7E-shooogel

TR-pr-09f

Y R =X R T [5Y 8 TS T Ak

' NSC74~0201-E001-01

=[A B
= S e
B == Ba

M 2 B s - b e - —

005> HADEAIETIOH

CUP: a Multiple-Valued Logic Minimizer

¥.5. Kuo

Institute of Information Science
Academia Sinica

ﬂ" Y e ~ R et

1. Introduction

Multiple-valued logic minimization has gained more and more
attention due to. its application to the design of programmable logic
array {PLA). In principle, a PLA can implement any multiplie-output
switching function. Such a switching function can be treated as a
Boolean function with multiple-valued 1inputs; the outputs of the
switching function are treated as one multiple-valued input of the
Boolean funétion. Moreover, a Boolean function with multipie-valued
inputs is very useful in designing PLAs with decoders. A minimized PLA.
with t-bit decoders corresponds to a minimum sum-of-products expression
for a Boolean function with 2t-va1ued inputs. Other applications of
mu]tipfe-valued logic minimization inciude the input-encoding problem,
the optimal state-assignment problem and the optimal assignment of

microcodes.

Many systems for two-level (AND-OR) logic minimization have been
developed. But only a small fraction of these systems can handle
multiple-valued inputs. Two well-known multiple-valued logic minimizers
are MINI and ESPRESSO-MV. In order to handle many input variables in
moderate computation time, both MINI and ESPRESSO-MV adopf heuristic
algorithms and do not generate all prime implicants. They have similar
overall structures and inciude major procedures such as COMPLEMENT (
computing the off set of a function), EXPAND (expanding implicants into
desirable prime implicants), ESSENTIAL (detecting which of the prime
implicants are essenﬁial primes), IRREDUNDANT (extracting from a prime

cover a minimal, irredundant cover) .and REDUCE (reducing an implicant

into the smallest implicant which together with the remaining

implicants, still .covers the original function).

In this paper, we desribe our effort in designing a new logic
minimizer CUP (CUbe. Processor) for a Boolean function with
muitiple-valued inputs, This system has similar major procedures as
ESPRESSO-MV, but new algorithms have been developed. Feathers of CUP

are as follows:
1. Essential primes are identified as early as possible.

ESPRESSO II and ESPRESSO-MV identifies essential primes after the
EXPAND procedure has applied once and discovered a prime cover of the
function. However, CUP can identify essential primes before a prime
cover 1is discovered. Since essential primes must be in the final
minimum sum-of-products expression for the Boolean function, early
detecfion of essential primes can result in a problem which is smaller

and usually easier than the original one.

2. A necessary and sufficient condition is derived for detecting

essential primes.

Necessary and sufficient conditions for detecting essential primes
for switching functions with binary inputs have been known for some
time. As for multiple-valued switching functions, Sasao gave a
sufficient condition for detecting essential prjmes recently. One step
further, we shall prove a necessary and sufficient condition for

essential prime detection in the multiple-valued case. The condition is

computationally easy to check.

3. The expansion of implicants can be done in small and reasonable

regions.

In MINI and ESPRESSO-MV, the expansion of an implicant is done
within its overexpanded cube. Sometimes the overexpanded cube can cover
a large region ‘and contain many implicants of the function. This
complicates the task of expansion. 1In CUP we adopt an approach which
can reduce this region drastically. Note that implicants that can
possibly be covered by an expansion of the current implicant are still

within the small region and thus under consideration.

4. The EXPAND procedure expands implicants based upon a graph called the

covering graph.

The covering graph can indicate whether two implicants can possibly
be covered by a prime implicant of the function. Thus a clique
(complete subgraph) of the graph corresponds to a set of implicants
which have potential to be covered by a prime implicant. The EXPAND
procedure identifies maximal cliques of the covering graph in order to
generate prime implicants that can cover as many implicants of the

function as possible.

5. A simple and fast algorithm is designed for extracting a minimal,

irredundant cover.

ESPRESSO uses a sophisticated algorithm for the procedure
IRREDUNDANT. But experiments have shown that this procedure does not
have much effect on the final cover size since the REDUCE procedure can
also generate an irredundant cover. Thus a simple and fast algorithm

for IRREDUNDANT is developed for CUP.

6. Properties of unate functions are exploited to speed up tautology

checking and the REDUCE procedure.

Tautology checking 1is a basic procedure used extensively in
procedures ESSENTIAL and IRREDUNDANT. ESPRESSO-MV detects the unateness
of a cover in order to speed up the checking of tautology as well as the
REDUCE procedure. We shall present a more general notion of unateness
and show that the same results as those for ESPRESSO-MV still hold.

Thus tautology checking and REDUCE can be further improved in speed.

In Section 2 we introduce the notation for multiple-valued togic
minimization. We also describe the overall structure of our
minimization system. In Section 3 we describe the theory and an
algorithm for detecting essential primes. Then in Section 4 we describe
the graph-based EXPAND procedure. A new algorithm for the IRREDUNDANT
procedure is presented in Section 5. In Section 6 the unateness of a
function is expioited for tautology checking and the REDUCE procedure.

Finally we try to draw some conclusions in the last section.

2. Problem Definition and Qutline of Algorithm

Let us define some concepts in multiple-valued logic. A Boolean

function with mu1t1p1e-vaiued inputs is a mapping

f: Py x Py x ... x P —*{0,1}
where Pi = -{0,1,...,pi-lJ' . A generalized Boolean function with
multiple-valued inputs is a mapping

F: Py x Py x ... x P —> {0,1,d}.
Each element of P1 X P2 X v X Pn is called a minterm. The
on-set,off-set and dc-set of a (generalized) Boolean function F are the
sets of minterms that have function values 1,0 and d, respectively, and
will be denoted by ON(F), OFF(F) and DC(F). Note that a Boolean

function can be characterized by its on-set and vice versa.

A cube js a Cartesian product S1 X 52 X oo X Sn where Si EEPi for
all i = 1,2,...,n. The Boolean function associated with a cube is a
product term. A cube t is an implicant of a (generalized) Boolean
function F if t (] OFF(F) =55. t is called a prime implicant if t is an

implicant of F and there is no jmplicant t' of F with t& t' and t'# t.

Let C be a collection of sets of minterms. Then

Uc-= U ¢

denotes the set of minterms covered by sets in C. A set C of implicants
of function F 1is called a cover for F if ON(F) = U C. If every
implicant of C is a prime implicant, then C is called a prime cover.

Note that a cover for function F corresponds to a sum-of-products

expression for F. Thus the (two-level) logic minimization problem is to

find a prime cover for a generalized Boolean function of minimum size.

The CUP minimization system has the same basic structure as MINI

and ESPRESSO. Let us outline its algorithm as follows:

Input: The on-set and dc-set of a generalized Boolean function F
expressed as covers.
Output: A minimail, irredundant cover f for function F.
Algorithm CUP:
OFF = COMPLEMENT (ON U DC)
f =0ON
Loop until no improvement on the cover size of f
OVEREXPAND
If first pass then ESSENTIAL
EXPAND
IRREDUNDANT
REDUCE

Endloop

A1l procedures in the algorithm except OVEREXPAND have been
described in Section 1. The OVEREXPAND procedure computes the
overexpanded cube t* for every implicant t in f. Note that the
overexpanded cube t* of t is the smallest cube containing all prime
implicants of F which contain t, and can be computed easily if the

off-set of F is known. The OVEREXPAND procedure also checks whether

v

&* % *® . . .
t MOFF =¢. If t M OFF =5§, then t is a prime implicant. Actually
t* is the only prime implicant containing t. Thus we can replace t by

t* in f and delete those cubes in f which are covered by t*.

The OVEREXPAND procedure can be considered as a preprocess for the
EXPAND procedure. It sorts out those cubes that can be easily expanded.
In the next section we shall show that essential primes for a Boolean

function are among the overexpanded cubes.

3. Detection of Essential Primes

Given a generalized Boolean function F. A prime implicant p of F
is an essential prime if p contains a minterm x in the on-set of F which
is not contained in any other prime implicant. The minterm X is

referred to as an essential point.

Any prime cover for a Boolean function contains all essential
primes. Thus in most minimization systems, the detection of essential
primes are performed after a prime cover has been discovered. But this
can lead to pitfalls. As an example, the Karnaugh 'map of a Boolean
function is shown in Fig. 1. Assume that the initial cover for the
function consists of the minterms. If the minterm ABCD i4s expanded
first, it is likely that it will be expanded into ACD. Then when ABCD
or ABCD is expanded, the product term BCD can be generated. Eventually
we have the prime cover {ACD,BCD,ABC,ABC} . Even though we can find
out that ABC and ABC are essential primes, we still have a prime cover
of size 4 while the minimum cover size is 3. Note that in this example
neither IRREDUNDANT nor REDUCE can help reduce the cover size. However,
if we can detect the essential primes ABC and ABC before the expansion,
then those cubes covered by the essential primes can be excluded from
the current cover. Consequently we can obtain the minimum prfme cover

{ABC,ABC,ABD} .

