TR-83-003
ﬂﬁ%ﬁﬁ%ﬁﬁﬁb%%%ﬁﬁ%%

Design and Implementation of a Front End
Processor with Multiuser Remote
Login Capability

B EG ARSI PHER TS ESRY » &7 III-R0-009
UAEMY R EEEAANEHER
HEYXRAN & &

 HRPE AR MEENABER
BHEZ -EHE BRE

BHEMR :NE 281 B~ 183H
B #Hl:hERE ++= £ = A

iR

0036

FF

i

 AXTANEEER L —RAS HER BT A S DR R
R e AP RN BRI —FHEA BT AL BEEHED
HEBHUSE] (BEAFHRES troloos D ZEMe B
TERMHFEMNAL - BB EZW@%&EM“%
EZHEREG , UREB2 K o

BEAREHBYEN, A—BE AL EBBRE S
ﬁﬁﬁﬁﬁ%ﬁZﬁ?ﬂ%(%ﬁiﬁﬁ%ﬁ&mﬁOM)
MERZH BZSHERARHAAMARZE A REZNEE
FRARSHAGHESE, E%ﬁgxm%zam&m%-

AB RN EREMIR R LG T X B RER R

Contents

1. Introduction T T
' 2., Hardware Caﬁfiguration R R R R T
2.1 Hardware ModificatbionsS .veeeeescescesovecnoennnsen
3. A Real-Time Event-driven Multitasking Executive reeesns
'3.1 General Concept Of the REMX ...vuuvesencorencnenns
3.2 The Data Structures OFf REMX v..cesecevecsoesacess.

3.3 The Control ﬁlow and Algorithm of the REMXv..

3.3.1'INIT .ICI...Q....IIIIUDOO'..."-l..l...ﬂtnl.

30302 TSKMGR «seenvrvennrunnssncncnsenonssnsnsons
3.3.3 COMMGR +everannnnnnneennosenaionnonessuees
3.304 TIMMOR +cucuenvnennenssnnnencnnanenannesons
3.3.5 IOMGR vouevneesnonnsscocnsianosssnsnaoennas

4, FEP'Q Functional Modules Pee s vesenensstonocsrsras e
4.1 COMDRV -- Communication Port I1/0 Drive .seveeeneens
4.2 DDCMPH -- Data Link Protocol Handlerc.ee..
4.3 UTERMH -~ User Terﬁinal HARALEY vevveovnosnsennaos

5. RSX~11/M Network Communication SOLLWAYE ceevveenevennas
5.1 Virtual Terminal CONCEPL seveeesncrscsssssnsanones
5.2 Virtual Terminal‘Device setersesssserracsunsasnane
5.3 vVirtual Terminal Driver R AL ET TR
5.4 DDCMP -~ Data Link Control PLOLOCOL weveresonvenns

Gonclusioﬁs T reteccerristecnnnctsseerreserestessenuresans

REferenceS L R I R T R I I I S N 3 BT T I I N I O B R

O W o~ g e

13
18

18
20
22

24
25

27
29
31
37
40
40
44
55
57
59
60

Design and Implementation of a Front_Ena Processcx

with ﬁultiuéer Remote Login Capabil-i;y

Jyh-Sbeng Ke, Lung-Chunm Liu, Hsing-Lung Chen, Ching-Liang Lin
Yo-An Pan, Shyi-Ting Kang and Chien-Chun Lu
. Institute of Information Science
-+, Academia Sinica, Taipei, Taiwan, R.O0.C.

1, Introduction

This report describes the design and implementation of a
Z8@-bagsed front end procéssor with multiuser‘fe@bﬁé login capa-
‘bility. . The purpose of working for this project is to study the
economical advahtagg‘of using the 1ing'concentxatioﬁ technique to
reduce the comﬁunicagion.line cost of a computer environment and
to stdéy the techﬂ}qué of implementing coméuter communication
software programs. ’

Flgure l.1 shows the computer env1ronment of a convent10nal
camputér system. In the conventional system each terminal is
directly coﬁnected to the host computer, which not only redun-
dqntly occupies the compﬁter;s I/o‘interface_porta bqt a;so' re~
ghi:es multiple commuuic#tion lines. Since that most of time the
‘terminal is in idle status(to wait for 1/0 data), we may consid-
er to share an interface port and a communication.liné with maﬁy
terminals un&ei the cohtiol of ‘a low-cost‘éoncentxﬁtor. Feasibil~
ity study shows that'it‘ cost nffactlve to use a macroprocessor

to function as a line concentrator. Eagure 1.2 . shows a host

P

~l=-

computer with a front end proéessor(FEP) which can function és a
line concentrator. In this system, .the host éomputer is a
PDP-11/78 with Rsxwllfﬁ operating system, and the FEP is a

Z8@-based microcomputer.

Host computer

Figure 1.1 Conventional computer system _

LI

. CRT
/ J—

Host Computer FEP

© Figure 1.2 A computer with front end processor

_To accomplish the functional requirements of the FEP, at Lleast

the following things have to be done:

. implementation of communicaticon software'programs
and terminal handlers in FEP.
. implementatioh of software programs for multiplexing

and demultiplexing data in RSX-1l/M kystem.

. implementation of pesr-protecol machine programs

for handshaking between FEP and the host computer.

To fulfill Fhese_'requirementa, we have imple@aﬁted.a real-
tine event-driven‘multitasking executive in FEP f§;_ coordinating
a set of—peer-protocol machine progréms-and thé terminal drivers.
We also hgve implemented a set of peer-protocoi machine programs
in Réx—ll/ﬁ system by employing the concept 6f virtual terminal
to achieve the multiplexing.and ‘demultiplexing functions; The
éommuhiqatidn software programé can also ﬁe used to talk with a
local &area computer networklils].

The main implementation problem wh@é‘connqctiﬁg'R334ll/M to
an FEP or a network iz where to siﬁe the'_protbéol ‘handlex. It
can either be installed as parit of the terminal 1/0 driver; or it
can be run ﬁs a systeﬁ task communicating with the network
th;ough- some interface to the texminal I/0 driver. Pue to thé
coﬁﬁlexity of ‘the oriéinal RSX-11/M terminal .I1/0 driver, it was
decided that the protocol handler must be1run as a background
task and communicating with the network thzbugh an add-in virtual
terminal driver as an interface to the términal‘llo driver, Fig-
ure 1.3 shows the terminal 1/0 driver function of the standard
RSX-11/M ststem. Figure 1.4 shows the modified RSX-11/M in which
tﬁree additional’éoftware modules have been inqorporated to func-
'fidn as a virtual terminal protocol handler via which multiple
terﬁinals can be connected to tﬁe PDP-11/76 through a zB@8-based
concentr%ter; In the following, Section 2 deséribes the hardware
confiéuration of the séstam, Section 3 presents the implementa-

tion of a reai-time event-driven multitasking executive, Section

~»

4 describes the software program modules and protocol machines in
the FEP, and Section 5 describe the design and implementation
idiosyncracies of the communication software programs .in the

RSX-11/M system.

sommand

' PTYDRV ‘

I

Figure 1.3 Standard RSX-11/M Terminal I/0

AP F—- MCR,

SPWNS MCR...,ssss,gv0,cmdline,cmdleng,,Vin

AN

I0.RLB
10.WLB -) '
¢
VTDRV [¢ VTMON 1 DDCMP A rrypRY
" I0.WVB ' I0.RAL »

I0.RVB IO. WAL

Figure 1.4 Modified RSX-1l/4 Terminal I/0

1

2, Hardware Configuration

As a front end proceus?r, a system with a minimum hardware
cost appears to be fittiﬁg a basic tequirement., In the FEP -with
locai .editing aﬁd rembte login cabability, the minimum hardwazre
conf:guratzon with only two funct;onal boa:ds ;axe used, In this

sectxon wé w:ll describe the;r modular functxons.

