'I‘R——sé—oo:;
—ERSHEHFAEABE RN R REE
OB W &
— Office Information System Design‘Methodolpgyjbr

An Interactive Office Automation System

EERE UGS I -
CHEIBEACHE B B
BEFGRAR (8 ' @
W BHE: M E £
B %R
B % x |
lﬂﬂllﬂﬂﬂﬂl)lﬂlﬂlljﬂﬂHMlllﬂ)lﬂ”(ﬂlﬂjl{ﬂﬂzﬂﬂllﬂmﬂﬂ - -

0042 ﬁ
h #E %-'_‘ ‘J;-Ez' E A

i A T

] B

%ﬁ%ﬁﬁ%ﬁiaﬁﬁ%ﬁﬁ'—ﬁiﬁﬁﬁ%%ﬁﬁ%’%ﬁ%
DI R B9 0E B BAAEE o & ABEERH AR HE - RARET —
SRR R EREAE (LODT) 2 BEREEF Bl 2k % ot I 3 2 2
WK » LWLUELHRERRAHES (ORAL) R « ORALTS
RAEWEAT S REBBEIE + JORE AT 000 I (6 8 R85 0
2 o ° L OD I A » REHET LS 7 3 B TR S 098 25 S0 2 oL e
HTE BB — B 4tk o

ABSTRACT

An effective design methodology is proposed for the
design of office information systems. An Interactive Office
De81gn Interface (IODI) isw developed, which guides a des-
igner to specify an office requirements in an interactive
way, and then generateé a specification brogram in an Office
Requirement Analysis Language (ORAL). The ORAL language has
the features of logic brogramming languages and data model-
ing, and provides the system with inference capability on
the execution of the specificatibn program. And one is able
L0 analyze and simulate the designed office procedures to
eénsure their correctness and consistency utilizing the IODI

interface.

Contents

Abstract

Chapter 1 INtrodUCLION == = +t+s=trtrnrattrrieutrronaneonreensesnnenesnnnnnsmnn.s 1
Chapter 2 Intefactive Office Automation System --ererericcerannn... 3
€hapter 3 Design an OIS System Using the 1ODI Interface 13
Chapter 4 Analysis of Office Procedure -=r-+-«re-ese- Teeetestesstaniea.., 23
Chapter 5 An Example : A Meeting Scheddling ------- MAAAAARRELIEIIET 27
Chapter 6 cOnclusionS.".u.".“.".".".u.".“.“".”.“."."."".”i 411
Appendix A srreseesens P T e e et aurren st et et ettt necaenoennness 43

References

'Chapter 1 Introduction -

Regarding the evolution of the office automation, it
can be divided into three growing stages [Ho82)] [Baum80].
The first ‘stage 1is the .use of autohation. equipments. The
second stage is procedure automation. And the.third stage
is management automation.

Among the three stages, the second stage is our goal to
achieve and the last stage provokes our motivation‘for this
paper. We can sée that each office procedure has its goal
and that to execute each office procedure is just to accom-
lish its goal. Using the artificial intelligence theory, we
can encode these goal-oriented procedures easily for estab-
lishing an office %nowledge~base.

We propose that an office automation system acduisites
the reguired knowledge threough interactive dialogue with
its user. As soon as some conditions occur at executing time,
the pffice automation sysiem can notify the users so fhat
they can manipulate these conditions immediately.

Several office models such as Augumented Petrl Net (APN
model) [Zism77], Information Control Net (ICN model) [E11i79
] [Cook80], and Form Flow Model (FFM model) [Ladd80] [Tsic82
al [Geha82] were suggested for the analysis and design of
office information systems.

The disadvantgge of both the APN and the ICN models is
the lack of inter-office procedure communitation mechanism.

The procedures to communicate with each other are difficult..

—i-

The ICN only models the procedures which does not have
predicate constraint. The FFM model, which puts an undue
emphasis on the form flow, can not express an office proced-
ure explicitly when it is related with many different forms.

Our design methodology is based on the logic deducing

and data modeling which utilizes the inference capability of

artificial intelligence.

i

Chapter 2 Interactive office Automation System

The Interactive Office Automation System (I0QAS) invol-
ves two aspects: the logic programming which is suitable for
system designers to describe and deduce office knowledge,
and the interactive interface which is convenient for des-
igners to update office knowledge or portray both office

environment and office mission.
2.1 ORAL Language

The ORAL language, a language used for specifying the
requirement of an office information systen, combines the
concepts of logic programming [Kowa 79] and data modeling

disciplines [Tsic’ 82b]. The semantic data model, together

- with the principles of aggregation and generalization,

offers the abstract mechanism to describe the environment of
an office. Also, by using the deductive capability of logic
programming, the specification power of the data model is
enchanecd.

The details of the ORAL language were described in [Jou
85]. In order to be self-content, some properties of the
ORAL language will be given in the following, and some
properties are modified and added for more usage.

2.1.1 Declarative and Procedural Interpretation

A term is either a constant, a variable, or a functional

expression of the form

T(t1,..., tn);
where t1, ..., and tn are terms, and f is an n-place func-
tion name.
An atom is a predicate expression of the form
p(t1, ..., tm);
where p is an m—piace prédicate symbol, and t1; ...y and tm
are terms. |
A clausé is an expression of the form
Bl,..., Bm ¢—— A1, ..., An.
where Bi1, ..., Bm, A7, ..., An are atoms. The atoms Al, ...,
and An are the conditions of the clause, and the atoms Bi,
-y and Bm are alternative conclusions of the clause. 1f
the c¢lause contains the variable x1, ..,, =xk +then the
interpretation is stated.as following:
for all x1, ..., xk
B1, B2 ... or Bm if A1, A2 ... and An.
A sentence is a set of conjunctive clauses.
For example:
Grandparent (x,y) <——— Parent (x,2z), Parent(z,y)
Male(x), Female(x) ¢&——Parent(x,y)
Ancestor(x,y) ¢—— Parent(x,y)
'Ancestor(x,y) ¢&—— Ancestor(x, z), Anceamm(x,z)'
Terms are abstractions of either physical objects or
logic entities. Atoms are predicate expressions with logic
values either true or false. An atom represents a proposi-

.

tion about the relationships among some terms which may be

-4

=

true or false. A sentence is interpreted according to the
conjunction of the clauses which the sentence contains.
Declarative interpretation of a sentence can be regarded as
a true-or-false assignment to every atom which can be const-
ructedrfrom the predicate symbols occurring in the sentence.