We can detect essential primes before the expansion process since
every essential prime is an overexpanded cube.
Theorem 1 Let C = {tl’tZ""’tk} be a cover for function F. If p

is an essential prime of F, then

p=t., for some j=1,2,...,k.

J
Proof: Let x be an essential point contained in p. Since x is in the

on-set of F, xé'ﬁj'ﬁN'some Js J = 1,2,...k. Since p is an essential

prime, tjg;p and p is the only prime implicant containing tj' Thus
*

p = tj .

If t’; is an essential prime, then t;ﬂ OFF =¢ . The following

result provides a fast check for essential primes.

*
Corollary 1 If tj 1 OFF = 95 and t_j is a minterm in the on-set of

* .
F, then tj is an essential prime of F.

>

*
Proof: Since tj N OFF =55 s F% is the only prime implicant containing

tj. This corollary then follows from the definition of essential

primes.

To detect essential primes in general, we need the following
operations,

Let t1 and t2 be cubes where

t1 = S1 X 52 X ... X Sn and t2 = R1 X R2 X oua X Rn.
The sharp operation is
t1 # t2 = aiLn Sl X vua X Si—l X (Si - Ri) X S1.+1 X eus X Sn
StURTR:
The asymmetric concensus of t1 and t2 is
acons(tl,tz) = i=g . (sln Rl)x(SzrrRz)x...x(Siu Ri)x...x(SnFIRn)
S UG TR; -

Note that the asymmetric concensus differs from the ordinary concensus
operations (there are two commonly accepted definitions for concensus)

only when t, 1 tszpf .

Lemma 1 Let C be a cover for function F, and let p be a prime
1mpiicant of F in €. Assume that
pn U(CUDC -~ {p})

Then p is an essential prime iff
pAONd U {acons (h,p) | hecube~{p}}.
Proof: Let H = U { acons (h,p) | h e C U DC - {p}} .

$.

(=) Assume that p is essential.
Let x be an essential point in p. Suppose
x ¢ acons (h,p) for some h e CUDC - {pl}.
let p = R1 X R2 X eus X Rn and h = S1 X S2 X vua X Sn. Since
pnU(CUDC—{p})=¢,wehavepnh=95and
acons (h,p) = (S1 n Rl) X eus X (Si u Ri) X vuu X (Sn i Rn)
Where S, N R1.=_g§and Sjn RJ. +$ for j#i.
Llet x = (Xl’x2""’xn)' Then
Xxj € S; M Ry forall § # 4, § = 1,2,...,n.
Consider a minterm x' = (xl,...,xi_l,y,xi+1,...xn) where
y &€ Si' Then x' & acons(h,p) but x' & p. We have shown
X £ acons(h,p)e_:_!:r p.
This contradicts the assumption that p is essential. Thus x can not be
in any acons(h,p), h € CUDC - {p} . In other words, x & H. Since
X &€pfl ON,p R ONGE H.

(&=) Assume that p is not an essential prime. Then for any
minterm x € p {1 ON, there exists an implicant t of F such that x € t
and t & p. Let

p = R1 X RZ;X cas X Rn and t = S1 X 52 X vo. X Sn' Then 315;
R, for some i. Let x = (xl,xz,;..,xn). Sincex ¢ pn t,

xj ¢ RJ_FT Sj for all j = 1,2,...,n. Considerl a minterm x' =

(xl”"’Xi—l’y’xi+1""’xn) where y & S; - R

Then x' ¢ t and x/éPp.

3°

p. Since t is an implicant of F and x' € t,
there exists a cube h ¢ C U DC - { p} containing x'.
Let h =T, x Ty x oo x T, Sincepn UCUD - {p})=¢ ,
pfh=¢ . But Ry 1 Tj-r"¢ for all j # i because x € p and
x'" &€ h. thus

acons(h,p) = (Tl(] Rl) X ves X (Ti U Ri) X «ou X (Tn n Rn).
Since X5 eTJ.n Rj for all j# i and X; € Ri’ x € acons(h,p).

Since x is an arbitrary minterm in p N ON, we have pnNnON & H. This

completes the proof,

- Theorem 2 Let C be a cover for function F, and let p be a prime
implicant of F in C. Then p 15 an essential prime iff
p & U {aconsth,p) [he CUDC-{p}} uUDC. |
Proof: We can construct a new cover C' and a new don't care set DC' such
that they cover the same sets of minterms as C and DC,
respectively, but
PaoUCUD - {p})=¢.
This construction is done by taking a sharp operation on every cube t in
CUDC - {p} withtnp#¢ . Formlly, pe C'; ift el - {p} and
tnp=9f , thent€ C'; ifteC- {p}) buttnp+g¢g ,
then t # p £ C'. DC' can be constructed from DC similarly. It should
be noted that whether p is an essential prime is determined by the on,
off and don't-care sets (of minterhs), not by the covers for these sets.
Therefore we can apply, Lemma 1 to C' and DC', so p is an es;entia} prime
iff
pﬂONQ; U{acons(h,p){hEC'UDC'—{P}}.A

Let H.=U {acons(h,p) | h ¢ CUDC - {p¥} and
H' = U {acons(h,p)] he CUDC -§{ pk}.
We shall show that H.and H' cover the same set of minterms. Consider an
arbitrary h & C U DC - { p¥ with h i PESL .
Let p = R1 X R2 X oes X Rn and h = S1 X S2 X vas X Sn. Then
h#p-= U h.

c=lLh 1
§-R#¢

where h. = Sy X ... x S;_g X (S;-Ry) x Sy x ... xS eC UD - {p}
Let us compute the asymmetric concensus.

acons(h,p) = ing (S1 f Rl) X veu X (Si-l i Ri-l) X (Si u Ri) X

S VRLFR:
(S N R-+1)_x e X (Sn n Rn)

i+l i
Since h, . p=¢ and sJ.n Rj#gf for all j.
acons(hi,p) = (S1 N Rl) X vuu X (Si-l n Ri-l) X ((Si - Ri) U Ri) X
(Si+1r‘ Ri+1) X ve. X (Snf1 Rn)

(S1 n Rl) X eee X (Si 5] Ri) X ves X (Sn fl Rn)

Thus acons(h,p) = U acons(hi,p).

S
H. Thus p is essential iff

p nONGE H

or equivalently, p & H.U DC.

WE have shown H'

In Theorem 2 we have to check whether p &£ H:U DC or not. It has been

shown that this can be done with a tautology checking algorithm.

4. The EXPAND Procedure

Let F be a generalized Boolean function, and let C be a cover for
F. A prime cover E for F is called an expansion of C if for any
implicant t in C, there is a prime implicant t' in E containing t. t'
is called an expansion of t. The EXPAND procedure aims to find an
expansion of a cover which is minimum in size. Even though the EXPAND
procedure can have other secondary goals such as to expand implicants to
as large as possible and to expand implicants such that their expansions
overlap each other as much as possible, we will focus on the cover size

only.

In MINI and ESPRESSO the EXPAND procedure expands cubes one at a
time until all cubes have been either expanded into primes or covered by
expansions of other cubes. In this expansion process each cube t is
expanded within its overexpanded cube t* and the algorithm aims to cover
as many cubes in t* as possible. We have recognized some weakness in
this approach. First, the overexpanded cube t* can.be very large in
size and cover a large number of cubes even though many of these cubes,
actually, can not be covered by any expansion of t. Due to the large
number of cubes involved, -the expansion of a cube can not be done
effectively. Another weakness in this approach is that the order for
expanding cubes can influence the prime cover generated, but MINI and
ESPRESSO adopt heuristic orderings which ~are rather arbitrary. The
EXPAND procedure of CUP has been designed to make improvement on these
two aspects. Before the EXPAND procedure is explained, we would 1like to
remark that the existénce of the preprocess OVEREZPAND has relieved the

ordering problem to some extent according to the following lemma. Lemma

2 Let C be a cover for function F. If t* is an overexpanded cube of t,
t €C, with t 1 OFF =& ,then t* must be in any expansion of C.

Proof: This is due to the fact that t* is the only prime implicant
containing t and any expansion of C must contain a prime implicant

containing t.

In CUP the EXPAND procedure is based on a graph called the covering
graph which indicate whether two cubes in cover C can possibly be
covered by a prime implicant of function F. In this graph each vertex
corresponds to a cube in C. Two vertices Vq and v, are connected by an
edge iff their c0fresponding cubes tl and t2 satisfy the following
condition

*

- . ¥
sCCltst,) &ty Moty (1)

*
l’t2) is the smallest cube containing t1 and t2’ and tl and

where SCC(t
*

t2 are the overexpanded cubes of t1 and t2’ respectively. Note that

(1) is a necessary condition for t; and t, being covered by a prime

implicant of F.