MCB (the. Zilog ZBB-ﬁCB) is a single \board' miéxocombutex _
designed to be- adaptabla to a wide range of OEH appl;catlons. The
block d:ag:am on the Pigure.2.1 identifies the major compouents
on the board. The heart of" wh;ch is the 286 m;croprocessoz. Asso~
ciated 1ogic includes 4K bytes of dynam:c RAH, provxslon for ap
to 4K bytes EPROM, both para;}el and setial 1/0 ports, 1/0 ports '
decoders and a crystal controlléd clock. Th; p;zallel 1/0 poit
is. implemented with the ZBG-PIO with ;n area resezved for user'
applied driver and/or rece;ve: 1oglc. The Z88-CTC is used as a
baud rate’ generator for the gerial interface 1mp1emented with an

8251 USART. S,

' S}B(the Zz89-SIB) uses féu; BZSi USART deviéas to'imélement
the serial communication channels. Two 288~CTC devices -ai§ used
?o chomﬁodate %890 'intei:upt’ capability - for receivin and
‘transmitting operation of each bi-directional serial channel. The
third Z80-CTC device is prdvided to aécommodate programmable baud
rates for each serial poit from 5@ t& 96048 baud, Aerived from an -

on-board crystal, the system clock, or an external clock.

L

AND CONTROL

Figure 2,1

ZB0-MCB BLOCK DIAGRAM

-6—

. . : | 5
.] ax Ak BYTEs . *'2] VOLTAGE Zy -
":g BYTES PROMS DYNAMIC -5 § CONVERTER
(ERGM ONLY] _ ROM/EROM RaM
: AUORESS MUX MEM PAGE
. DECODE
DATA BUS ——feo | DATA SUS P ADDREES Z <
Bus *1 surFers " BUFFERS | 7 ACORESS Bus
X - I : : 13 :
. 2B0-CPY
OPEN COLLECTDR . R STATUS . STATUS AND
CONTROL BUS ; ; SUFFERS ; CONTROL BUS
iNT ')
_ : woroRt, | . EXTEAMAL
. - ADDRESS p——————ems= PORT
: DECODE SELECTS
19 MHz -
CHRYSTAL 4 hd
osg
e’
a4
. -PROG RAM
OATION
: SWITCHES
INTERNAL DATA BUS
. 'CONTROL B8US °
PORT SELECTS®
] i i 1
s - .
[USART ZBO P10 Z80-CTC
SERIAL CLOCK ' N
2
1
) Jrsizsz AN ’ UNCOMMITTED . .
URRENT LOOP] DRIVERS
BUFFERS RECEIVER
- [
' "1 WiRE waap
AREA ‘
.Tm .
. P .
SERIAL YO PARALLEL YO (=R L

2.1 Hardware Modifications

There are several modifications overrthé.boazd from its ori-
-ginal deliveries to £it our own system configuration. Thé primary
modifications aﬁé.thseugh tﬁe ‘jumpers' to select memory mapping

and I/0 addressing.
(1)mCB:

" +RRAM. memory jumpers

we have changed the 4K Ram'capacity to L6K RAM cap&city

- J1=10/31-12,J1=9/J1-16,JL~8/J1-11

1
LY

| ;R&M”page decoding - _
The RM1 is placed om the hex addresses 4068 - 7FFF.

J3-3/33-9,J3-;1/J3-12'

.ROM page dec&ding _
The EOH'is placed on the hex addresses O0¢@ - 3FEF._

I

J3-3/33~15,J3-13/33-16

1

.serial interface interrupt jumper
The serial interface in MCB is used to compunicate with
the host, it will genorate interrupts when any receive or

transmit operation is occured.
J1-13/31-1

.gerial interface jumpers

The serial . interface rode is }selectgd "as , follows:

RS-232-C, MCB='MODEM', always ‘clear to send', ignore
'request o send', signal swings from +12V to negatiée
éupplf- _ |
. 34-1/04-2,34-9/34-10, J4-5/34=6,T4~14/J4 N5,

J4-12/34~-11, J4-4/J4-7/34-16,35~1/J5~8
(Z)SIB:

.port address range select1on

The port address range is selected in the hex 80 to 9F
J4-5/34-16,J4~1/34~7, J4~4/ 346

.porf of device selection

device. . J1 jumper port address

CTCa 1 -12 = 80H - 83H
cTCl - 2 - 11 844 -~ B7H
CTC2 3 ~ 14 88H - 8BH
USART © 4 - 14 8CH - 8DH
USART 1 . 8EH - 8FH
USART 2 .5 =13 99H -~ 91H
USART 3 K 92H - 93H

.baud rate generation

The on board PHI1/2 is used as clock source

J3-6/33-11/33-12/33=13

.USART clock input
CTC CLKY drives the TxCH4,RxC#,TxCl,RxCl
J2-2/32-5/J2~0/J2~13/32~14
. CTC CLKL drives the TxC2,RxC2 " J2-3/32-15/32-1b

CTC CLK2 drives the TxC3,RxC3 J2~-4/32-1/32-12

3. ARealeTime Eventwdriven Multitesking Executive

Iﬁ .order to acco&p}ish'th@ multigaer'facility, a multitasky
Iing ar¢hitécturd'is requifgd té,faciiftateuthe software design.
Diffefent modules can be separated 1nt5 ;ndegenéeht tagka} with a
minimum cquplihg during s?sﬁem design stage. Moreover, we can
assién different tasks to different usefsf in which different
.tasks may share the same prograﬁ. In this syééam,. we have
designed a ‘simple but useful executive, called real time eventy
driven multitaaking executive(ﬁgmx), to provide a multit@&kiﬂg

environm@nt.

- 3.1 General concept of the REMA

A task in the system is‘an indegendently cxecutable pregran,
Associated with each task is a task_cont;ol block (TCB) , which 15‘
qaed.'to_maintain control information about the taék, such as the
ﬁrogram-entry point, stack poinéer, event control word, and some.
pointer fields - about messcges. Bach task caﬁ be in one of thé'
three states, namely RUM, REXDY, and BLOCK {WAIT). The state of a

task is gtored at the task sgatus word {LSH) in TCB.

The commuﬁicat@on'betwaen tasks is through “the “message
exchange channel®, Az in figure 3.1, one task may send a message
to a éhannel » o0 the othéz ehd the tasg_that':eéuires this mesy
sage can receive it frop.the.sama chaniiel. The channel structure
provides a maqutoamaﬁy relationéhipg among tasks. This strucfure

seems to be mere useful, far'example} there may be two spooling-

TLSK TLSK
TASK - TLSX
i
! |
. i
f |
|
!
' l
TASK receiving Y TASK

Fig, 311 'Measéga exchange channel

output control tasks, any task wants to have its output be
spooled need only send a réquest message to a specific channel.
.regArdless which spooiér task will process it. There are two
types of channels in our system, one is.the softwafé channel for
ihter—task communication and the other is the I/0 channel for
task-device communication. A tésk may send a message to a Ehannel

or receive a message from a channel. This is illustrated in fig-

ufe 3.2 -{a) and (b).

