like to study a problem posed by
0' Rourke in [084]. Given that a rectilinear polygon has a unique signature,
how does ome construct the polygon wheno its sigziature iz given? The brute-
force method takes exponpentizl time but empirical tests sbow that a
polynomiai time algorithm may exist [084]. We would iike to see whetmer or

not the reconstruction problem is NP-complete.
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.- Problem 4.3 Shortest path problem in the presemce of obstacles: Given
a simple polygon P and an object; say a rectangle R in P with
a certain orientation, find a shortest path, if it exists,
from the ipmitial position to a prespecified final positicn and
orientation, with tramsiztion and rotation allowed. Here we
assume that retations are at ﬂq cost and the distance mezsure
is ip terms of Fuclidean distance traveled by the cemter of-
the object.

As am initial step, ome may want to consider the case where the
obstacles are composed of n discrete peints. For some configurations
one may have to retract the object and then move (with possibly
rotations) the object toward the goal position. As shown in Figure 5,

Jthe rectangle has to be moved backward, rotataed im the fipal orientatiom

and then traunslated to the goal position.

final position

4

initial position

Figure 5. The rectangle must be retracted before it can. be
moved to the final position.
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Problem 4.4 Limited covering problem: Given a ser S of n intervals om
the real line, suppose p is the minimum pumber of "probes”
.that are sufficient to cover the set. A probe is 2 position x
and the subset 8' of intervals covered by the probe consists
of those intervals that contain x. We say p probes are

sufficient aud necessary if we czn find a set Q of p positionms

(1

such that the union of the subsets covered by each of the p

probes is the set S. The preblem is to determime r probes for
a given r less than p such that the total number of intervzls
covered by these r probes is maximum.
Variations of this problem include limited covering of a szt of n
. .
circular-arcs, or a set of rectangles, or a set of circles. 1In
addition, the objects in the set may each have a certain weight, and we

want to maximize the total weight of those objects covered by the

probes,

Lastly the notiom of dynamic computational geometry addressed in
{A£83,0W82] is also of interest. The objects within the framework of

dynamic computatiomal geometry are subject to motions which azre low

degree polynomials in time. Consider the case where the objects are

polats in Euclidean d-dimensional space and each coofdinéte of every point
is a polynomial in time of degree less than or equal to k. Brieﬁly we 3S3Y
that these points a;e in k-motion. Several resulis have been obta;ned and
some open problems ars iisted in [4t8333. In general we have two fundamental.
issues asscclizted with &ynamic problens, i.e., global or tranaisnt behavior

of the moving objects and steady state. For instance, computaticn of the

eoovex hulls of the points would mean the maizteupancs of the polnts om the

.
:
H
H
H
i
¢
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hull at those inmstants of time when the hull changes. The lzst conwex hull
points will be said to be on ihe steady state hull, Tne stesady state
configuration is of'ten not as difficult to compute as the computaiion of the

fipst Lime at which the steady state occurs, In case of l-motion, i.e., all

the points move zlong a straight line, the steady state comnvex hull czn be

compuugd fairly easily in O(niogn) time [At23]; whereas the time at whica
the sheady atate ocecurs is not easily attainshle. In [At83] whether or not
an o(o2) time algoritpm for the latter problen exists is posed as an ogpen
problem; in [Cp&%l such an algqrithm, at least theoretically,. has been
reported. A preliminary study indicates that O(pnlogn) time is sufficieni.

We intend to establish the zbove claim and investigate problems within the
framework of dypamic computational geametry. For breviity we mii 'the
description of such problems and instead, refer the reader to the articla

[4t83], in which some interesting open problems are indicated.
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