Lemma 3 Let C be a cover for function F, and & 1its associated
covering graph. Assume that tl’tZ""’tm are cubes in C and
VisVos-nesVp are their corresponding vertices in G. Then the subgraph
induced by Vl’v2"“’vm is a clique iff

*

SCC(tpatyeant) E 8 1 t) M1 wen Mt (2)
Proof: (&=) If (2) holds, then
* %* * *
SCC(ty,ty) &= SCC(tp,e-nt) 2 8 N e [t £ b Tty
for i,j = 1,2,...,m. By the definition of covering graph, there is an
edge connecting Vs and vj for any i and j. Thus VisVoseeraVp induces &

clique in G.

(=) If V1sVps...,V induces a clique, then
SCC(ty,t,)) 1 £, forany i, = 1,2,....m.
In other words, we have t, [tj* for any 1,j. Thus
ts tl* n t2* n ... n tm* for any 1.
Since SCC(tl,...,tm) is the smallest cube containing LZEREREL (2)
must be true
Theorem 3 tet C be a cover for function F, and G its associated covering
graph. Assume that tl’tZ""’tm are cubes 1in C and Vl’VZ""’Vm are
their corresponding vertices in G. If tl,tz,...,tm can be covered by a
prime implicant of F, then ViseensVy induces a clique in G.
Proof: If tl""’tm can be covered by a prime implicant p, then
e rp g;’ti* for all i =1,2,....m
from the definition of overexpanded cube. Thus

* *
SCC{tqseent)E PEt [T ... 1L .

This theorem then follows from Lemma 3.

Theorem 3 suggests that the éxpansion process be replaced by a
covering process. Instead of expanding a cube to cover other cubes, the
covering process is to generate a cube to cover a specified set of cubes
which correspond to a clique in the covering graph. One advantage to
this approach is that the covering procedure can be carried out within
the cube SCC(tl,...,tm) while the expansion of a cube in MINI and
ESPRESSO is done within an overexpanded cube. According to (Zj,
SCC(tl,...,t

m
" cubes in SCC(t

) is contained in any overexpanded cube. Furthermore,
1,...,tm) gther than tl,...,tm need not be considered in
the covering process. But the expansion process has to consider every
cube contained 1in thé overexpanded cube, Consequently the covering

process considers fewer cubes than the expansion process does, so can be

done more efficiently.
Let us illustrate the EXPAND procedure as follows:
Input: A cover C for function F.
Qutput: An expansion of C.
Algorithm EXPAND:
Construct the éovering graph G
Loop until G contains no edge
If G has a vertex vy of degree one
then COVER({'tl,tZ}-) where t; and t, are the
cubes corresponding to vy and its neighbor respectively,
else COVER(K) where K is a set -of cubes in C which correspond
to a maximal clique in G.
Endloop
EXPAND_INTO PRIME

In this algorithm, the COVER procedu?e takes a set K of implicants
as 1ts input and computes én implicant which covers a maximal subset of
K. Here K corresponds to a clique in the covering graph G. If COVER
finds an implicant t which covers more than one implicant in K, then
these implicants can be replaced by t in C, and at the same time their
corresponding vertices in G are replaced by a new isolated vertex
corresponding to t. On the other hand, if no implicant of F can cover
two or more implicants in K, then we simply delete the edges of the
clique which correspond to K. In this way an implicant in K which is
not covered by t can still be covered later in the Toop. MNote that the
COVER ‘procedure does ngt generate a prime implicant in general. Thus we
need the EXPAND INTO PRIME procedure which expands implicants one at a

time into prime implicants. EXPAND_INTC PRIME aims to expand implicants

to as large as possible and its a1gorithm is similar to that 1in

ESPRESSO.

The EXPAND algorithm is dynamic in nature. The cover C and the
covering graph G are updated iteratively and reflect the state of the
expansion. When G has a vextex vy of degree one with its neighbor Vos
we know that tg and t2, the implicants corresponding to vy and Vo,
should be replaced by SCC(tl,tz) provided that SCC(tl,tz) is aﬁ
implicant of F. On the other hand, if G has no vertex of degree one,
the algorithm identifies .a maximal clique and tries to generate an
implicant which covers as many jmplicants as possible. In this way, the
order of expansion or covering is dynamic and can achieve the goal of

expansion closely.

5. The IRREDUNDANT Procedure

Let C be a cover for function F. An implicant t in C is redundant
iff C - {t} is still a cover for F or equivalently t=U(C - {t}) U
DC(F). An implicant t 1in C 1is called relatively essential or
nonredundant if it is not redundant in C. A cover C is irredundant if
every implicant in C is relatively essential. The‘IRREDUNDANT procedure
aims to find a subcover of a cover which is not only irredun&ant but

also minimal in size.

The simplest way to find an irredundant cover is to check the
jmplicants one by one for redundancy; when a redundant implicant is
detected, it is removed from the cover. This method 1is efficient but

can hardly guarantee a minimal cover. On the other hand, ESPRESSO-MV

~maps the minimal cover problem into a set covering problem, and then

uses heuristics to slove the set covering problem. This approach can
generate a result closer to the optimum. However it seems that the set
covering problem can grow to very large if there are a lot of redundant
implicants. What is done in CUP is a tradeoff between -the two extremes,
We have designed a new algorithm for extracting an irredundant cover
which is simple but still reasonably effective. The algorithm is based

on the following lemma:

Lemma 4 Let C be a cover for function F, and Tet tl’tZ""’tm be

implicants of F in C. If each ti 1s redundant in C and ti T tj =
for all i,j = 1,2,...,m, i # j, then C - {tysty,...5t s a cover for
F.

Proof: For any i, 1 = 1,2,...,m, ti is redundant in C. Thus

¢

t; € U(C - Lt;}) uDC(F).
Since t, 1 tj = ¢ for any j # i, we have
t_i = u(c - {'tl,tz,...,tm}) U BC(F) for any i.
By definition, ON{(F) = U C
= U(C - {tystpsenast F)UE Uty ULl Ut
E U(C - {t;stps...st) U DC(F)
Since ON(F) N DC(F) = ¢ , we have

ON(F) & U(C - {tystpse-nty).

m

According to Lemma 4, we can construct a graph called the
independence graph. Each vertex of the graph corresponds to a redundant
implicant in € and two vertices are connected by an edge iff their
corresponding implicants are disjoint. Then by identifying a maximal
clique in the independence graph, we can identify a set of redundant

impiicants which can be removed from the cover C.

As in ESPRESSQ, the IRREDUNDANT procedure in CU? distinguishes
absolutely redundant implicants and partially redundant implicants. Let
E be the set of relatively eésentia1 implicants in C. An implicant t is
absolutely redundant if t é C-Eand t © U E UDC(F). An implicant
in C is partially redundant if it is redundant but is not absolutely
| redundant. The IRREDUNDANT procedure identifies the sets of relatively
essential implicants and partially redundant implicants E and Rp, and
deletes an appropriate set of partially redundant implicants. Then the

same procedure is repeated with respect to the new cover E U Rp.

Input: A cover C for function F

Qutput: A minimal and irredundant cover E for F.

T S

Qutput: A minimal and irredundant-cover E for F.
Algorithm IRREDUNDANT:
Compute the set E of relatively essential implicants in C

Compute the set R_ of partially redundant implicanté

While R ¢ do

Construct the indepence graph with respect to Rp

p

Find a maximal ciique in the independence graph, and remove
its corresponding implicants from Rp

For every implicant t 1in Rp

if t ¢ U(EUR, - { t}) UDC(F)

then £ = EU {t} and Rp=Rp-£t}
for every implicant t in Rp
if t & UEUDC(F) then R) = R ~{t}

Endwhile.

6. The Unateness of a Function

In ESPRESSO-II. the unateness of a Boolean function with binary
inputs s exploited to speed up tautolgy checking and -the REDUCE
procedure. In this section we shall generalize the concept of unateness
X P, X

1 2
X Pn — {0,1} be a Boolean function with multiple-valued inputs

to a Boolean function with multiple-valued inputs. Let f : P

where Pi = {0, 1,000, pi-l} . T is monotone decreasing (increasing) in
value j of variable 1, Os,jérpi—l, if there does not exist Xlé:Pl, Xze
P2,..., Xne Pn such that

f(Xl,Xz,...,Xn) =0 (1} and f(xl""’xi-l’j’xi+l""’Xn) =1 (0).

A multiple-valued Boolean function which is monotone decreasing in
one value of a variable Xi is said to be unate in Xi' A function which

is unate in all of its variables is said to be a unate function.