’

-

The synchronization between tasks and 1/0 devicgs is through
‘an "event flag® mechanism. A task may send a message to a channel
and declare an event flag for synchronization, hy associating
task operations with event flags, severai Qperations can proceed
concurrently and may be synchronized by fhe mechanism of event

. flags. Upon the occurrence of an event the processing of the

~10=

w

charnnel

TASK ’ | mESK

(a) software channel

f. . o chanﬁel -

-1 - -) ' I/O
. TASK Le _ < -~) driver

) ‘(b); Ifo:channel

Pig. 3.2 Twvo types of channel

. ’ : : s
current task may be continued or discontinued , depending on the

dynamic requirements of the system,

There are five fdhctional mpdqles-cbntainéd'in the REMX ; .-
-(1).thé task schédule:, |
(2) the memory manager.,
. . (35 thgvinferwtask communication manager,
ﬁ(4) the input)output communication manager ,--

- {8) the real time manager.

-

The task scheduler manages the overall System, schedules
tésks,' and keeps' track of the task status. The memory manager
handles the memory allocation and deallocation. The two communi-
cation ‘modules control the flo@ of messages among taské. The real

time manager maintains the real time clock and allows the crea-

tion of events based on timers, Fig.3.3 shows the interrelation

-11-

RECY
G " NMSG

timer

1/0
intarrupt

1/0

interrupt

CPU

channel
] L ¥
3 W 14
of tware timer 1/0 .
channel lnterrupt channel
manager manager mﬁnager
%éady \
list . Memor
" block remoxy
. Task Luna
liat managexr
. _ . Event Contr .
time walt A
Jdist t
21location

dgallocaticn

Fig. 3 .3 Interrelation among modules

-12-

.among these modules.

There are several system primitives that users can issue
them to activate system functions., Fig.3.4 111ustrates these sys-

tem- primitives.

JIWAIT: wait a specified time slicé

WMARKT: mark a time event flag

JHATTE : ua;t an event flaé

+CIRT : cancel previously marked timer

+SEND : send = message froﬁ -1 channél

+SENDY: send 2nd wait until the o%her-par?{ recaived
.RECY : rsceive a message from a channel’

-RECVW: wait until a2 message arrived
+SIGHL: signal zn event flaé -
+I0 ; issue an I/0 request

.I0W 3 .iasuve an I/0 request znd wait until 1/0: completa

-CNRIO: cancel the previously issned I/0 request

Fig. 3 .4 System primitives

3.2 The data structures of REMX

The wh&le system, under the monitoring of the REMA, has
three ba;iﬂ data structures to achieve multltasklng, channel com~
munication, and message exchange fa0111t1es. Bach of them, task
channel and message, is associated with a control block to main-
tain its relevant informations, namely the TCB, the CCB8, and the

‘MCB. In this section the data structures will be presented.

-~13-

{1} TCB (Task Control Block) :

word offset TCB
langenarwntevgrnen|
] } TCBLINK. !
| rerevastevrvwnany|

1 S ISP I

. |weeernyrrnsrnneny|
| ipc i
laemonnerymagerenni
| TSKNO | PRIO |
|#tnerreryrrengunel
| ' reserved |
' [gennrnavzeovvarenl
"} STATUS S
| 2=z v-wenvoenaranwei
| CCBLINK |
| 22ren-wotnneragee)
i MCBLINK |
jep=geregnrgeicrer|
| ECW |
I??v#wv?vvtewg¢emql
} EBW. »
| raerergoeeavanverl S
18 | reserved | ' ' .

© lestavgrrenvregeac] g

B W N

W @ = &6 Wu

TCBLINK: 1link pointer to other TCB with same priority

Isp : initial stack éointer

IPC. : initial program entry point ’
'TSKNO : task number

PRIO : priority level number

STATUS : task status word

CCBLINK: 1ink to CCB while block for channel
MCBLINK: 1link to MCB while receive a message

ECW . event control word, 1 bit per event

EBW

event block word, 1 bit per event

-

-14-

(2}CCB {Channel Contrel Block):

word offset cCe
| mTMONRRYRURRSRYY ' .
| NO¥SG | NOTSK |
|omor=enmoerarenen]
| - LINKHE AD !
! t-‘mﬁn@ﬁﬂ?*????ﬂ?w?i
| LINKTAIL |
[2erravauneseanona|
| reserved |
| e=ransoarsnvrmar=n]
i INTPREZN |
| o anpmyngeronee];
| ENTCOHAPL !
jawgnwgzrgresaeene|
! INTHANDL |
. E?ﬁvqwﬂﬁﬂﬁ?ﬂ?ﬁ‘??"?“l
7 b reserved |
eqq?q?gﬂﬁﬁ@99?qﬂ??!

[+)] W o [YH [8] - [

- BOMSG : number of message available en the
channel I -
NOTSK™ : number of task iz wiiting for message

LINKHE2ZD 3 message‘queue head poinﬁer

. LINXTAIL H massage'queue tail pointer
INTPRE 2 : . interrupt preamble routine address

~ INTCOMPL ¢ interrupt completion routine'aédress
INTHANDL : .interrupt handler routine address

-15-

(3)MCB {Message Control Block):

word offset MCB

. je=nmaegunyererarae}

! TYPE .| ECB |
jowanrenngeananner|

i KCRLINK b
| tmernvneeeeodsenan|
}. TCBLINK P
| vwoneenneennyganel
! HMSGPTR i
|evenarsvengnanonn |
} MSGLTH {
lq#gﬂqwﬁ#g!‘lqﬁﬁ‘??#ﬂ'l i
] reserved |
lﬁqwnrﬁﬂwwgvﬁﬁﬂﬁﬁwl'

Ut B W N = ®

TYPE : user éupplﬁed mesgége'type
ECB : event:control byte
_MCBLINK : 1link pointer to next #CB in CCB
me%éage guene i '
TCBLINK : 1link ?ointer to the sending TCS
MSGPTR messa?e_buffer peinter
MSGLTH : message length |

The relations Eﬁong these control blocks and data structures
are shown in Figure 3.5. Por activé tagké a ready list is maine
taiﬂed.at eacﬁ'priority ievel. In CCB,a list is also kept to have .
a -TCB. gqueue or MCB queua. If- more tasks wait for
messages(receivers more “tﬂan senders), a TCB queue is fequired.
'In the case of senders more than receivers a MCB qdéue ig kept.
_Bécauée'these'téo caées ére rutually exclusive and never occur at
 the same time, only a list is required. There are two entries
contained in each list, one for header pointer and the other for
~ tail pointer. The headeg pointer is used 'to remove an item from
the .list and the tail peinter is used to.insert ah item into.thé

1ist.

-1

TC3B1 TCB2 - oy
. > 8 - S = -
each priority : ' - . 71
EEAD
T8 IL
{2) TCB ready list -
TCE1 TCE2 TC3a
cc3 CCBLIRE 7 A 4
NOMSG {NOTSK : :
EEAD’ L
* |
’ TAIIJ —-\--—%‘ _______________
\ MCE1 MCB2 e weag
.
v o .
L-sFCBLIRK b=l . e -~
{v) CCB, TCB, and MCBH

fig. 3.5 Relations among control blocks

~17-

3.3 The Control Flow and Algorithm of the REMX

The software of REMX is structured as the following.