The - refutational procedure [Nils 80] gives an oper-
ational interpretation to a logic program. Using tdp-— down
inference, a logic program allows a procedural ihterpret—
ation which is comparable to the procedure call of the con-
ventional programming languages. Yet with even more distin-
guished characteristics, such operational interpretation is
very suitable for the specifying quality of office proce-
dures.

Procedural interpretation of a Horn clause of.the form

B é———;-A1, «vvy An. n> 0 |
is interpreted as procedural declaration, where B is called
a procedure head. The procedure head identifies the forﬁs of
the ﬁroblems-that the procedure intends to solve. (al, ...,
An) is a set of procedure calls constituting the procedure
body. Here, B is also called a goal, and A1, ..., An are
célled subgoals.

Since our first step is to reduce individual goal to
subgoal, we therefore start from the goals by repeatedly
applying +the top—doyn inferential rule to them. Following
the declared procedure anﬁ matching the substitutions, the

execution mechanism or the interpreter can reach to the

—5-

e

final solution, if there is any.

2.1.2 Type and Relation

A collection of objects with similar properties are
categorized into an object type. Common office object types
are: form, lette;, repositories, personnel, organization
units, business events, etc. The object types can.be divided
into two groups: one is primitive types: the other, non-
primitive ones. Primitive types provide basic sSemantics of
specific office applicable domains, including Ainteger,
character, graphic, audio, etc. Whereas non-primitive types
are added by specializing ahd'aggregating primitive types or
other non-primitive types with additional semantic.

By definition, an n-nary relation R is a subset of
Cartesian products'over domains of n object types. In ORAL
language, a relation can be expressed by specifying the name
of the relation and the type of each attribute.

The membership condition of aftributes which defines
the permissible occurrences of tuples in a relation is
calied the intention of a relation, and 2 subset of the n-
nary cross products dictated by the intention of a relation
1s called an extension of the relation. Each tuple in the
extension denotes a specific fact relationship among objects.
The extension is changeable by insertion or deletion of
tuples. i

Like cardinality constraints of type's extension,

e et e i

cardinality constraints on the extension of g relation
embody some real-world semantics and should be encoded in
specification to check the completeness and consistency. We
can spécify the cardinality constraints in two ways:

(1) Individual cardinality. Attribute:(L;.U), where
tﬁe L and U are the minimum and ma ximum occurrences of a
relation. As the example we have just mentioned, that is,
obj: (1..1), it means that obj of private-obj type occurs
exactly once. If the minimum or maximum occurrences is not
1imi%ed, we use the symbol "-" o express L or U respective-
ly.

(2) Mapping cardinality. Attribute 1 : Attribute 2 =
(L1..U1) & (L2..U2), -where (L2..U2) denotes that each
instance of Attribute 1 is mapped by the relation teo at
least L2 and at most U2 instances of Attribute 2. and so
does (L1..U1) mean.

2.1.3 Procedure

Each procedure in an office can be expressed in a proc-
ess. In fact, a process is a goal étatement which contains
one or more subgoal statements, that is:

{office procedure> := prc¢ <process id®» <goal statement)>
whefe <process id> is the office procedure name.

Like the form: A &—— B, C, D. indicates, A is the
goal statement and iB, C, D are the subgoals. For each

subgoal we may have B ~—B71,..., Bg, C e—C1, ...,

CK, where B1, -++y Bg is the body of subgoal B. According to
this way we define each subgoal as a process, that is, prc B
«——-B1, ..., Bqg. Following. these refined steps, the execu-
tion monitor can operate on interbreting these processes to
accomplish the gogl of the procedure. And eachrbasic oper-
ation which can not take any refinemént is accomplished by
software tools like activity specialist.

Many dffice activities are either event-driven or mess-
age-driven in their nature. The event-driven activities mean
the appropriate actions which will be taken only after some
events have occurred; whereas the message—driven activities-
are invoked only when certain messages have arrived.

It is easy to depict the event-driven nature of an
office application.in the requirement specification as shown
in the following:

trap <(relation id> { para 1, ..., para n) ——Al, ...,
An. A trap procedure will monitor the designated relation
and try to match with a tuple within its extension. If an
action affects this relation and the side~éffect results in
a match, the.trap procedure will be triggered. The body of a
trap is the same as that of many ordinary procedures. Once
raised, the body of a trap will be executed just like any
other goal statements.

We specify message-driven activities by using communic-

ation predicates:

|

message <(relation id>(para 1, ..,para n) é——A1,.An
with-time-bound : duration;
time-bound-proc : B1, .;., Bn
end;.
When (A1, ..., An) are put into execution and yet unable to
find its conjugate predicate within definite time-bound, the
(B1, ..., Bn) will be taken immediately. Such actions may be
to put (A1, ..., An) into‘execution repeatedly or to take
other exceptional actions.
Conjugate predicate can be expressed as the following
form:
conjugate <relation id 1>, ¢(relation id 2>'

2.2 I0AS System Architecture

USER

1

User Interface

— Hybrid .I0DI
user interface interface
7

/

\
@ , AIF
4

Translator
' trap Procedure
Predicate
OKPB Monitor
[|

; Qffice Procedure
lExecutor

ODDB ~
: Figure 1

~O-

The system architecture of the IOAS system is illust-
rated in figure 1. It is composed of a User Interfaée, a
Translator; a Procedure Predicate Monitor (PPM), an Office
Procedure Executor (OPE), and a Relational Database Manage-
ment System. The User Interface provides a hybrid user in-
terface which may contain a Form -Manégement System or
something elsé, and an IODI interface. We will give detail
discussion about IODI' interface later, and the others are
described thoroughly in [Jeng 84].