Lemma 5 Given a Boolean function f with multiple-valued inputs. If
f is monotone increasing in all values of variable Xi except value j,

then f is monotone decreasing in value j of variable Xi'

Proof: If f is not monotone decreasing in value J, then there

exists i}é:p], 1=1,2,...,n such that

—

f(Xys Xpsenesk) = 0 and F(KpounsXe 1, 3, X

i+1,..., Xn) =1.
This violates the assumption that f is monotone increasing in value Yi
of variable Xi. Thus f must be monotone decreasing in value j of

variable Xi‘

- In ESPRESSO-MY a function is defined to be unate in variable Xi_if

it is monotone increasing or decreasing in all the values of Xi. From
Lemma 5 such a function must be monotone decreasing in one value of Xi‘
Thus the unateness defined in this paper is more general than that in

ESPRESSO-MY.

Let C = tl,'tz,..., tk be a set of cubes where
th = Sh1 X Sh2 X ... X Shn’ h=1,2,...,k.
C is said to be unate in variable Xi if hg;i Shi = Pi'

5!1,;*!’.:
Lemma 6. If C is a cover for function f and if C is unate in variable

Xi’ then f is unate in Xi'

Proof: Assume that C consists of cubes tl’ t2"“= tk as above. Let j

be a value in Pi - Shi' We shall prove that f is monotone

3]
k=t &
She#P;

decreasing in value j of Xi‘ If this 1is not the case, then there

exists ¥1€ Py> T =1,2,...,n, such that

1-1"j’xi+1""’xn) = 1.

Since (Xl""’xi—l’j’Yi+1""’Xn) is in the on-set of function f,

f(Xl,...,Xi,...,Xn) = 0 and f(Xl,...,X

(Xl""’xi—l’j’xi+l"°"xn) e-tg for some g, g = 1,2,...,k.
Considering the variable Xi in particular, we have jérSgi.
Since j ¢Aﬁli£ Shi and ge:Sgi, we have Sgi = Pi' Consequently we
Shi#b;
ob?ain (xl,...,xi_l,xi,xi+1,.f.,xn)e tg which contradicts

>

..;Xn) = 0. Thus f is monotone decreasing in value j

Lemma 7. If f is unate in variable Xi and if C is a prime cover for f,

then € is unate in Xi'

Proof: Llet C = {tl,tz,...,tk} where t, =S . X Spg X vee X Sp, b=
1,2,...,h. Assume that f is monotone decreasing in valye j of Xi. We
will show that j & ﬁﬁgﬁ Spi | .
5&:%!"&

To the contrary, assume that jﬁSh_i # Pi for some h = 1,2,...,k. Then
for any Xlé'shl""’xi—f& Sh,i-l’ Xin€ sh,i+1,...,xne Spp» We have
(Xl""’xi-l’j’xi+1""xn) é,th. Thus

f(xl""’xi-l’j’xi+1""’xn) = 1 for any X1& Sh]’ 1#1d.
Since f is monotone decreasing in value j,

f(Xl,...,Xi_l,j,xi+1,...,xn) =1 for any X;€ P, and X,€5,., 1 # 1,
Thus S 4 X ... X Sh,i-l X P, X Sh,1+l X...X S, is an implicant of f
containing th. By assumption Shi # Pi contradicts that ty is a prime
implicant. Thus we have shown J ¢'ﬁ;E£. Shi

51'75 #P;

In other words, C is unate in Xs-

The .unateness of a cover is useful in determining whether a
function is a tautoTogy; A Boolean function f is a tautology if f(Xl,
Xz,...,Xn) =1 for all X;e Pis 1= 1,2,...,n, and is denoted by f= 1.

Lemma 8. Let C be a unate cover for function f. Then f is a tautology,

iff C contains a cube t. = P1 X P2 X...X Ph'

Proof: The if part is apparent.
(=) Assume f=1.
Let C = {t),ty,...5t) where t, =S 0 X S, XX S, h=1,2,... .k,

Since C is unate, RzHﬁ. Sh,i # Pi for any i = 1,2,...,n.

Sh#PL
Consider the minterm t = (Xl’ Koseens Xn) where Xié‘Pi - ;Jig_ Shi'
4 * P

Since f=1, Eéfth for some h, h = 1,2,...,k. Then X;€ Sy, for any 1.

Since Xiéagﬁ{& Shi and Xié Sy,; for any i, Shi = P_i for any i, i =

'Sfi.:?EPC
1,2,...,n. In other words, t, = Py X P, X ... X P, This completes the

proof.

Theorem 4. Let C = {t;, t,,..., t } be a cover which is unate in

variables X;,..., X where 1€ m&n, Each cube t, in C can be expressed

as th:= up X i where Uy and vy, are cubes in variables Xl""’xm and
Xm+1,..., Xn, respectively. Assume that

U, =Py X...X P forh=1,...,1 and

uy =Py X X P For ho= 141,00 k.

Then C is a tautology iff the subcover {tl""’ti} is a tautology.
Proof: The if part is apparent,

(=) Assume that C is a tautology. To the contrary, suppose that
{tl,...,t]} is not a tautology. Then there exists a minterm (a,b) such
that (a,b) ¢ th for any h = 1,...,1 where a and b are minterms in

variables Xl""’xm and X Xn’ respectively. Since t, = U X v

m+1,--., h h
and uy, = P1 X oo X Pm for h = 1,...,1, bé—vh for any h = 1,...,1. On

the other hand, since C is unate in variables Xl""’xm’ the cover
[u1+1,...,uk} is unate. From Lemma 8, {u]+1,..., u } is not a tautology.
Thus there exists a minterm ¢ in variables Xl,...,Xm such that c é.uh

for any h = 1+1,...,k. Consider the minterm (c,b) in variables

1

X X,. Then (c,b)é ty, for h = 1,...,1 since be%vh, and (c,b)¢ t,

1,--.5
for h = 1+1,....,k since C:élﬁr We have shown that (c,b) is not covered

by any cube in C contradicting that C is a tautology. Thus {tl,...,t1}

must be a tautology.

(1)

(2)

(3)

(4)

(5)

(6)

(7N

(8

(9)

Raeference

P. Agrawal, V. D. Agrawal and N. N. Biswas, "™Multiple Qutput
Minimizarign", Proc., of the 22nd ACM-IEEE Design Automation
Conference, PP.674-680, Jun 1985.

Z. Arevalo and J. G. Bredeson, "A Method to Simplify a Boolean
Function into a Near Minimal Sum—of-Products for Programmable Logic
Arrays", IEEE Trans. on Comp., Vol. C-27, No.ll, PP.1028-1039, Nov,
1978.

R. K. Braytron et al.. "Fast Recursive Boolean Function
Manipulation". Proc. of the 1982 ISCS P.85 May 1982.

R. K. Brayton et al.."Logic Minimization Algorithms for VLSI
Synthesis". Kluwer Academic Publishers, Boston, 1984,

R. K. Brayton et al.."A Comparison of Logic Minimization Strategy
Using ESPRESSO: An APL Program Package for Partitioned Logic
Minimization". Proc. of ISCS, PP.42-48 May 1982.

D. W. Brown, "A State-Machine Synthesizer-SMS" Proc. of the 18th
ACM-IEEE Design Auromation Conference PP. 301-305, Jume 1981,

G. Caruso, "A Local Selection Algorithm for Switching Function
Minimization" IEEE Trans. on Comp. Vol., C-33 No.l, Jan. 1984,

M. R. Dagenais, V. K. Agarwal and N. C. Rumin " The McBOOLE Logic
Minimizer", Proc. of the 22nd ACM-IEEE Design Automation Conference,
PP,.667-673. June 1985,

‘L. Dietmeyer. Logic Design of Digital System,

(10) 8. J. Hong, R. G. Cain and D. L. Ostapko, "Mini:A Heuristic

Approach for Logic Minimization", IBM J. of Res. and Dev. Vol. 18,

PP.443-458, Sep. 1974,

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

J. F. Martinez-Earballido and V. M. Power, "PRONTO: QUICK PLA
PRODUCT REDUCTION" Proc. of the 20th ACM-IEEE Design Automation
Conference, PP.545-552, June 1983;

E. Morreale, "Recursive Operators for Prime Implicant and
Irredundant Normal Form Dererminarion",'IEEE Trans. on Computer,
Vol. C~19, No.6, PP.504-509, June 1970.

D. L. Ostapko and S. J. Hong, "Generating Test Examples for
Heuristic Boolean Minimization", IBM J. of Res. & Dev. Vol. 18,
PP.459-464, Sep. 1974,

B. Reusch, "Generation of Prime Implicants from Subfunctions and a
Unifying Approach to the Covering Problem", IEEE Trans. on Comp.
Vol C-24, No.9, Sep. 1975. |

V. T. Rhyne, erl. "A New Technique for the Fast Minimization of
Switching Functions", IEEE Trans. on Computer, Vol C-26, No.8,
PP.757-764, Aug. 1977.