Fig.B.G.

(a)
(b)
(c)
(d)

(e)

INIT : system initialization routine -
TSKMGR : task manager

COMMGR : inter-task communication ménager,
TIMMGR : timer manager |

IOMGR input/outpqt device handiing'manaqer

diagram

TSEM&E COMMGR TIMMGR

JOMGER

The INIT module initilizes the whole system, including sys-

tem parameters, TCB, CC3 and IOCCB.

18~

(1)system parameters and interrupt mode initialization

.load system stack pointer

.clear all system parameters to zero
.set all list pointer to el(null)

.Set interrupt mode = 2 (indirect mode)
»set interrupt vector register

.set.up interrupt vector table

(2)TCB initialization

.get TCB address in TCBD (initial task descriptor)
.if TCB address »1 (null)
~then call BLDTCB to bulld up this -TCB
call SCHTSK to insert it into ready task
gueue 1lat

(3)CCB initialization

.get -CCB address in CCBD (initial channel descriptor)
«if chennel no. =1 {(nuil)
then insert CCB pointer into CCBLST
clear all parameters in CCB
set all pointers in CCB to =1 (null)

(4)YI0CCB initialization

-

.get CCB address from IOCCBD (initial I/0 channel
descriptor)]
.if channel ¢! (null)
then insert CCB pointer .into IOLST
.clear 2ll parameters in CCB
set all pointers to «1 (null) '
.qet three 1/0 process routine address and save in "TOCCB
I0_PRM (preamble routine)
Io coM (cempletion routine)
10 BDL (handler routlne)
.set IO _HBL in interrupt vector table

{5)user's initialization .

.call user's start routine

-19~ .

ik

(b)system start

+transfer to dispatcher

3.3.2 TSKMGR

The task manager performs the task scheduling, task switchs

ing, and the system states entering or exiting.
(1)TSKMG: preempt the current task and reschedule again

.save all registers in user's stack area
.Change into system state
+if active task is a null task (all tasks are blocked)
then transfer to dispatcher
.save stack pointer in active TCB
.reload system stack pointer
.Check task status word
if TSW is block
then transfer to dispatcher
+if TSW is ready
then call ENQUE to insert the task into ready 4ueue
if priority > active task priority
then 'ACTPRI = prlorxty
.transfer to dispatcher

(2)DISPCH (task dispatcher):

, «for I = MAXPRI (max priority) to # (lowest priority)

do
if the ready task gueue is not empty (not =1 null)
then
ACTPRI = I (active task priority)
SYSPRT = @ (preemption flag = g)

call DEQUE to degue this TCB from ready (ueue
ACTTNO = task number (active task number)
ACTTCB = pointer of TCB (active TCB pointer)
-reload user's stack pointer
restore all user's registers

transfer control to user (dlspatch the CPU to use
endif.

.set ACTTNO = =1 (null task)
ACTPRI = # (lowest priority)
.reload system stack pointer

]

-20-

(3) ENQUE (engue a node into a list)

entry condition : HL : queue tail pointer

DE : enqued node pointer
-Set engued node's next pointer to null (=l)
«(HL)<»DE save enqued node pointer in gueue tail

.save engued node pointer in the last tail node's
next pointer .

.if the queue is empty before insertion
then set the queue head = the enqued node

(4)DEQUE: deque a node from a list

entry condition: HL : gueue head .
exit condition : DE : the degued node -
+DE<» (HL), get the head pointer to DE
« (HL) <¥next node pointer of queue head
.if the gueue is empty after deque

then set the queue tail to =1 (null)

(5) ENTSYS: -entering system state

functions : all system routines must call this routine to set

into system state and a return address on stack,
after return from system routine will transfer to
RETDHYS

«set SYSTAT = 1 (system state flag)

+push RETSYS onto stack

(6)RETSYS: returning from system state

functions : after system routine's process there may be some

preemption condition occurs, so must be checked
here

.S5et SYSTAT = ## (clear system state flag)
.if SYSPR#M = 1 {any preemption occurs)

then transfer to TSKNG (task manager)
else return to user's routine

(7)INTS5Y¥S: entering interrupted system state

.lncrease ‘interrupt level count
.push DETSYS onto stack

- {8} DETSYS: returning from interrupted system state

.decrease interrupt level count
+if interrupt level count 8
then return
.else check system state and preemption flag
if in user's state and preemption occurs
then transfer to TSKMG

3.3.3, COMMGR

The COMMGR module wmanages the interwtask communication, task
synchronization, message sending/receiving, and event flag

‘mechanism.
(1)SEND: send a message to a channel

.call ENTSYS to enter system state
.Save event number in MCB_ECB
«get CCB address about the channel number
.increasing message number (NOMSG=NOMSG+1)
.decreasing task number (NOTSK=NOTSKel)
-if there is a task waiting for message (NOTSK > 9)
then if not a send wait request .
then call SETECHW to set event control word
call DEQUE to deque the MCB from the list
call SCHTSK to insert it in the ready queue
else call ENQUE to engue the MCB into message list
save TCB in MCB's. sending TCB
if not a send wait request
then call SETECW to set evént control word
else set block status
transfer to TSKMG
«return .

-22-

(2)RECV: receive a message from a channel

.call ENTSYS to enter system state
.call GETCCB to get the CCB address -
« NOMSG=NOMSGm1 .
+ NOTSK=NOTSK+1"
.if. a message is available (NOMSG > @)
then call DEQUE to get a MCB from message gqueue
if the message is sent by SENDW
then call SCHTSK te schedule the sending task
else return .
else if this is a receive wait request (RECVW)
then call ENQUE to insert the TCB into CCB
call BLKCEL to wait until message is availabple
return the MCB pointer to user
else NOMSG=NOMSG+1 ' o
NOTSK=NOTSHE=1
return

(3)EVENTF: check event flag condition while a event is occurs

.call GETECW to get the event mask
.ifany block condition is met for this event
then clear E28W in TCB
else set zero flag ,
.return , .

(4)SIGNAL: signal a significant event to a task

"«get TCB number of that task
.calculate index to TCBLST
.get TCB address
.call EVENTF to check event state
, »if that task is blocked for this event

then call SCHTSK:to reschedule that task
else return .

. (5) WAITE: wait for some events and proceed to execute
after any event occurs.

« «get ECW from '°CB
.check event mask with ECW)
.1f no event has been occured
then call BLKCHL to wait until any event occurs

else calculate’the event number that has been occurred
return event number in A to user

-23-

The TIMMGR module maintains a system clock, synchronizes the

task with time based event, and handles the timer interrupt.

(1)TIMGER: declare a event flag under a time basis or wait
until a time slice has elapsed. -

.calculate index to TIMLST accordinyg to the task no.

get prevzous tipe slice .