Here, we give an outline of eachrpart. The IODI inter-
face is employed by office designers to generate a specific-
ation program expressed in the ORAL language and an Analytic
Internal Form (AIF) for consistency checking. The Translator
translates the ORAL specification program into internal data
which is stored in the relational database. The PPM moniter
scans both Office Description Database (ODDB) and Office
knowledge Database (OKDB). While an event is driven, the
name of the invoked procedure is passed to the OPE, the OPE
executor then begins to perform the invoked office procedure
using the specific algorithms.

The design methodology is emhbedded in the IODI inter-
face. Following the interrogating steps of the IODI inter-
face to describe an office information system, a designer
can complete his work easily.

The I0DI interfacé is an interface between an office

information system and its designers. The I/0 configuration

-10-=

of the IODI interface is illustrated in figure 2:

User

10DT
Design Phase | -— = Analysié Phase
LN : /
ORAL language AIF internal form
program
Figure 2

The IODI interface converses with the ﬁsérs through a
series of questio;s, tfying to get an abstracf view of an
office environment and its missions. The users will look at
a picturesque office scene free from being bothered by the
terminology that computer language uses.

.While the design process is ongoing, the IODI interface
generates an AIF internal form and uses it to display some
illustrative diagrams 'for expressing the present system
architecture. Thus, a user can examine how much work he has
done; meanwhile, he is able to correct errors as soon as he
finds any. If the users should overlook any fault, the IODI
interface will pick it out which is the function of the
I0ODI's consistency checking.

To sum up, four features guiding the design using the

10DI interface are:
—11-

(1 Interactivé to the users, and user-friendly interface.
{2) Real-world view. Thfough the device of the IODI inter-
face, users caﬁ éimulate the office activities similar to
the ones in the real world.
(3) Semi—automatic.office-information system design. Follow;
ing the interrogating steps, the IODI interface provides a
semiautomatic method . for designing an office information
system. |
(4) Self-consciousness. The I0ODI interface seeks to improve
the correctness and completeness of an office information
aystem by interactive extréction-of the user's Eknowledge.
The analysis phase uses the AIF internal form as input,
and finds out some faults introduced in the design phase.
For strictly typed data model of the ORAL language
specification, type consistency checking in this phase is
easy. Each office procedure is a process expressed by the
ORAL language. By decomposing this process, we may get the
goal and the subgoal statements. Accordingly, we can obtain
each step for accomplishing the office procedure. It means
that, we can prove whether the procedure is correct or not

simply by tracing these steps backward.

Chapter 3 Design an OIS System Using the IODI Interface
'We can divide office applications into static (environ-
ment) and dynamic (mission) aspects. Static aspect involves
office organization structure, offibe—position structure,
office policy, and so on. It represents a kind of declaration
when a designer describes those components. Dynamic aspect,
on the other hand, involves office mission or procedure-
which is composed of many office operations. \
Spbsequently, the IOKI interface iﬁtends to get an
abstract view of office environmment and mission through a
series of questions.
3.1 Office Environment Design
3.1.1 Organization Structure
When a designer facing the office environment design,'
the primary consideration must be the office organization.
The understanding of the office organization will surely be
of great help to the designer. when describing an office
infofmation system. An organization usually consists of many
departments among which, the relations may be either ver-—
ticaliy hierarchical or horizontal.
The followings are the describing steps.
(1) Define each department's attribute.
The default type "department" is provided for designer.
type departqent with
department-code : code, key;

name : name;

~-13-

address : address;
tel-no : telephone-no
end;
Designer can make use of this default type to specity a de-
partment's type.'Besides, he may either add some attributes
or define a new type to meet his requirement.
(2) Describe relations among departments.
The '"subordinate-to'" relation is a defauit relation:

relation subordinate-to(sub:department, spv:department)

with
cardinality
sub:spv = (-..-) : (1..1);
derivations y
subordinate~to(sub, y: department),
subordinateéto(y,spv)
end;

(3) Define the attribute's type.

Basically, the system provides some primitive type. But
for requirement, the designers may want to define some other
attribute types.

(4) Specify the extension of these types and relations.

The IODI interface will examine all the attribute
tyﬁes. If it is not a primitive type, the IODI interface
will display it to the aesigner and then ask for a defini-

tion.

~14-

1 g et 5 b S

A et B e R

There are various ways of ''question and answer", all of
which COnfomn to acceptable standards; however, some ways
are awkward and others elegant. Yet we suggest one of them
as an example and illustrate it in apﬁendix A.

3.1.2 Office-Position Structure

Even though in a total automated office, human being is
still indispensable because office workers serve as the
agents of office procedures. Besides, they are supposed to
take the responsibilities of decision making.

In an office-position structure we also have some
default types and default relations. The "employee'" is our
default type. We regard every person in the office -organiz-
ation as an employee. If we examine an office organization,
we find a hierarchy of management personnel controlling the
office workers. The '"direct-under" is our default relation.
By using it, we can declare each direct-under (employee-
boss) relationship. Alsc we consider that direct—uﬁder
relationship has derivative property.

The describing sfeps of the office-position structure
are:
(1) Using the default type "employee' to describe each off-
ice-position type of each department.
(2) Secondly, desingner comes to describe +the direct-
under relation among office-~position types. Using the
default relation, that is, ''direct-under", designer may acc-
omplish this work. In this step, designef also may define

-15-

other relations about personnel such as those of '"report-
to", "team-work'", "group-with'', and so on.