R. L. Rudell and A. L. M. Sangiovanni-Vincentelli, "ESPRESSQO-MV:
Algorithms for Multiple-Valued Logic Minimization"™, Proc. of IEEE
CICC PP.230-234. 1985,

T. Sasao, "Multiple-Valued Decomposition of Generalized Boolean
Functions and The Complexity of Programmable Logic Arrays", IEEE
Trans. on Comp. Vol C-30, No.9, PP.635-643, Sep. 1981,

T. Sasao, " A Fast Complementation Algorithm for Sum-of-Products
Expressions of Multiple~Valued Input Binary Functions', Proc. of
13th ISMVL, PP.103-110 May 1983.

T, Sasao, "Tautology Checking Algorithms for Multiple-Valued Imput
Binary Functions and Their Application", Proc. of l4rh ISMVL,

PP.242-250, May 1984.

B e

(20) T. Sasao, "Input Variable Assignment and Output Phase Optimization
of PLA's", IEEE Trans. on Comp., Vol. C-33, No.10, Oct. 1984,
PP.879-8%94,

(21) B. Teel and D, Wilde, "A Logic Minimizer for VLSI PLA Design";

Proc. of the 19th ACM-IEEE Design Automation Conference,

PP.156-162, May 1982,

Generating Essential Primes for a Boolean

Function with Multiple-Valued Inputs

Y. S. Kuo and W. K. Chou

Institute of Information Science
Academia Sinica
Taiwan, Republic of China

Address for correspondence

Dr. Y. 8. Kuo

Institute of Information Science
Academia Sinica

Taipei 11529, Taiwan

Republic of China

Tel: (886) 02-782--4814

I

Abstract

Detecting essential primes is important in umltipie—valued logic
minimization. 1In this paper, We present a fast algorithm that can
generate all essential primes without generating a prime cover of the
Boolean function. A new consensus operation called asymmetric consensus
(acons) is defined.. 1In terms of acons, we prove a necessary and
sufficient condition for detecting essential primes for a Boolean
function with multiple-valued inputs. The detection of essential primés
can be performed by using a tautology checking algorithm. We exploit
the unateness of a Boolean function to speed up tautology checking. The
notion of unateness considered is more general than that has appeared in

the literature.

1, Introducticn

Boolean functions with multiple-valued inputs have gained.more and
more attention due to their application to the design of programmable
logic arrays (PLAs). In principle, a PLA can dimplement any
multiple-output switching function. Such a switching function can be
treated as a Boolean fundtion with multiple-valued inputs; the outputs
of the switching function are treated as one multiple—valued input of
‘the Boolean function [7]. Then minimizing the number of rows of a PLA
is equivalent to minimizing the number of product terms in the
sum—-of-products expression for the Boolean function. Boolean functions
with multiple-valued inputs can be further exploited in designing PLAs
with decoders [2] [5]. A minimized PLA with t-bit decoders corresponds
to a minimum sum-of-products expression for a Boolean funection with

2t-valued inputs.

Given a Boolean function f with multiple-valued inputs. An
essential prime implicant (or simply essential prime) is a prime
implicant of f which contains a minterm in the on-set of £ that is not
contained in any other prime implicant of £. Generating essential
primés is important in 2-level logic wminimization [1] [3] since every
essential prime must appear in a minimum sum—of-products expression for
a Boolean function. It has been reported that Boolean functions for the
control circuits of microprocessors often contain a large numbér of
essential primes [6]; Therefore, we can obtain near-optimal expressicns
quickly if we can detect all essentlal primes at early stages of the

logic manipulation proéess.

r

Conventionally, essential primes are generated by first generating
a prime cover for the Boolean function (or even genmerating all prime
implicants). Take the well-known logic' minimizer ESPRESSO-II [1] as an
example. This system has a prpcedure EXPAND that expands implicants
into prime implicants and thus can generate a prime cover for the
Boolean function. The detection of essential primes in ESPRESSO-II is
performed after the EXPAND procedure has generated a prime cover. In
this paper, however, we shall argue that it is advantageous to generate
essential primes before a prime_covér is found. A method is presented
which can generate all essential primes without generating a prime
cover, Compared with the conventional EXPAND-then-essential-primes
approach, this essential—primes—then—EkPAND approach causes very little
computation overhead and in many cases can even speed up the EXPAND

procedure.

Given a cover for a Boolean function‘with multiple-valued inputs.
The essential primes can be generated by first generating the
overexpanded cubes [3] of those implicants in - the cover. " An
overexpanded cube is a potential essential prime if it is an implicant
of the Boolean function. Such an overexpanded cube will be called a
partially essential prime. Then a test is performed to check whether
the overexpanded cube is actually an essential prime. A necessary and
sufficient condition for detecting essential primes for a Boolean
function with binary dinputs has been known for some time ﬁl]. In the
case of multiple—valued inputs, Sasao gave a sufficient condition for
detecting essential primes {6] [7]. One step further, we shall prove a

necessary and sufficient condition for essential prime detection in the

T

multiple-valued case. This condition has been stated in terms of a new
consensus operation called the asymmetric consensus, and can be tested

by using a tautology checking algorithm [1] [6].

Tautology checking is a basic procedure used extensively in logic
ninimization, and detecting essential primes is one of its applicatioms.
In ESPRESSO-II (binary imputs) [l] and ESPRESSO-MV (multiple~valued
inputs) [4] properties of unate functions have been exploited to speed
up the tautology checking algeorithm. In this paper, we shall consider a
more general notion of unateness and show that the same resuits as those

for ESPRESSO-MV [4] still hold. Thus the tautology checking algorithm

can be further improved in speed.

In Section 2 we introduce the notation for multilple-valued logic
minimization. Different consensus operations are defined and compared.
In.Section 3 an algorithm for generating essential primes is described
which does not generate a prime cover. The relationship between this
algorithm and the EXPAND procedure is also investigated. Then we prove
a necessary and sufficient condition for detecting essential primes in
Section 4. In Section 5 the unateness of a Boolean function 1is
exploited for tautology checking. Finally we try to draw some

conclusions in the last section.

it e

2. Notation

Let us define some concepts in multiple-valued logic. A Boolean
function with multiple-valued inputs is a mapping
£: P, x Py x ... x P —3 {0,13
where Pi = '[0,1,...,pi-l } . A generalized Boolean function with
multiple-~valued inputs is a mapping
1 2
Each element of P

F: P, x P, X ... X Pn—a{o,l,d}.

x P X ... X P is c¢called a mnminterm. The
1 2 n
on-set, off-set and dc-set of a (generalized) Boolean function F are the
sets of minterms that have function values 1,0 and d, and will be
denoted by ON(F), OFF(F) and DC(F), respectively. Note that a Boolean

functioen can be characterized by its on—set and vice versa,

A cube is a Cartesian product S, x S5, x ... ¥ 5_ where S, € P, for

1 2 n i i
all i = 1,2,...,n. The Boolean function associated with a cube is a
product term. A cube t is an implicant of a (generalized) Boolean

function F if t M OFF(¥) =%. t is called a prime implicant if t is an

implicant of F and there is no implicant t' of F with t € t' and t' ¥ t.

Let C be a set of implicants of function F. Then C is called a
cover for F 1if every ‘minternl in the on-set of F 1is covered by an
implicant in C. 1If every implicant of cover C is a prime implicant,
then C is called a prime cover. Note that a cover for function F
corresponds to a sum~of-products expression for F. Thus the (two-level)
logie minimization problem is to find a prime cover for a generalized

Boolean function of minimum size.

Two defferent consensus operations have been used for detecting

essential primes [1] [7]. But we shall introduce a third one called the
asymmetric consensus. In the following these operations will be defined

and then compared.

Let t, and t2 be cubes where

1
t1 = S1 X 82 X oo X Sn and t2 = R1 x R2 X ese X Rn.

The consensus of tl and t2 is

tint, if €N 1:2# ¢
cons (tl’tZ) =

U (s

v 1{1 Rl) X vee X (Si U Ri) X ... X (Sn11 Rh)

otherwise.

The union consensus of t1 and t2 is

ucons (tl’tz) = i:q,n(sllﬂ Rl) X bes X (Si U Ri) X ... X (Snrj Rn).
The asymmetric consensus of t1 and t2 is

acons (tl’tz) = U (8111 Rl) X .. X (Si U Ri) X ... X (Snr1 Rn).

=N
S;v R‘-T"-' R{

¢ » then

I

Lemma 1 If tln t2
- cons (tl,tz)-= ucons (tl,tz) = acons (tl’tz)'

Moreover, if ty and t, are disjoint in more than one variable, then

2
cons (tl’tZ) = ucons (tl,tz) = acons (tl’tZ) = 45.

Proof: Omitted.
Lemma 2 acons (tl,tz) £ ucons (tl’tz)' |
If t; g tys then cons (tl’tz) L acons (tl’tz)'

Proof: Omitted.

Unlike cons and ucons, acons is not symmetric, i.e. acons (tl,tz)af

R 1

acons (tZ’tl) in general. Let us illustrate the differences among these

operations by an example.