.if previous slice = g (no timer .Yequest before)
then TIMCHT=TIMCNT+1 (TIMLST count)

Lif a time wait reqguest (TWAILIT)
then call BLKCHL to wait a specified time delay
else call SETECW to get associated event flag

(2)CMRKT: cancel a previously requesféd timer event

.Ccalculate index to TIMLET accerding to the

task number

get previous time slice

«if previous time slice @ (mark time before)
then TIMCNT=TIMCNT%l

+«1f the associated event flag number is not zero
then call GETECW to get event mask

clear the event flag

else return

(3)TMINT: system clock interrupt .handle routine

.save all registers
.update the system time for
second, minute, hour, date, and month
«if a second has been elapsed
then do I=1 to TIMCNT (scan TIMLST)
get time slice
if time slice § .
then decrease time slice
if time slice count down to zero
then TIMCNT=TIMCHTel _
call EVENTF to check event flag
call SCHTSK to reschedule the task
end dov
.restore all registers
.Yeturn from interrupt

—2 -

Iw
lw

.5 IOMGR

The IOMGR module accepts the I/0 requests from user's, ene

ables the. I/O channel, handles the I/O interrupt.
(1)IORQS: redquest an I/0 message through an I/0 channel

.call GETCCB to get IOCCB address
.save ECB in IOMCB
+RQSTNO=ROSTNO+1
+if the I/0 channel is not active yet
then calculate 1nterrupt vector offset in INTVTB
call user's preamdle routine -
.call ENQUE to link the new message to message queue
.save TCB address in IOHMCB
.Clear MSGCNT in IOMCB to zero
.if the ECB < § (IOW)
then call BLEKCBL to wait unt11 1/0 completion
else call SETECHW to set the associated event flag
.return

(2)CNRIO: cancel I/0 request on an I/0 channel

.call GETCCB to get 10CCB address
+if RQSTNO =.8 (no I/0 request has been issued)
_then return
else ROSTNO=RQSTNOwl
Tall DEQUE to remove the current IOMCB
mark an I/0 aborted flag on ECB
if no any more I/0 request
then call user's I/0 completion routine
. .return .

(3)INTSV: interrupt save routine

t

.save all registers
.get I0CCB address
.if RQSTNO 6 (some 1/0 request has heen issued)
then get IOMCB address from I0CCB
return MCB address to user interrupt handle routine
else return from interrupt

ps

IL

{(4)INTEX: interrupt exit routine

.if I/0 rompletion flag is not set
then return from interrupt
.RQSTNO=RQSTNO~1 . .
LIf ROSTNO = 8
. then <call user's [/0 completion routine
.call DEQUE teo degue the current I0OMCB
.check the ECB in the: IOMCB
.if ECB < ¢ (block request)
then call SCHtSK to reschedule this task
else call EBVENTF %o check event flag condition
set preemption flag :
.transfer to TSKNMG

~26~

4. FEP's Functibnal Modules

Figure 4.1 shows the. relationships between REMX and the

application tasks under its éoo:dination.
COMDRV
\ UTERMA

Figure 4.1 Functional modules in FEP

-

-27=

COMDRV is the Eommunication perf 1/0 driver, through which data
can be sent to or ieceived from the heost computer; DDCHMPH is the
data 1link level protocol handler which guarantees the correct
fraine transmiésion:between FEP and the host by commuﬁicating with
COMDRV via an - I/0 channel control block. UTERMH is responsible
for the interaction betweeﬁ tﬁe terminal user and the FEP. It
provideﬁ a high~level virtual comsunication channel between the
usexr and the host computer by communicating ‘with DDCMPH via "a
software channel controi bleck., HMore $pecifically{ UTERMH and
its peer protocol handler in the host computer cooperatively con-
struct a virtual chaﬁmel _gnd the asgociated virtual terminal.
Each user texminal is associated with a UTERMH . task. iIn this
implementaticen, the FBP can be connected with four usexr termi-
nals, and accoxdingly fouﬁ UTERMH tasks aré'cregted under REMX.
However, these fouxr UTERMH tasks use the same program module with
each individwal's own TCD. This feature xeveals the reentrant
programming p;wex of the pultitasking exécutive.

| In brief, the scoftware program of the FEP mainly implements

the layered structure of the protocol handlers(see Figure 4.2).

* % PR SN FS

DRV ———————

DRV')

Figure 4.2 Layered Proteocol Structure

-28-

In the following we wil} describe the ﬁesign idiosyncracies of

each software module.

4.1 COMDRV -- Communication Port I/0 Driver

COMDRV essentially contains an input Ainterrupt service
routine(IISR) for handling data input from the ﬁost and an output
interrﬁpt gervice routine (OISR) for handling data output to the :
host. : : _ - |

IISR receives and identifies data frames from the host by !

the following procedure: . - : |

. inpot a data byte from the port, .if this data byte
is the headex of a fr?me, then

. collect a frame in the buffer

. if receive errox (CRC erxor) then ignore it, else

. pass the received frame to DDCMPH task by putting
the control—framg and/or data—framé in theix

respective 10CCB. |

OISR gets a frame from the associated I0CCB, which is sent

by ‘the DDCMPH, and oufbutskbyte-by—byte to the host.

-29~

The data frame format and types are illustrated in Figure

[
-

Information frame

—— WD WS . Sy SR W - e - -y q--.—.-T’-p- ————————— qb—' ------ -T—“
_jsod data R | 5% header data frame
) | count . CRC Cﬁc

__________ L b

- i et e A L s . o S . T T WY S T . —— -

data count: length of data in bytes
R# : received data'’s seguence number
S§ @ sending data‘s seguence number
CRC: cyclic redundancy check

Supervison frame

FNQITYPEISUBﬂ Rﬂ s;}" neadex]
. " CRC
I S b L L.

TYPE can be one of the following codes: '
STR? (22}: request to start

STACK(24): acknowledge to start
DISC (26): request to disconnect

ACK (06): acknowledge data received

NAK (25): negative ACK

REP (20): reguest reply acknowledgement

RST (27):"reset protocol machine

SUBT : reserved for subtype control

Figure 4.3 Message frame formats

-30~

4.2 DDCMPH -~ Data Link Protocol Handler

The main function of DDCHMPH is tokérovide.a perfect virtual
channel for two c?mmunicating entities through multiplexing tech-
niéues, it is a DEC's DDCMP-compatible data.link prxotocol con-
trol program. It formats the data from the UTERMH tasks into a
fzame .and sends the data frame to the host via COMDRV, On the
other'side, BDCHPH receives a frame data(via COMDRV) from the
host, examines the frame header, and sends' the data frame to the
right destination UTERMH task(the ;ea&er should be noted that we
have four UTERMH tasks).

Presumably the DDCMPI task has to achieve the following

functional reguirements:

. rultiplexing
. frame seguencing
. frame flow control 3

. channl connection and disconnection

These funcﬁional reguirements are achieved by following communi-
cation. protocols which are illustrated in Figure 4.4 and Figure
4;5.. From Figure 4.4 we gnéw that connection between FEP and the
host computer is always initiated by the FEP, After successful
c&nnection, exchéngas cf data between FEP and the host computer

‘follows the alternating~bit protocol,

-31-

R.disc,.?

' S.DisC.h
RUAY :

R.start.?

—— 5y — -

5.5TRT.H
start timer

R.STRCK.H

tincout
S. ‘ACK.H _ IHSTRT) S5.S8TRT.H
stop timer start timer

Figure 4.4 DLC connection protocol

-2

R.RST.H

SUBRST

- A

SUBAAK

et vy e

SUBSHMG . DMCEFH . TOACTR

S.DISC.H

R.DISC.H
S5.DISC.H
e

R. : receive
S. ¢ send
.T 2 terminal
.H : host
Figure 4.5 Data exchange protdcel of DLC

-33-

The softwarxe implementation of the DDCMPH program employs
the table-driven technigue. The merit of this technigue is sim-
ple, flexible, and extensible.