{(3). When designer describes type, some new non-primitive
typescan be generated. Under such circumstances, the I0DI
interface will store and also exhibit those types, acquiring
designer to define them.

3.1.3 Office Policy and Regulation

There exist many rules to constrain the office en-
vironment configuration. They can set an arbitrary collec-
tion of office objects into an orderly way. These rules re-
flect either the policies of an enterprise and security
regulations or restrictions imposed by the surroundings of
the office.

We will try tb use the logic programming to express the
restrictions on office objects. But owing to the lack of a
formal form so far, even a rule may have many different ways
of expression.

We can express these ruless or regulations as '"Promise
ié——-—nconditions” which means that if somé conditions are
satisfied then the promise is asserted. We find that these
conditiopé can be divided into two parts: one involves the
events related to quantity; the other involves facts.

For the guantifiable events we may provide some mathe-
matic operators to express them, such as : .GT. (greater),

.EQ. (equal), .LE. (less), .GE. (greater or -equal), ,SUB.

~16-—

(subtract), .ADD. (add), etc. For example, the rule '"One may
get promotion if he Jjoins in the company over three years."!
cdn be expressed by
get-promotion(x:employee) &——
.GT. (.SUB. (Current-date, x.join-date),3)

(here, assuming the value of .SUB. (current-date, x.join-
date) is represented by the unit 'year}). Following this way
we can express the rules reléted to quantity.

As to the rules involving facts, the condition part of
our form éan be regarded as the other facts, since as long
as these facts are satisfied then the promise may come true.
For example, the rule "When the president is absent, the
viée—president takes the responsibility of presidency.' can
be expressed by

responsible (x:employee, m:meet) ¢——
president (%:employee, m).
responsible (x:employee, m:meet) &——
president(y:emﬁloyee, m},
absent (y,m),-
vice-president{x,m).
Using this method, the designer can describe all the rules
of policy and regulation.

In summary, there are two steps in the office regula-
tion and policy description.

(1) Use the logib p;ogramming to represent the policy and

regulation.

-17 -

1 A Yy B BARDES Harg r

AL T A LR At L e T A

(2) Define the additional types which are generated at‘step
1. '
3.1.4 Working Facilities Associated With a Position

Most office actions are centered around the manipula-
tion of office faciliities which are the entities, such as :
messages, documentg, letters, forms, repositories, and data

files,etc.. In this section, we define the authority of each

facility and assign its accesses according to each office

position. Such kind of description is called facilities/pos-
ition assignment.
The description of facilities/position assignment has
five steps:
(1) The IODI interface has a default relation 'own', so it
asks designer to describe each facility type and the cardin-
ality of this relation according to the office-position that
designer has described.
(2) A designer may assign other relations among these fac-
i1lities. the IODI interface can display all the office-
pbsition type and facility type to assist aldesigner in acc-
omplishing his work.
(35 Using the inference capability of the logic programm;ng,
a designér may induce some other relations or properties.
For example:
accessible(e:employee’, o:object) &
own(e,o0);
own(x:employee, o), authorize(x,e,0).

~18-

-(4) Now, the IODI' interface displays each facility type which
the designer just described to assist the designer in defin-
ing the facility type.

(5) If there are some other non-existent facilities types,
the designer may describe them at this moment.

3.1.5 Duties Associated With a Position

For each office—bosition; there are some duties or re-
sponsibilities which we call office-position behavior. For
example -: a manager should hold =z meeting every weekend and
his secretary has the responsibility to inform everyone who
is supposed to attend the meeting.

Using the relﬁfion declaration or deductive capability
of logic programming, a designer can express these behaviors
easily.

According to office-position structure, the I0ODI inter-~
face displays each office-position one by one to assist
designer in defining thei; behaviors. The deséribing steps
can also’be divided into three parts:

(1) Specify each duty.associated with each office—poéition.
(2) Describe each responsibility induced from some relations
or facts.

(3) In the above describing steps, some types may be gener-
ated. Accordingly, designer should define them as well.

[]
3.1.6 Current State ,of Office Environment

Regarding the office processes, some special facilities

~19-

which can be manipuiated by those processes are called con-
stants, such as: some special documents or some special
meetings which will be refered to in office process. Such
special facilities must be declared also.

Before the I0AS system starts working normally on the
office information system it must have known ail the occ-
urrences existing in all types and relations (i.e. all the
extension of type and relation). At this moment, when a
designer is asked to enter these occurrences, the IODI
interface will display all the attributes in the type and
all the parameters in the relation one by one. With such
assistance, a designer can accomplish his description
efficiently.

Each attribute and each parameter has its own defined
type while designer comes fo describe them. In accordance
with that premise, the IODI interface may take up type con-
sistency -<checking when designer fills out the occurrences.

To sum up, we get three steps:
(1) Specify the special facilities in the office information
system.
(é) Define the additional types which are added to the
system in step 1.
(3) Describe all the occurrences of all types and all the

tuples of all relation.

3.2 Office Mission Design

3.2.1 Missions

An office consists of people interacting in an eﬁ%iron-
ment to carry out the mission of 4 business, such as :
meeting handling, enrollment, procurement, etc. Missions
guide the designer in describing a request for the office
information system.

A mission can be affected by three components; they are
: (1) personnels,(2) procedures,(3) facilities. Personnels
are "the .persons who have the responsibility and duty to
trigger and finish this mission or who are involved in this
mission. Procedures are the steps to accomplish the mission,
énd the facilities are those involved in the execution of the
procedures.

The 10DI iﬁterface takes several steps for asking a
designer to describe a mission:
(1) If this mission is an event—driven process, the designer
descfibes the trigger condition and entities which will be
invoived. And the IODI ‘interface generates a 'trap" head to
represent it. It the mission is a message-driven process,
the designer, on Ehe other hand, must describe time-bound,
time-bound-proc and its conjugate process additionally.
(2) When the mission is under execution, it will involve
many personnels. Sq the designer has to describe them at
this time.