Example 1 The 3-output switching function represented by the Karmaugh
maps in Fig.l can be treated as a Boolean function defined on
{0,1} X {0,11 X {0,1,2? . This function consists of cubes t, and

1

t2 where

e,= {0F = {1} x {0,1,2} and ¢, = {fo,1} = {1} = {1,2}.
Then coms (t;,t,) = {0} x {1} = {1,2}

weons (t,t,) = {0,1} x {1} x {1,2}) v {o} = {1} x f1,23
v fo} = {1} x {o,1,2}
{0,1} x {1} = {1.2} v{o} x {1} = {o0,1,2}
{o} = {1} x {o,1,2}

acons (tZ’tl) = {0,1} X {1} X {1’2} :

acons (tl’tZ)

Lemma 3 Let # denote the sharp operation, i.e. £y i t, = U hi
l:’an
L_Rl.#¢
where hi = S1 X ... X Si—l x (Si - Ri) X Si+l X vee X Sn' Then
acons (tl’tZ) = ‘ U acons (hi’tz)'
{=4,0
Si-Ri ¥ @

Proof: If tl n t, = ¢ , the result is apparently true. Thus we assume
that £y n t2 # @ . Since hi and t, intersect in all variables except
variable xi, we have

acons (hi,tz) = (Si N Rl) X ses X (Si_l{1 Ri—l) x ((Si - Ri) U Ri) x

CHNRL

Ri+1) X oo X (Sn N Rn)

(31!1 Rl) X oees X (Si_llﬂ Ri—l) x (Si U Ri) X
(Sjpp 0V Ryyp) x woe x (S5 1 R).

This Lemma then follows from the definition of acons.

3. Generating Essential Primes

Given a generalized Boolean function F. A prime implicant p of F
is an essential prime if p contains a minterm x in the on-set of F which
is not contained in any other prime implicant of F. The minterm x is

referred to as a distinguished minterm.

It is well-known that. any -prime cover for a Boolean function
contains all essential primes. Thus in most logic minimization systems,
fhe detection of essential primes is performed after a prime cover has
been generafed. But this can lead to pitfalls as demonstrated by the

following example.

Example 2 The Karnaugh map of a 4—inpu£ Boolean function is shown in
Fig.2. Assume that the initial cover for the function consists of
minterms. If the minterm ABCD is expanded first, it is likely that it
will be expanded into ACD. Then when ABCD or ABCD is expanded, the
product term BCD can be generated. Eventually we have the prime cover

{A&D,BCD,AE&,ABC} . Even though we can find out that ABC and ABC are
essential primes, we still have a prime covéf of size 4 while the
minimum cover size is 3. However, if we can detect the essential primes
ABC and ABC before the egpansion, then thosel cubes covered by the
essential primes can be excluded from the current cover. Consequently

we can obtain the minimum prime cover {ABC,ABC,ABD} .

Let us deseribe a procedure that can generate all essential primes
without generating a 'prime cover, This procedure can serve as a

preprocess for the EXPAND procedure mentioned im Section 1, so will be

referred to as PRE EXPAND.

Let C be a cover for a Boolean function F with nultiple-valued

*
inputs. The PRE EXPAND procedure computes the overexpanded cubes t for -

*

implicants t in C [3]. Note that the overexpanded cube t of t is the

smallest cube containing all prime implicants of F which contain t. If
*

the off-set of F is known, then t can be computed easily [3] [8]. The

%
PRE_EXPAND procedure also checks whether t M OFF(F) = $ or not.

% *
Lemma 4 If £ 0 OFF(F) = ¢ , then t dis a prime implicant of F.
* *
Proof: Since t M OFF = ¢ . t dis an dimplicant of F. From the

*
definition of overexpanded cube, t contains at least a prime implicant.

*
Thus t must be a prime implicant itself.

* * .
An overexpanded cube t satisfying t (1 OFF = ¢ will be called a
partially essential prime (with respect to cover C). Let
.k %
A={t \ t &€ G, t N OFF = ¢ } be the set of partially essential

primes. Then A contains all essential primes.

Theorem 1 Let C be a cover for functiom F., If p is any essential prime
*

of F, then p = t for some t € C.

Proof: Let x be a distinguished minterm contained in p. Since x is in
the on-set of F, x & t for some t € C. Then t € p, otherwise t is
contained in a prime implicant other than p contradicting the fact that
x is a distinguished minterm. Since p is the only prime implicant
containing x, p is the only prime implicant comtaining t. Thus from the

3 *
definition of overexpanded cube, t = p.

*
In Theorem 1, t () OFF = ¢ apparently. The following result

provides a quick check for essential primes.

* %*
Lemma 5 If t (1 OFF =& and t is a minterm in the on-set of ¥, then t
is an essential prime of F.

* . . *
Proof: From Lemma &4, t is a prime implicant. Actually t is the only
prime dimplicant containing ¢t. Thus t is a distinguished minterm

*
contained in t .

Let us demonstrate the algorithm for PRE EXPAND.
Input: A cover C for a generalized Boolean function F.
Output: A cover C for F which contains all partially essential primes.
Algorithm PRE EXPAND:
for each t &€ C do
compute the overexpanded cube t*
if t A OFF =¢ then
replace t in C by t*
delete all cubes in C that are contained in t*

endif

endfor

Even though PRE EXPAND does mot compute all overexpanded cubes in

general, it does generate all partially essential primes. An algorithm

_that can detect essential primes among these partially essential primes
will be described in the next section. For the rest of this section we
investigate the relationship between the PRE EXPAND and the EXPAND

x

procedures.

Given a cover C for a generalized Boolean function F. A prime
cover E for F is called an expansion of C if for any implicant t in C,
there is a prime implicant t' in E containing t. According to ghis
definition, the EXPAND procedure can generate an expansion of a cover

and its objective is to generate an expansion of minimum size.

Lemma 6 Any expansion E of C contains all partially essential primes, if
any.
* r}
Proof: If t is an arbitrary partially essential prime with t & C, then
%
t is the only prime implicant containing t. Since E must contain a
%
prime implicant containing t, we have t € E. This completes the

proof.

Due to Lemma 6 the PRE _EXPAND procedure can be considered as a
preprocess for the EXPAND procedure. It preprocesses certain cubes so

that part of a minimum expansion can be generated.

Example 3 The Boolean function represented by the Karnaugh map in Fig.3

has no essential primes. This function has a cover

C = { tl’tz""’té} where t1 = AD, t2 = BCD, t3 = ARCD, t4 = ABC,
= AB ACD. Th * =k 0BG, £, =G t, =A

t5 = ABC and t6 = ACD. - Then t1 = AD, t2 = BC, t3 = C, t4 = A,
* - - %* * ® :

tg = B and te = AC. Thus t; sty and t, are partially essential

primes, and the PREuEXPAND procedure generates the cover

* %* *
{tl sty g s tg } . After this preprocessing, the EXPAND

% % &
procedure can generate the prime cover {tl s By s t6 , AB } easily.

1

In contrast, if éRE"EXPAND were not applied first, the EXPAND

procedure could expand t3 or t, before e Then it is quite possible

- 10 -

that the product term AC would be generated. Eventually EXPAND would
- % * % .
generate the prime cover {AC, tl s By s t6 » AB} or

- % % x -
{AC, t1 s t2 R t6 R BC} s either of which is of size 5.

- 11 -

4, Detecting Essential Primes

Given a cover C for a generalized Boolean function F. Assume that
p is a prime implicant of F in C. We want to determine whether p is an

essential prime or not.

Let us make some definitioms.
Let D be a DC-cover for function F, i.e. D is a set of cubes satisfying
U t = DC(F). Define G = (C ~ {p}) UD as the set of cubes in C or

teD
D other than p, and define

H= U acons (h,p)
he &
H., = U cons (h,p)
1 hE G P
H2 = U ucons (h,p).
he &

First, let us consider two relevant known results {[1] [71.
Lemma 7 Let F be a gemeralized Boolean function with binary inputs.
Assume that p contains no cube in C - { p} . Then p is an essential
prime iff p N ON(F) ¢ H,.

Lemma 8 Let F be a Boolean functiom with multiple-valued inputs. If

P g; Hz, then p is an essential prime.

Tt should be noted that Lemma 7 holds only for binary-input,
single-ocutput switching functioﬁs even though it was claimeé to held for
binary-input, multiple-output switching functions [1}]. On the other
hand, Lemma & gives 5 necessary .condition for detecting essential

primes, but not a sufficient condition.

- 12 -

Example 4 consider the binary-input, 3-output switching function
represented by the Karnaugh maps in Fig.4. This function can be treated
as a Boolean function defined on { 0,1} x {o0,1} x {0,1} x {0,1,‘2}
and has a prime cover consisting of cubes

! {fo} x {0} = fo,1} x {1,2}

e, = 10,13 x {0} = {o} x {0,1}

;= 10} = fo,1} x f£1} x {1,218,

To check whether tl is essential, we compute Hl with respect to tl.