With table-driven technique; the main program continuously
polls the occurrence of events(an event may'be “*information frane
received®, "éupervision frame Feceived“, " timeout“; etc.) angd
executes the required actions by examining the events table. The
program is always existing in a ‘'state' whicn represents the
current situvation of the communicating emtiéy.'ﬂhenaver an event
occurs, the corresponding actions will be taken, and the program
is changed into another staie. Figure 4.6 illustrates the rela-

- .

tionship between state, event, and action.

trigger
ACTION

Figure 4.6 Relationshﬁps between state, event, and action

tor

Table 4.1 shows the

program,

current | -event
state

RusNING | R.ACK.H
RUNGING | R.NAK.H
RoNNING | R.REP.H
RUNNING | R.data.T
RUNNING | R.data.H
RUNNING | timeost
rONNING | R.EST.H
RONNING | R.disc.T
RoNNING | R.DISC.H
RESET | restart, ok
Table 4,1 btate table

state

W T A ——

P ik - S A Sl —— -

S5.STACK.H

-35-

et R T T B L SR RS S g ——

0 A s e A P .

—— . N Yol — o . iy

S e e T A s e e —

T —— i —

it ol Y S e e

-

e A I —

Ty s ek - —— . —

. L A Sy vy

o — A ——

e e — . — —— v Ty ——— . o 7}

states, events, and actions of the DDCMPRH

. ey San . o

- S e e — — -

- ———

——— . v -

o ———— - -

*

The function

described below.

.SUBSMG

. DMCFHT

« SUBAAK

.SUBANK

.SUBRRP

+SUBDIC

« TOACTR

« SUBRST

of each action routine listed in Table 4.1 is

t

-~ Process and send a data frame to host computer.
* format frame: data by adding frame header.
* send data frame to Host.
~- Process incbming information'frame.
* check sequenée number of the data frame,
* send ACK or NAK to Host.
* move the data to user via SWCéB.
-— Procgss ACK frame,
* check R4 in received frame, if match,
update thelRé in the buffei. “
~= Process HNAK frame. -
* check R¥ in received frame, if match,
send déta frame once more.
-~ Process REP frame.
* check the reply seguence number,
if match, send ACK to Host,
else seﬁd NAK to Host.
--Disconne;t FEP and Host.
* send a D;SC frame to Host,
-~ Response to timeout.
* check count of timeout, if over, send
RESET frame tc Host, else send '
REP frame to!ﬂost. .
-- Reset protocol machine.
i reinitiatize running conition.

* restart.

-35-

4.3 UTERMH -~ User Terminal Handler
The main functions of the UTERMH task are:

. Handle usder login procedure.
. Receive the user's key-in data and send it
to the task in the host computer via DDCMPH,

and vice versa.

UTERMH task makes the problem of 1line _concentrgtion be
transparent to the user. To the terﬁinal user, a terminal con-
nected to the host computer via FEP has no difference with the.
terminal directly connected to the host computer.

UTERMH task communicates with the pegr-prdﬁocoi task-in the
RSX-11/M system by following a pigh-level communication protocol.
This control protocol is illustrated with a state diagram in Fig-
ure 4.7, At running state, FEP multiplexes the user's data
to/from the host computer. fhis multiplexing is completely tran-

sparent to the user.

—-37~

R.Belic.?

"S.Hello.H .

R.error.H

R.Bye.T- R.Pasaword. |

S.error.T.
8.Paseaword.T

R.oarror,.B -

Pigurg 4.7 . ﬁamq&g ﬂogin Protocol

’

L ' -~ R ~38-

In FEP, when the UTERMH task has received a line data <from
the user, it will tailer the data into a message by adding a con-
trol header(see Figure 4.8):which is to be examined by its peer
ievel protocoi handler in RSX-11/M sjsbem, and then pass the mes-
sage to DDCMPH task via a softwgre channel control block. The

DDCMPH task will treat the whole message as data and format it as

we described in Section 4.2.

user's data-

VI_e
header 18
4 t
| H
{ 1
DLC . _ DLC
header 7 _ trailer
" Figure 4.8 Onion structure of message frames

-30~

A

5. RSX-11/M Network Communication Software

This section describes the implementation detail of tne com-
munication softwase in RSX~-11/M operating system. The protocol
hierarchy of this implemengation is shown in Figure S.i. To
achieve the functional capability of this protocol hierarchy, we
have,.modified the original RSX-11/M to enhanﬁe its communication
capability. Essentially, the @echanism we employed is central-
ized on the concept of virtual terminal, through whfcﬁ multiplex-

ing technigue can be achieved.

5.1. Virtual Terminal Concept

in RSX-%l/M, each job (a log-in user) is usually initiated
by a user at a physical terminal. Many tasks may run concurrently
with input and output tnrough their associated terminal devices.
Each physical terminal is associated with a control block of
wemory in the operating.éystem} which contains information about
the physical terminal and I/0 request buffers as the linkage

between the physical terminal (usex) and the job{running task).

In computer communfbation software, it is desirable to allow
a task in the system to be initiated and controlled by another
task, usually the communication control task, instead of a user
at a physical terminal. All I/0 data of the pontrolled task
should be passed through the controlling task. The controlling
task cannot use a physical terminal in the usual way, some means
must be provided in the executive for the controlling task to

send input to and accept output from the job beiny controlled.

-

Application
Program

File Transfer
Protocol

N

\

. Netwbrk Service
Protocol

|
|

Protocol

Data'Link antroﬂ

Figure 5.1 Layered Protocol Struct

-4]1~

Remote Login
Prxotocol

ure in R3X-11l

Unfortunately this facility is not provided by the original

RSX-11/M operating system. Hence, we introduce a pseudo device,

said virtual terminal{(VT), to provide this capability. The virtu-

al terminal is a simulated terminal and is not defined by tne

hardware. Like hardwaré~orient§d terminals, each VT has a control
block of memory associated with it. This block of memory is wused
by the.VT in the same manner as a hardware-oriented terminal uses
its coﬁtrol block memory. Figure 5.2 shows the pgrallelism
between a hardware-oriented “physical terminal and a software-

oriented virtual terminal.:

aser PEYSICAL | | | DEVICE '> controlled
: 7 rERMTHAL TI or TT task
c s . - .
controlling R DEVICE g DEVICE - - controlled
tz=k < -
= _? - VT TI tzsk

Figure 5.2 ©Parallelism between PT and VT

The controlling task uses the VT in the same way as the usex
uses a physical terminal dévice. It imitlates the VT, input char-
acters to and wait for output rfrom the J1, and closes the VT
using the appropriate programmed facility. The controlled task

performs I/0 to the VT as though the VT were a physical terminal.

The controlled task may get into a loop and not accept any

i input from its associated VT device, therefore, it is not possi- |

ble for the controlling task to simply rely on pusy-waiting for i'

events or activities of the controlled task. The controlling task

may wish to drive more than one controlied task, and be able to
respond to any of £hese fasks; therefore, the controlling task
cannot stationarily wait for any particular Vf. For these two]
reasons, the VT differs from other devicés in that it is never in i
an 1/0 wait state. Synchronization petween the controlling task

and the controlled task is accomplished by event flags ana asyn- W
chronous system traps(AST) provided by the RSX-11M operating sys- |
|
|

tem.