(3) Furthermore, this mission will also invoive many facili-

921

ties, so the designer should pick them out for the I0DI
interface.

3.2.2 Procedures

Since edch mission can conéist of many procedures (in
other words, process), a designer has to describe them in
detail. As we have mentioned in section 3.1.3, each proced-
ure, being like a goal, can be reduced into subgoals until
it becomes a basic operation. Therefore, we use the form.
Goal(...) é—— subgoal (...) .,,,, subgoal(...). The
IODI interface displays "Goal(...) &——" which is the
mission name at first time and asks a designer to describe
"subgoal (...), ..., subgoal(...)". Then the IODI interface
checks each subgoal, If if is not an existent relation, a
basic operation, of a procedure héad of other procedure, the
IODI interface displays "Subgoal(...) &———" to request a
refining goal for this subgoal.

In this strategy there are two steps;
(1) Employ the inference capability of logic programming to
aescribe the procedures which constitute the mission.

(2) Define the additional facility types or relations that

are not described in office environment design.

Chapter 4 Analysis of Office Procedure

According to the AIF internél'form, the IODI interface
will take up the type checking if some types or relations
are not existent, and simulate_the procedure execution ftfo
find out some contradictions or incorrectness. And the
analys;s phase Wili notify the design phase to inform- the
designer. The analysis phase is simultaneous}y as éctive as
the design phase. The design phase will ask informations
from the designer and put them into the analysis phase which
gtill take up checking. If there is any inconsistency occurr-
ing, it will notify the designer through design phase.
4.1 The output of the IODI interface '

The 10DI interface has two outputs: an ORAL specificat-
jon program and an AIF internal form. Now, we will explain
how to establish them.

In the type declaration, -the head "type'" can be gener-
ated by the IODI interface, and the attributes within the
type are filled by the designer. The IODI interface inquires
the designer for describing the attfibutes of this type, and
then displays the attributes described <for assistance.

The way to declare a relation is the same as the one to
declare a type. The IODI interface generate the "relation”
head, and then the designer describes each parameter name
and corresponding typé. After the designer has finished the

parameter description. the IODI intertace will ask whether cardinality and de-

923

rivation are necessary or not. The designer has to specify them if necessary.
Because the patterns of the ORAL language are strict,
the I0DI interfacé only gets the information from the
designer and fills out the patterns. Thus, the ORAL sp-
ecification program can be accomplished without any troubie.

The And-Or tree diagram is shown in figure 3.

goal

-

And tree

subgoaq ' subgoal subgoal
Or tree
figure 3

The goal presented in the And-tree means that it will
be accomplished only when all subgoals are successfully
obtained. On the other hand,‘in the case of Or-iree, the
goal will be accomplished as long as any of the subgoals is
done.

Using the And-Or tree structure, we may express the
deduction rule easily. When a designer inserts or deletes a
rule from the office information system, all the IQAS s¥§tem

has to do is add or delete a branch of the And-Or trees.

R ¥ -

2D e ki o I e

T

E 2
]
H
"

AT ¢l N

e e et L

According to these And-Or trees, we can simulate the
procedure execution only by tracing them. Then we may find
out some contradictions or incorrectness.

4.2 Analysis Functions

First is the-type consistency When designer describes
the offlce information system, the IODI interface can store
all the types that he has described. The;efore,- if some
types have not been defined exactly, the designer will be
informed of describing them.

As to the relation consistency, gimilarly, if any type
of paramenter checked by the IODI interface checks is not
declared, the designer will also be informed of déscribing
it. Later, when designer fills in the extension of these
relation, the ICDI interface may check each type of parame-
ter for consistency.

A goal consists of many subgoals. If the relation among
these subgoals is And relation,'it represents that all sub-
goals must be satisfied at the same time. But sometimes they
can not be satisfied simultaneously. Uning the inferential
rule, we hay find out this inconsistency.

We can simuléte all the office procedures represented
with And-Or tree in the AIF internal form. A result may be
found and the IODI interface displays it to the designer to
check whether the résult corresponds to his requlrement.‘At

each step of this analyzing process, the IODI interface

—95.

2
b
2
&
3

shows the intermediatéd result and the deduced rule which it
takes to the designer, and asks weather the result is
correct or not. The designer may forward the process if the
result is correct; otherwise, he dught to terminate it. When
he terminates the prﬁcess, the IODI will require the know-
ledge for deducing correcting procedure. At this point, the
designer may enter the new knowledge or update the old

knowledge given by mistake.

Chapter 5 An Example : A Meeting Scheduling

Based on the description of section 4, here we illusirate
a meeting scheduling procedure [Byrdsz, JouéS] as an example.
It may not cover all the features of our interrogating steps
in the IODI interface, but it can present an overall view of
how the IODI interface works.