Hl = cons (t2’t1) U cons (t3,t1)

{0} x{O} X {0} X {1}U{0} x {0} X {1} X {1,2}

Note that tlg_’_' Hl but t is not an essential prime. Thus Lemma 7 is not

t

1

and t

true for binary-input, multiple-output switching functions.

To check whether t3 is essential, we compute I-I2 with respect to t3.

H

, = ucons (tl’tB) U ucoms (t2’t3)
so0) x {0,1} x {1} x {1,2f v
f0} x fo} x {0,1} x {1,2}

Here t3 c HZ’ but t3 is an essential prime. Thus the converse of Lemma

8 is not true.

bs shown in Example 4, cons (Hl) and ucons (HZ) can not provide a
necessary and sufficient condition for detecting essential primes in
multiple-valued logic. Thus we consider the new acons operation. We

shall prove that p is essential iff p 1 ON(F) & H.

Lemma 9 Given a generalized Boolean function F with multiple-valued
inputs. Let C be a cover for F and p a prime implicant of F in C.

Assume that D, G and H are defined as in the beginning of this section,

- 13 -

and assume that p (] h = Gb for all h € G.
Then p is an essential prime iff p N ON(F) Qi—' H.
Proof:
{ =>) Assume that p is essential.
Let x be a distinguished minterm in p. Suppose x € H, i.e.
x € acons (h,p) for some h € G.
Letp=RlxR2x...anandh=Sle x...xSn. Then from
assumption, pnN h =¢ and
acons (h,p) = (Sl n Rl) X oo X (SiU Ri) X oo X (Sn n Rn)
where Siﬂ' R, =@ and Sj n Rj#?s for j # i.
Lej: X = (xl,xz,...,xn). Then
x, € S.MN R, for all 3 # i, j = 1,2,...,n.
] J J
p P | I
Consider a minterm x (xl,...,xi_l,y,xi+l,...xn) where ¥ £ Si"
Then x' € acons(h,p) but x' € p. We have shown
x € acons(h,p) g P

This contradicts the assumption that x is a distinguished minterm. Thus

x ¢ H. Since x € p N1 ON, p N ON ¢ H.

{ &=) Assume that p is not an essential prime.
Then for any minterm x € p {1 ON, there exists an implicant t of F such
that x € tand t & p. Let

‘p=R1xR2x.,. anandt=Slx52x...xSn.

Then S % R, for some i. Let x = (x5%ys+0.,%). Since x € p M1 t,
x, € R, N 8§, for all i = 1,2,...,10.
] J]

. . ' = - R
Consider a minterm x (Xl""’xi-l’y’xi-i-l""’xn) where vy €& Si Ri.
Then x' &€ t and x' ¢ p. Since t is an implicant of F and x' € t,

there exists a cube h. € G containing x'.

Let h = T1 x sz xTn. By assumption, p /1 h = 9’5

- 14 -

But Rj n Tj% @ for all j # i because x € p and x' € h. Thus
acons(h,p) = (Tlﬂ Rl) X .u. X (TiU Ri) X woe X (Tnn Rn)'

Since %y ['I.'jﬂ Rj for all j # i and x, € Ri, x € acons(h,p).

Since x is an arbitrary minterm in p M ON, we have pMA ON £ H., This

completes the proof.

Theorem 2 Let C be a cover for a generalized Boolean function F with
nultiple-valued inputs, and let p be a'prime implicant of F in C. Let D

be a DC-cover for F and define

G=(~- {p})UD,

H

U acons (h,p).
“heg
Then p is an essential prime iff p N ON(F) g H.
Proof: We can construct a new cover C' and a new DC-cover D' such that
they cover the same sets of minterms as C and D, respectively, but

p N h' =¢ forall h' € ¢’

where G' = (C' = {p}) U D'. This construction is done by taking a
sharp operation on every cube h in G with h 1l p #+ @ . TFormally, C' is
defined as follows: p ¢ C'; if h € C- {p} andh N p = ¢,
then h € C'; if h € C - {p} but h n p # P , then every hié c’

where h#fp= U hi. D' can be constructed from D similarly.

It should be noted that whether p 1is an essential prime is
determined by the on~, off- and dc-sets (of minterms), not by the covers
for these sets. Therefore we can apply Lemma 9 to C' and D'. Then p is
an essential prime iff p {1 ON 1¢_ H' where H' = ’g&ficons (h',p).
From Lemma 3 we know that H and H' cover the same ::et of minterms. Thus

p is essential iff p ﬂ ON Q_i_' H.

- 15 -

In Theorem 2 we have to check whether p) ON €& H or not, It has
been shown that this can be done with a tautology checking algorithm [1]

[6].

Example 5 Consider the Boolean function and its prime cover {tl,tz,t3}
of Example 4. To check whether ty is essential, we compute H with
respect to t,.

H = acons (tz’tl) U acons (t3,t1)
f0,1} x{otx{o} x {1}ufo}xfo}x{o}x{o,1,2}u
f0} x fo,1} x {1} x {1,2}

Since t. £ H, from Theorem 2 t., is not an essential prime.

]

1 1

Tc check whether t3 is essential, we compute H with respect to t

acons (tl,t3) U acons (t2,t3)
{o} x fo} x fo0,1} x {1,2}

Since t, & H, from Theorem 2 ty is an essential prime.

3

1]

H

- 16 -

VT!

5. The Unateness of a Boolean Function

In ESPRESS0O-II [1] the unateness of a Boolean function with binary
inputs is exploited to speed up the tautelgy checking algorithm. 1In
this section we shall generalize the concept of unateness to a Boolean

function with multiple—valued inputs.

Let £ : Pl X P2 X v.. X Pn-—e {O,l} be a Boolean function with
multiple-valued inputs where Pi = {0, 1,000, pi—l} . Then f is monotone
decreasing (increasing) in value j of variable X5 0£3 Spi—l, if there
does not exist ilé Pl’ ize Pyseens EnfiPn such that

f(il,iz,...,in) =0 (1) and f(il,...,ii_l,j,ii+1,...,§n) =1 (0).

A multiple~valued Boolean function which is monotone decreasing in at

least a value of a variable xi is said to be unate in xi. A function

which is unate in all of its variables is said to be a unate function.

Lemma 10 Given a Boolean function £ with multiple-valued inputs.
If f is monotone increasing in all values of variable x, except value j,

then f is monotone decreasing in value j of variable X

" Proof: If f is not monotone decreasing in value j, then there exists

ie € Pe’ e=1,2,...,n such that

£}y Bpoenas®) = 0 and £Rp,eeesRy ps 35 Byypoenes %) = L.

This violates the assumption that f is monotone increasing in value Ei

of variable X Thus f must be monotone decreasing in value j of

variable xi.

In ESPRESSO-MV [4]ia function is defined to be unate in variable

X if it i3 monotone increasing or decreasing in all the values of Xy

- 17 -

From Lemma 10 such a function must be monotone decreasing in one
value of X Thus the unateness defined in this paper 1s more general

than that in ESPRESSO-MV.

Let C ='{t1, t2"“’ tk} be a set of cubes, i.e. a cover, where

th = Shl X Sh2 X +a0 X 5

Then C is said to be unate in variable x, if U S.; * By

h=t & hl
Syt P

hn’ h = 1,2,-on,k.

¢ is called a unate cover if C is unate in all wvariables xi, i =

1,2,...,n.

Lemma 11. If C is a cover for function f and if C is unate in variable
x., then £ is unate in x..
i i
Proof: Assume that C consists of cubes tl’ t2,..., tk as above. Let
Q. = S, ., and let j be a value in P, — Q.. We shall prove that f
i b=tk hi i i .
S},;-?"' Pf
is monotone decreasing in value j of X, - If this is not the case, then
there exists ieE;Pe, e =1,2,...,n, such that
f(il,...,ii,”.,in> = 0 and f(il,---s;{i_lsjsii_l_ls---sin) = 1.
Since (xl,...,xi_l,J,xi+1,...,xn) is in the on-set of function £,
(il,...,ii_l,j,ii+l,...,in)E tg for some g, g €& {1,2,...,k} .
Considering the variable X, in particular, we have j €& Sgi'

Since j & Qi and j € Sgi’ we have Sgi = P,. Consequently we obtain

(Xyseen S IRTE L SRR PPRY ,xn) € tg
which contradicts f(il,...,ii,...,in)= 0. Thus f is monotone decreasing

in value j of Xs.

Lemma 12. If f is unate in variable x, and if C is a prime cover for §,

- 18 -

then C is unate in xi.

Proof: Let C = {tl,tz,...,tk} where t. = § x S 2 X ... X 8

h hl h hn?
h =1,2,...,k. Assume that f is monotone decreasing in wvalue j of xi.
We will show that j ¢ Qi where Qi = th"k Shi'

Shi 7{ Pt‘

To the contrary, assume that jEEShi # Pi for some h €& -{1,2,...,k} .