Event flags are a means by which tasks recoygnize specific q
events. In requesting a system operation such as an I/0 transfer,

4 task may associate an gvent flag with the desired I1/0 opera-

tion. When the I/0 complete event occurs, the executive will set
the specified flag. Each event flag has a corresponding unigue

Event‘ Flag Number (EFN). A task can set, clear, and test event

flags to check whethner tne specific event occurs oOr not. A task

may also wait on more than-one event flag to monitor many out~ ﬂ

standing asynchronous activities.

J -43~-
\ .

_——

Asynchronous System Traps (AST) detect events tpat occur

asynchronously to the task's execution, Tnat is, a task bas no

direct control over the precise time that the event (tne trap) may

occur. For example, the completion of an 1/0 transfer may cause
- M I

an AST to occur. The primary purpose of an AST is to inform tne

task that a certain event has occurrad. As soon as tne task has

serviced the event, it can return to tne interrupted code. ASTsS

can be used as an alternative to event flags or tne £two can be.

used together. Users can specify the same AST routine for several
external activities, each with a different event flag. When the
executive passes control to tne AST routine, the event flag can

determine the action required.

The controlling task in the host may create several VT chan-
nels for the remoté users. The;same input and cutput AST routines
are specified for every VT device. When an I/0 regquest is iésued
from the éontrolled task, the AST routine will be entered. In AST
routine, it checks whica device the 1/0 request comes froam and
sets a specific event flag associated to that channel., Thus, tne
main program can monitor all the event flags to handle I/0C condi~
tions of VT devices. The synchronization between tne controlling

task and tne controlled tasks is achieved oy this |mecnanism.

- 5.2. Virtual Terminal Device

The RSX-11IM 1/0 system is structured as a hierarcny in Figure
5.3. At the top of the nierarchy are file control service(FCS)
and . record managemeat services(RMS), wnlcir provide device-
independent access to devices included in tne system. Tne il
directive is tne lowest level of task [/0 operatious. Tne wlo

directive allows direct control over devices tnat are connactad

b

to a system and that has an I/O driver..Tne 1/0 servicés provided
by the executive consist of QIO directive pchessing, and a col-
lection oFf subrdutines used by drivers to obtain I/0 requests,
and facilitate interrupt handling. The actual control of the dev-

ice is performed by the driver,

Privileged’ | - -Non-privileged
FCP 1 | “ves/ams K Yser I/0
! request
l
g\] ' "|Davics
| independent
W) - .
{ e
evice
T . 3T
eIo I s‘LO P dependent
directive { dirsctive
{
I I I e
g ¥ System state
QIO
directive
service
) §
Executive
71 1/0 sud -
Toutines

Device inmterzupi??

Figure 5.3 RSX-11/¥ I/0 flow control

~45-

There are four data structures important to the driver; all

I/0 operations arxe controlled by these data structures. They are

.
-

{1) the Device Control Block(DCB).
{2) the Unit Control Block{(UCB).
{3) the Status Control Block(sCB).
(4) the 1/0 packet.

{5} ASY Block.

Figure 5.4 through Figure 5.8 1llustrate the contents of
these data structures. . for depail of these data structures, the
reader should refer to {7)J. Once a device has been created, the
related data structures must be establisned: When a VT channel 1s
opened, the daia structures for a VT unit uevice Control Block
(DCB) and uUnit Control Block(UCB) are created and linked into tne
device list and assigned with the lowest availabie VI unit
number. Three AST routines may be séecified, the input AST, the

output AST, and the attach and detach AsfT.

The controlling task (VTMON) can service each
off;pring(controlled) task's ipput or outéut reyguest with a
corresponding output or inﬁut request to the cérrect virtual ter~
minal uwnit. For example} suppose that a controlled task has peen
activated as an offspring task of the remote log-in control task

and assdciated witn VTZ: as TIi:, then

l.0ffspring issues an IO.RVB or IQ0.RLB to TI: for its input

line. The virtual terminal driver gueues tne reguest inter-

nally and effects an AST 1n the remote log-in control task

—46-

D.LNK
- D.UCE
D.NAM
DUNIT)
D.UCBL
D.DSP

0.MSK

. Link to next DCB (O=last}

Link to first UCB

Generic device name

Highest unit no. Lowest unit no.

Length of UCB

Address of driver dispatch table

Legal function mask bits Q - 15.

Cantro! function mask bits 0 - 15

No-op'ed function mask bits 0 - 15

ACP function mask bits 0 - 15,

Legal function mask bits 16. - 31,

Contral function mask bits 16, - 31,

No-op'ed function mask bits 16. - 31,

ACP function mask bits 16. - 31,

{ Address of partition contral block i

Figgre 5,4 Device Control Block

19

12

14

20

22

24

26

30

32

34

[JRARE] Lo
LLOWN
t.ocs
U.RED

UCTL }
U.STS
UUMT}
usTz2

u.cwi
L.OW2
LU.CW3
u.cwa

u.scs

U.PXT
uPTCB

UTAST
UOAST

UAAST

T T T T e e e e e e e e al
| Lag-on UIC f
1 e i e e e e e e e e ~
|

' Qwning terminal UCR address !

Batk pointer to DC3

Redirect CF painter

Unit status

Conurcl flags

Unic status

Physical unit no.

Characteristics word 1

Characzeristics word 2

Characreristics word 3

Characteristics word 4

Pointer 0 SC3

1C3 address of attached ask

Address:of I/0 packet

TCB- addrgss.

Input AST ‘address -

W

Output AST -address

Atta:h AST.address

Figure 5.5

-AR—

Control 3iock

16

20

22

24

26

30

S.LHD

S.PRI_
S.VCT
S.CTM
S.ITM
S.CON
S.5TS

S.CSR
S.PKT

S.FRK

S.MPR

;

Nttt v e

., Davice /O queue
listhead

Vector addrass+4 _ Device priority

Timeout count:
Ipitial Current

Controller status . Controller index

Address of cantrol status register

Address of curreat /Q packst

Fork link word

Fork PC

Fork RS

% Fark R4

Reiocatian base of driver’s partition !

1
1
== Storage required for - et
1 NPR UNIBUS devices i i
:*"" - with 22-bit addressing e |
[

Figure 5.6 Status Control Block

~49-

14

12
14

16

22
24
6

30

LLNK

LPRI
I.EFN

1.TCE

LLN2Z

Luce

LFCN

i.5058

LLAST

L.LPRM

Link to next /O paciet

EFN PRIi

TCB zddress of requester

Address of second LUT word

Address of redirect UCE

Function code Modifier

Virtual address af 1/Q status block

Relocation bias of 1053

Real address of 1058

Virtual address of AST service routine

Device
parameters

Allocated buffer addr.

AST block address

Offspring's PCB address

Figurs 5,7 I/0 Packat Formakt

-50~

10
12
14

18

22

24

TCB . _AST.C.B AST.C.B~ _ AST.C.B

NP

T.ASTL

A.KSR5(-4) |Subroutine K1SARS5 Bias (A.CBL=0)

A.DQSR (-2) [Dequeuc Subroutine Address (A, C3L=0)

0 |AST Qucue Thread Word

A.GBL {Length of Control Block in BYtes

A_BYT |{Number of Bytes to Allocate on Task Stack

A.ASTAST Trap Address
~\-NPR_ Number of AST Paramerers
Al ?R}‘_ﬁ First AST Parameters

i

Figure 5.8 AST block

-51-

at tae virtual address "I4ST" with the unit pumber 2 and the-
byte count from offspring's 1/0 reguest on the stack.