A quarterly reporting-conference will be called by the
director of the office. The meeting scheduling mission can
be constituted of five procedures. They are: (1) Notify the
secretary of preparing for the meeting when the next meet-
ing-time is upcoming. (2) Find out a non—conflict%ng time
ihterval from the participants' calendars. In the meantime, a
conference room with enough capacity should be reserfed for
the soﬁeduled pefipd. (3) Draw up a quarterly-meeting-
notice. (4) Record this meeting;notice in a log file. (5)
Inform all the attendants. |

5.1 OFFICE ENVIRONMENT OFESIGN.

(1) Organization structure.
step 1:

type department with
department-code : code, key;
name : name;
addregs :+ address;
tel-no : telephone-no

end;

AT -

o
i
?

i

type division ISA department;
type section ISA department;

type class ISA department;

step 2:
: relgtion subordinate-to(s:section, d:division)
g . with cardinality
; ; sid = (-,.=): 1..1)
: end; |

relation subordinate-to (c:class, s:section) with

cardinality

¢is = (~,.=): (1..1}

end;

i v R et R A i i

relation subordinate-to(sub:department, spv:depart
ment) with

derivations

subordinate-to{sub, x:department),
‘subordinate-to(x, spv)
end;
ﬂere the type "department" and the relation "subordinate—to"
are our default type and default relation respectively.
(2) Office-position structure.
step 1:
type employee with
id : (name', residential), key;

name : name;

end;

‘type

end;

type

end;

type

i

residential : address;
join-date ; date;

sex : sex;

marital-stétus: mar-status;

title-held : title;

weight : weight;

clearance : security ‘

manager ISA employee with
title-held : (Manager);
weight : (Important, Very-important);

clearance : (Confidential, Top—séqret)

secretary - ISA employee with
title-held : (Secretary);
weight : (Low J;

clearance : (Ordinary);

performance : performance

section-chief ISA employee with
title-held : (Section-lead);

weight : (Low, Middle; Important);
clearance : (Classified, Confidential)

class-lead ISA employee WitE_

—209-

title~held : (Class-lead);
weight : (Low, Middle);
clearance : {(Ordinary, Classified)
end;
type staff ISA employee with

title~held : (Employee);
weight : (Low };

clearance : (Ordinary);
performance : performance
end;
step 2:
relation direct-under (s:secretary, M:manager) with
cardinality
simo= (1..1) : (1..1)

end;
relation direct-under(s:section-chief, m:manager)with

cardinality
smm = (1..=-):(1..1)

end;
relation direct-under (c:class-lead, s: section-
chief) with
cardinality
c:s = (1..-):(1..1)
end;
relation direct-under (s:staff, c:class-lead) with

cardinality

s:c = (1..=):(1..1)

~30-

end;
relation direct-under (e:eﬁployee, b:employee) with
derivations

direct-under (e, x:employee),
direct-under(x,b)

end;

stép 3:
type sex = {Male, Temale } ;

type mar-status = { Single, Married};
type title-held ={ “anager, Section-lead, Classs

lead, Secretary, Employeel;
type security = { Ordinary, Classified, Confidential,
Top-secret};

type weight'= { Low, Middle, Important, Very—import—

ant}; v |.
type performance = { perfect, Good, Fair, Poor, Bad } H

(3) office policy and regulation.

Suppose theré is only one policy, such as the months

when the guarterly meeting is held.
step 1:

prec quarter—meeting—month(m:month) —

.BELONG-TO.(m, { Jan, Apr, Jul, Oct}).
step 2: F
type month ={ Jan, Feb, Mar, Apr, May, Jun, Jul,

' ‘

Aug, Sep, Oct, Nov, Decl; I

(4) working facilities associated with 2 position.

-31-

y

Here assuming that document, repository, private-
calendar are the working facilities associated with manager,
secretary, employee respectively.

step 1: i
relation own (m:maﬁager, d:document) with
cardinality
d: (1..1)

end;

relation own(s:secretary, r:repository)with
cardinality

r:{1..1)
end;
relation'own(s:secretary, 1:location—ca1endarj with
cardinality
T:(1..=)

end;

redation own(e:employee, p:p;ivate—calendar) with-
cardinality
p:(1..1)
end;
step 2:
relation authorize(sown:secretary, sacp:secretary,
r:repository)
cardinality
sown:%acp = (1..15:(* =)

‘end;

-39~

relation authorize(sown:secretary, sacp:secretary,

l:location-calendar)
cardinality

sowﬁ:sacp:1=(1..1):(-..—):(T..—)

end;

relation authorize(e:employee, s:secretary,
p;privateucaiendar)
cardinality

eis =(1..=-3:(1..1)
end;

step 23:
pre acc;ssible(s:secretary, r:repository) é=—
own(é,r).
prc accessible(s:secretary, r:repository) é=—
‘own(x:secretary,f),-authorize(x,s,r).
| prc accéssible(s:secretary, l:location-calendar)

(——%~ own(s,1).

prc accessible(s:secretary, l:location—caiendar) &
— %wn(x:secretary, 1), authorize(x,s,l).
pre acce§§ible(e:employee, p:privatemcalendar) -
‘w - ownke,p).
- prc acces%ible(e:employee, p:private-calendar) &-—
- own(%:employee,p), authorize (x,e,p).
Step.4: ;

type document ISA text;

type repository ISA log-file;

T

I
]
t
1
1
i3

type

type

end;

type

end;

type

end;
type

step 5

type

end;

private-calendar ISA calendar;
text with

content:content

log-file with

content: content, cardinality (1..-)

calendaf with
date: date, cardinality (1..-);
busy-status: busy-status, cardinality
' date: busy-status =(1..1):(1..1);

interval : time-interval, cardinality

date: interval =(1..71):(1..1)
busy-status =(Busy, Leisure);

meeting-notice ISA document with
name : name;
date : date;

loc : place

{(5) Duties associated with a position.

In this example, if a manager is an executor, he has to

hold the guarterly meeting; also, a secretary under the dir-

ection of the executor has the responsibility to schedule

this meeting. And those employees whose weight in official

-34-

 % duties is up to certain degree should attend the meeting.
: step 1: |

relafion hold(e:executor, m:meetihg) with

cardinality
emm = (1..1):(1..1)

end;
step 2:

prc attend (e:employee, 'Quarterly-meeting') &——

.GE. (e.weight, 'Middle*).

prc attend(e:employee, 'Annual-meeting') (- ~ -
.GE.(e.weight, 'Important').
prc resnonsible—for—schedule(s:secretary, m:meeting
&——— direct-under(s, e:executorj, hold(e,m).
step 3:
type executor ISA manager with
weight : (Very-important)
end;
type meeting with
name : name, key;
f_ end:
(6) knowledge for current office en;;ronment.
step 1:
const Quarterly-meeting : meeting;
const Quarterly-meeting-notice : name;
const Quarterly—meeting—file : repository:

step 2:
5o

Because there is no additional type generated, I0ODI

may skip this step.

step 3:
division:
department-code]’ name . address tel-no _

;; 707 [PLANS DIVISION | 10 , EPERPET]
éf 102 PERSONNEL DIVISION | 123-1235
ik .
3

gsection
!} department-code | néme address tel-no
i 201 R and D SECTION | -..--- 456-1234
Ei- 202 'TECHNIQUE SECTION | 456-1235

subordinate~to(s:section, d:division): :

e .