Then for any xlé Shl""’xi—le Sh,i—l’ xi+16 Sh,i+1""’xne'shn’ we have

(xl""’xi-l’j’xi+l’"fxn) € th. Thus

f(il,...,ii_l,j,ii+l,...,§n) = 1 for any ieé.S e = i,

he’

Since f is monotone decreasing in value j,
f(xl,...,xi_l,xi,xi+1,...,xn)= 1 for any xiePi and xeé She’ e # i.

X..eX B is an implicant of f

Thus § X ... X S X Pi x Sh,i+l hn

hl h,i-1

containing ¢t By assumption § # Pi’ this contradicts that t, is a

h’ hi h

prime implicant. Thus we have shown j ﬁ Qi' In other words, C is

unate in xi.

The unateness of a cover is wuseful in determining whether a
function is a tautelogy. A Boolean function £ is a tautology if f(x)= 1

for any minterm x € P1 x P2 ¥ so. X Pn' A cover C is a tautology if it

covers every minterm of P, . x P, x...x Pn'

i 2

Lemma 13. Let C be a unate cover. Then C is a tautology iff C

contains the cube P, x P, x...x P .
1 2 n

Proof: The if part is apparent.
(=») Assume that C is a tautology.

Let C = {tl,tz,...,tk} where th = Shl X Shz X...X Shn’ h=1,2,...,k.

Let Q, = . U . Shi' Since C is unate, Qi # Pi for amy i = 1,2,...,n.
h=1s
Sf“‘ # Pl‘
- 19 -

Consider the minterm x = (il, Xpseees in) where §i<5 Pi - Qi' Since C
is a tautology, x € t:g for some g, g E{I,Z,...,k} .
Then xie sgi for any 1 = 1,2,...,n. Since xi¢ U 5 i and xié 5

::.f,k h
Sh:'#P‘.

gi

for any i, we have Sgi = Pi for any i, i = 1,2,...,n. In other words,

tg = P1 x P2 X ... X Pn' This completes the proof.

Theorem 3. Let C = {tl’ Epsenes tk} be a cover which is unate in

variables Kiseess X where 1fm<n. Each cube th in C can be expressed

as t, = uy X vy where u and v, are cubes in variables xl,...,xm and

h

IERRRE xn, respectively, Assume that

h

xm+

1,...,e and

u = P1 XeooX Pm for ?

uy # P1 X...X Pm for h = et+l,...,k.
Then C is a tautology iff the subcover {tl,...,te} is a tautology.
Proof: The if part is apparent.

(=) Assume that C is a tautology.
To the contrary, suppose that {tl,...,tei is not a tautology. Then
there exists a minterm (a,b) such that (a,b) ¢ th for any h = 1,...,e
where a and b are minterms in wvariables XyaseeesX and x

1’

respectively. Since t. = u

h X v, and uh = P

h h 1 X Je0 X Pm for

h=1,...,e, b ¢ vy for any h = 1,...,e. On the other hand, since C is
unate in fariables xl,...,xm, the cover {ue+1,...,uk} is unate. From
Lemma 13, { U ppreee uk} is met a tautology. Thus there exists a
minterm ¢ in wvariables xl,...,xm such that c ¢ uh for any h = et+l,...,k,
Consider the minterm (c,b) in variables EIFEEPRE 3P .Then (c,b) ¢ t, for
h=1,...,e since b é vh, and {(c,b) ¢ th for h = e+l,...,k since

c ¢ u, . We have showm that (c,b) is not covered bylany cube in C
contradicting that C is a tautology. Thus { tl,...,te} must be a
tautology.

- 20 -

Examp]:e 6 Let C = {tl,tz,ts,tl},tj} be a cover for a Booclean function
defined on {0,1,2} x {0,1,2} x {0,1,2} where

e, = {0,1,2) = {o0,1,2} = {1}

£, = {0,1,2} x {0,2f x {2}

e, = {0,1,2} = {0} x {1,2}

e, = {0} x {o,1,2} = {o,1}

e = {1} x {1,2} x {o,1,2},
Then C is unate in variable x,. From Theorem 3, C is a tautology iff
the subcover C' = {t ,t,,t,} is a tautology. But C' is unate in all 3

variables. From Lemma 13, C' is not a tautology. Thus C is not a

tautology.

- 21 =

6. Discussion

We have presentea a procedure PRE EXPAND which can generate all
essential primes without generating a prime cover. This procedure can
serve as a preprocess for the EXPAND procedure and generate part of a
minimum expansion of a given cover, Using the positional cube
representation [3] {9)], PRE EXPAND can be implemented to run in time
o(kk' + k2) where k is the number of cubes in the given cover for the

Boolean function and k' is the number of cubes in an OFF-cover.

Compared with the EXPAND procedure, PRE EXPAND is considerably
simpler and can run much faster. Moreover, since the EXPAND procedure
needs to compute the overexpanded cubes anyway [1] [3] [4], the overhead
introduced by PRE EXPAND is very little. In fact, PRE_EXPAND usually
can generate a large set of prime implicants and thus cut down the run
time of EXPAND. Consequently, the overail efficiency is improved. The
introduction of PRE EXPAND does not pay off only when the Boolean

function has very few partially essential primes.

We have proved a necessary and sufficient condition for detecting
essential primes for Boolean functions with multiple-valued inputs.
This condition can be checked by using a tautology checking algorithm.
Wote that this condition uses the asymmetric consensus operation

= g S
acons(tl,tz) (

(=120

SiuRi* K

1 n Rl) X vas X (Si 1 Ri) X ... X (Sn M Rn)

which rarely generates an excessive number of cubes due to the

constraint Si U Ri # Ri (e.g. 1if ty c tys then acons(tl,tz) = ¢).

- 22 —

On the other hand, the tautology check is performed only for partially
essential primes which constitute a subset of a prime cover. Thus no

1

excessive tautology checking needs to be performed.

The detection of essential primes can be performed right after
PRE_EXPAND has generated the partially essential primes, But in
practice, it is more appropriate to detect essential primes after EXPAND
has generated a prime cover sinece 1in this approach the asymmetric

consensus may generate fewer cubes.

The concept of unateness has been generalized to Boolean functions
with multiple~valued inputs. A cover is umnate in a variable if there is
a value in the domain of the variable which is not preseﬁt in the cover.
This definition of unateness is more general than that in {4]. But we
can still derive a quick check for tautology on a unate cover. Thus the

tautology checking algorithm can be improved in speed.

- 23 -

REFERENCES

[1] R.X. Brayton, G.D. Hachtel, C.T. McMullen and A.L. Sangiovanni-
Vincentelli, Logic minimization algorithms for VLSI synthesis,
Kluwer Academic Publishers, Boston, 1984,

[2] H. Fleisher and L.I. Maissel, "An introduction to array‘logic", IBM
J. Res. Develop., Vol.19, March 1975.

[3] §.J. Hong, R.G. Cain and D.L. Ostapko, "MINI: a heuristic approach
for logic minimization", IBM J. Res. Develop., Vol. 18, Sept. 1974,

[4] R.L. Rudell and A.ﬁ. Sangiovanni-Vincentelli, "ESPRESSO-MV:
algorithms for multiple-valued logic minimization", Proc. of the
IEEE Custom Integrated Circuits Conf., 1985.

[S] T. Sasaoc, '"Multiple-valued decomposition of generalized Boolean
functions and the complexity of programmable logic arrays", IEEE
Trans. on Computers, Vol. C-30, No. 9, Sept. 1981.

[6] T. Sasao, "Tautology checking algorithms for multiple-valued input
binary functions and their application", Proc. of the l4th Int.
Symp. on Multiple-valued Logic, 1984.

[7] T. Sasao, "Input variable assignment and output phase optimization
of PLA's", IEEE Trans. on Computers, Vol. C-33, No. 10, Oct. 1984,

[8] T. Sasao, "An algorithm to derive the comﬁlement of a binary
function with multiple-valued ipputs", IEEE Trans. on Computers,
Vol. C-34, No. 2, Feb. 1985.

[9] S.Y.H. Su and P.T. Cheung, "Computer minimization of multivalued
switching functions", IEEE Trans. on Computers, Vol. C-21, No. 9,

Sept. 1972.

- 24 -

0 1
1

0 1
0 1,2
1 2

0 1
0 1,2
1 2

Fig. 1. Comsensus Operations

OO

1 1
1 1
r B
1 1

A

\.

___.——'—\,-————"
D

Fig. 2. Generating essential primes before expansion

\. O

=

Fig. 3. The PRE_EXPAND procedure

——— 00 01 11 10
ol 2
1] 2
; 00 01 11 10
!
’ 0f 2,1 1,3 3
1| 2
00 01 11 10
ol 1 1,3 3

Fig. 4. Detecting essential primes

TR YRS 1