\' section division

| 201 101 | |
ik . I
1k I
| 202 101 ;

5.2 OFFICE MISSION DESIGN.
(1) Missions.

The quarterly meeting is an event-driven mission in

which the personnels and facilities involved may be des-

cribed as following:

—56—

step 1:

~trap At-time(y:year, Quarterly—meeting—month(m:

month))

step 2:

personnels : secretary, emplqyee, executor.
step 3:

facilities: private-calendar,

location~-calendar,

meeting-notice,
Quarterly-meeting,

Quarterly-meeting-notice,
Quarterly-meeting-file.
(2)‘Procedures.
step 1:
trap At-time(y:year, quarterly-meeting-month(m:

month)) &—— responsibe-for-schedule
(s:secretary, 'Quarterly-meeting'),

schedule(s, 'Quarterly-meeting’,
t:time-interval, 1: location-caléndar,
mt:meeting-date),

create-meeting-notice

= ('Quarterly-meeting-notice', mt, 1,
n:meeting-notice),

depogit(s, n, 'Quarterly-meeting-file'),

attend(e:employee, 'Quarterly-meeting'),

send-to(s,n.e).

—37-

prc schedule (s:secretary, m:ﬁeeting, t:time-inter-
val, l:1ocatioh~calendaf, mt:meetiﬁg—
date) eé——@
attend(e:employee, m),
- free~time(e,t,mt), ’
find-place(mt,t,1),
.GE.(1.capacity, .SUM. (attend(e, m))),

reserve-person-time(s,e,mt),
reserve-loc-time(s,1l, mit).

prc free-time(e:employee, t:time-interval,
mt:meefing—date) —
own{e, p:private-calendar),
.GE,(p.interval,t),
.EQ.(p.busy-status, 'Leisure'),
.SET.(p.date, mt).
prc find-place(mt:meeting-date, t:time-interval,
l:location-calendar) «&——
.EQ. (mt, 1l.date),
.GE.(1.interval,t),
;EQ.(T.busy—status, ‘Leisure').
.prc reserve-person-time(s:secretary, e:employee,
d:date)- &—
own(e, p:private-calendar},
.EQ.(p.date, d),

accessible(s,p),

-38-

————

.SET.{('Busy', p.busy-status).
prc reserve-loc-time(s,secretary, l:location-calen-
dar, d:date) &——0
.EQ. (l.date, d), :
accessible(s,1),
.SET.('Busy', l.busy-status}.
prc create-meeting-notice(m:name, d:date,
l:location—calendar, n:meeting-notice)

(_._
.GENERATE.(n),

.SET.{m, n.name),
.SET.(d,. n.date),
.SET.(1,n.loc).
pro depﬁsit(s:secretary, n:meeting—ﬂotice,
r:repository) &——o
accessible(s,r),
.INSERT.(n,r).
message send-to(send-emp:employee, d:document,
receive-emp:employee) &——
-ROUTE_TO.(d, receive-emp);
with-time-bound-days:
2;
time-bound-proc:
.ROUTE_TO,(d, receive-emp)

-end.

message return-from(send-emp:employee, d:document,
receive-emp:employee) &-——;
- .ROUTE_TO.(d, send-emp)

end.

conjugate ‘send-to, return-from.

step 2:

type location-calendar ISA calendar with

loc-no : code, ‘
capacity : capacilty

end; . !

type meeting-date 18A dates

-40- ‘

Chaptpr 6 Conclusions

An office information system design methodoiogy is
developed. Following the steps which are depicted in the
methodology an office degigner can design his office infor-
mation sfstem easily and neatly.

The design methodology is based on the semantic orient-
ed data model and the lbgic programming. The :semantic
oriented date model is applied to describe office environ-
ment .in terms of office objects and relationships between
these entities; while the logic programming is to formalize
office mission in the requirement specification.

The design. methodololgy of this office information
system obeys the following principles:
1) The design 'methodology adopts a real-world view of
office systems so that office designers may be willing to
accept it and use it with comfort.
(2) 'The system developed offerés a designer to handle his
work through an interactive and intergrated interface.
{33 The system has the features of active and automatic
guidance, and the designers need not memorize the designing
steps.

Besides, our design methodology also divides office app-
lications into static and dynamic aspects. The designer
firstiy describes the static components such as: office

organization structure, office-position structure, office

41—

policy, working facilities, and so on. Secondly, he descri-
bes the dynamic components such as : office mission and
procedures. Owing to our dual partition of office applic-
ations, office designer may complétely describe any type of

information system in detail.

Appendix A
An example describing an Office OrganizatigguStrﬁgzhre
is illustrated in the following. -
By means of ''guestion-and-answer’, the I0ODI interface
1aisp1ays a question éﬁd:the designer answers 1t. The asking
seguence chaﬁéés with the designer's answers. In our exémple
the asking sequeﬁce is depiﬁted by branches..The conditional
branches are indicated by —(x)-3 , where (x) is the cond-
ition fof the branch. The unconditional branches are.indic—
ated by ____;___9 . If ﬁb branch is taken, -the item on the
next line will be next. |
The IODI imnterface may divide the computer terminal

screen into two parts : display area and asking area, as

following:

TERMINAL SCREEN

DISPLAY AREA

ASKING AREA

In the display area, the IODI interface displays some infor-
mations to assist the designer; while the asking area, the
IODI interface disﬁlayg gquestions, asking designer to enter
his answers.

43

DISPLAY default type "department"
and other_existént types. Whén designer
is entering a new- type IODI updates this

screen dynamically.

2. ENTER THE OEPARTMENT TYPE'S NAME : —(END)— 7
3. USE THE DEFAULT TYPE'S ATTRIBUTES (Y/N)? —(N)—> 5
4. ADDITIONAL ATTRIBUTES (Y/N)? — (N)—=> 2
4.7 attribute's name : —(END)— 2
4.2 type's name ; —_—4 1
5. USE THE OTHER TYPE.(Y/N)? —-(N)—) 6
5.1 type name : —_—) 4
6. DEFINE ATTRIBUTES
6.1 attribute's name : —(END)—y 2
6.2 type's name: _ 6.1

DISPLAY all existent types' names.

8. ENTER SUBORDINATE TO RELATION
8.1 super-department type : —(END)— 9
8.2 subordinate-department type: — 8.1

9. DEFINE THE OTHER RELATION

9.1 relational name : — (END)—» 10
9.2 parameter name : —=(END}— 9.4
9.3 parameter type @ —_— 9.2

9.4 cardinality _
9.5 derivations : _—_ 9.1

—44-

——

10.

11.

12,

13.

14.

15.

ENTER THE OCCURRENCES OF EACH TYPE (Y/N)? —(N)—

DISPLAY all existent types' names, attributes
and relations' names, parameters,

cardinalities, derivations.

12
11.7 (IODI displays an existent type -name, and then its

attribute names.)
11.2 {According to the attributes of this.type, desinger
enters the occurrences.)

ENTER THE OCCURRENCES OF EACH RELATION (Y/N)?

. ~(N)— 13
12.1 (IODI displays an existent relation name, and then

its parameter names.)
12.2 (Accordiné to the parameters of this relation, des-

igner enters the occurrences.)

DISPLAY all the non-primitive data types.

(Designer defines each non-primitive data type.)

END

—45-

REFERENCES

[BaumB0]

[Byrd82]

[Chan82]

[Cook80]

[E11179]

[E11180]

{GehaB2]

[Hamm80]

Baumann, L. 8., and Coop, R.D.

"Automated workflow control : a key to office
productivitj”

KCC 1980,pp,549-554

Byrd, R. J., Smith, S. E. and Peter de Jong, S.
"An actor-based programming system"
ACM 1982,pp.67-78

Chang, J.M. and Chang, S.K.

"Database alerting technique for office activities
management"

IEEE Trans. on Comm. Vol.COM-30, No.1, Jan. 1982,

pp.74-81

Cook, C. L. i
"Streamlining office procedures——an analysis using

the information control net model"”
NCC 1980,pp.555-565 -

Ellis, C.A., Gibbons, R. and Morris, R.
"Office streamlining”in

Integrated Office System-Burotics, IFIP 1980,
pp. 111-7123

Ellis, C.A., and Nutt, G.d.
"Office information system and computer science"
Computing Surveys Vol. 12, No., 1, Mar.1980,pp.3-38

Gehani, N.H.

"The potential of forms in office automation
IEEE Trans. on Comm. Vol.COM-30, No.1, Jan. 1982,
pp. 120-125 i

Hammer, M. and Kuin, J.5.

-46—~

[Bog2]

fJou83]

[Jeng84]

[Kowa79a]
[Kowa79b]

[Ladd80)

[Maso83]

[Mont&1]

"Design principle of an office Specification langu-
age”
NCC 1980,pp.541-547

Ho, C. S.
"Office systems modeling, analysis, and design"
Master thesis, Graduate institute of EE, NTU. 1982.

-Jou, M. S.

"Office information system requirement specific-
ation and analysis®
Master thesis, Graduate institute of EE, NTU., 1983.

Jeng, P. W.
"Design of interactive office automation system"
Master thesis, Graduate institute of EE, NTU., 1984.

Kowalski, R.A.

"Algorithm= logic + control™

CACM Vol.22, NO.7, Jul. 1979,pp.424-436
Kowalski, R.A.
- "Logic for problem solving"

North Holland 1979.

Ladd, I. and Tsichritzis, D.C.

"An office form flow model"

NCC 1980,pp.533-539

Mason, R.E.A. and Carey, T.T.
"Prototyping interactive information systems"
CACM Vol. 26, No. 5, May. 1983.

Montgomery, C.A. and Ruspini, E. H.
"The active information system: a data-driven

system for the analysis of imprecise data"

IEEE 19281.

A -

[Nau83] Nau, D. S.
"Expert computer systems"
IEEE Computer, Feb. 1983,pp.63-85

[Newm79]

i

[Nils80]

[Nutt81]

Newman, W.

"Office models and office systems design”
Integrated Office System-Burotics, IFIP 1980,
pp.3710 -

Nilsson, N. J.
"Principle of artificial intelligence”
Tioga publishning Co., 1980C.

Nutt, G.J. and Ricci, P.A.
"Quinault : an office modeling system"
1EEE Computer, May. 1981,pp.41-57

[Tsic80] Tsichritzis, D.

"OFS: An integrated form management system"
IEEE 1980,pp.161-166

[Tsic82a] Tsichritzis, D.

[Tsic82b]

[Zism77]

"Form management”
CACM Vol.25, No.7, July. 1982,pp.453~-478

Tsichritzis, D.C., and Lochovsky, H. L.
"Data models"
Prcntice-Hall, Inc., 1982.

Zisman, M.D.

"Representation, specification and automation of
office procedure”

Ph.D. dissertation, University Pennslyvania 1977.