2.In the controlling task‘g A5T routine, an event flag
associated. with that channel is declared. The remote log-in

control task detects this event, retrieves an input line for

offspring from the physical 1/0 port, and specifiies tnis

line in a QI directive to a LUN assigﬁed te viIT2Z: wlta an
10.WVB or IO, WLB.

3.Tne virtual terminal driver reads the line from the control
task's buffer, writes the line to Sffsprlng‘s buffer and
then signal I/0 complet.on for botan I/0 requests. Similarly,
if offspfing needs to print a message, it does so with an
IO.WVB or 10.WLB to TI:.

4.1In the controliing task's ouvput AST routine, a specfic
event flag is also set. For the declared event flag, the
control task issues an 10,.RVB or IO.RLS to retrieve the line
via the virtual terminal driver. Then, the control task may
output tnis line to the pnysicai I/0 port witn the user I

in front of the messaye.

.

For eacn remote user's command line the coﬁtrol task may use
spawn directive queuiné a command line to a specific task for
execution, and establlshing the task's TI: as a previously opened
virtual terminal unit. Tne task being spawned 1s a commapnd line
interpreter called Monitor Consule Routine(MCr), it allows users
to operate and control the RSX-11M sy;tem. The I/0 operation
process of the virtual terminal device nas been 1llustrated in

Figure 5.9. Figure 5.18 shows the control £flow of VTMON, T

B2

AP l(——-— MCR

)

A
A | o
| SPWN3 MCR...,,,,.,evn,cmdline +cmdieng, ,Vvrin
I0.RLB : '
10.WLR |
Y y] L
VTDRV f*—— VTAUN DDCHP ——%ﬁ TTYDRY [
. I0.WVB I0.RAL
I0.RVB

IO. WAL

Figure 5.9 Modified RSX=11/4 Terminal 1/0

-53-

VIMON:
initialization;
MAINLP:
walt events;
event l¥: /* data from DDCuP */
pack input data, set flay % if got whole frame;
goto MAINLP,; :
event %' : /* process frame data */
get frame data from the ring buffer;
check user ID;
if VI is not created yet then
create new VT by linkiny DCB and 0OCB,
spawn command (Hello) to MCR;
goto MAINLP;
else if input request nas peen set tneu
issue $QI0 I10.WLB to VTLRV,
else spawn command to MCR;
goto MAINLP; :
event 1-8: /* I/0 request from VIURV */
scan event flay list and store tne right VT# in RL;
if it’s input request from VTOKRV then
. set input request flag;
clear event flag;
goto MAINLP;
else
clear event flag; .
issue $QI0 IO.RLB to VTDRV;
check VT status, if it's illegal hello messaye tnen
close VT;
else if it's bye message Lnen
set MARKTIME;
transform VFC{in data puffer) into cnaracters;
format data frame by adding header;
send output buffer to DDCMP;
goto MAINLP;

Figure 5,10 .Control flow of VTMON

¥

A

-5~

5.3. Virtual Terminal Driver

The virtual terminal dirver is primacr ly intended for facil-
itating a parent task to simulate terminal I/0Q for an offspring
task activated witn the spawnjdirectxve. This simulation takes
place via a viftual terminal unit whose unigue data
Structures(DCB and UCB) are dynamically created while tne virtual
terminal unit 1is being opened. Only one common SCB is used for

all virtual terminal units.

The virtual terminal driver employs tne UC.QUE pit(in UCB
UJ.CTL word} to receivé all 1/0 packets directly from the QIO
directive. Offspriny read- and write- regyuests are gueued roc the
common 5CB and degueued one by one {(FIF0), based on the attacna-
ment of the device and the presence of other requests. whenever
an offspring read or write is dequeued, the parent task receives
an AST at its input- or output- AST entry point. Tne parent tasa
is then expected to issue a complementary write- or read- request

to simulate a terminal I1/0 transfer.

Only Offspring tasks may attach the virtual terminal anit.
Parent task’'s requests are always serviced in spite of the at-

tachment of the virtual terminal unit.

The driver initiator entry point is entered from thne WiLo
directive whenever a parent or offspring request is issued.
Parent I/0 requests are always servicea immediately, normally
resulting in a block I/é'trangfer of data and the completion of

botn the parent reguest and the corresponding offspriny reguest.

G55

Offspring requests are initially gqueued and then dequeued one by
one. An AST 1is declared in the parent task wnenever an offsprxing
read or write is degueued. Fagure 5.11 shows the control flow of

the VT driver.

VTDRV: :
Check U.PITCB, if not VITMON regquests 1/0 then goto OFSRIO,
else /* VITMON requests 1/0 */
transfer data;
"1t this is offspring task's write reguest taen
deallocate puffer;
set unit not~pust(U.sT8);
if it's pbuffered I/0 then
queue I1/0 packet in AST list of offsprang task's 1C8,
unstop offspring task;
do 1/0 finish{via $IOFIN) for offspring task;
/* SIOFIN will deallocate 1I/0 packet and
. send I/0 complete status */
do 1/0 finish{via $IOFIN) for VIMON;
goto GIOPKT;
OFS5RIO: /* offspring task reguests I/0 */
queue I/0 packet in SCB; ’
GIOPKT: get 1I/0 packet from sCB;
if no more request or unit busy then return,
else /* process offspring task's I/0 reyuest */
set unit busy(U.S8T5),
save address of I/0 packet 1in U.PKT,
allocate AS7T block,
save address of AST block in 1/0 packet;
if not buffered I/0 tnen goto QUEAST,
else /* puffered 1/0 */
store PCB address in 1/0 packet,
allocate puffer and save address
in 1I/0 packet;
‘ if read reyuest then yoto S5TOPOF,
else transter data from the
user's buffer to
allocated buffer;
. STOPOF: stop the offspring task;
QUEAST: qguene AST block in TCB of VIMON;
return; -

Figure 5.1l Coutrol flow of VIURV

~56-

2.4 DOCMP -- Data Link Control Protocol

Tne data link control protocol in RSX-1i/M system is com-
pletely symmetric to the data link control protecol in FEP. How-
ever, since tnét'we are also working for a project to connect a
heterogeneous computer network for a distributed datavase gys-
temll4], the DOUCMP protocol nandler in the RSX-11/M system has
been impiemented to couple with tne network's reguirements.
Presumably the link connection protocol has peen extended as bal-
ance mode in the sense that either of the two stations can ini~
tiate the 1link connection, tnis is different from the master-
slave mode of the FEP's link connection protocol. Figure 5,42
illustrates the DLC connection protocol oi tne KSX-11/M system.
The DLC data exchange protocol 1s the same as shown in Figure

4.5,

-57~

ASTRT

timeout
R.STRT.F

—— v ———

§.STACK.F
stop timer

R.STACK.F
R.ACK .F
S.ACK .F

stop timex

R.STACK.F

- —— - — -

S.ACK .P
stop time

Figure 5,12

R.STRT.F

o

5.58TACK.F
start timer

IDLE

R.DISC.F

— . —

reguest_to_connect

5.5TRT.F
start timer

S.S5TACK.F
stop timer

. timeout

—— . vy ——

S5.STRT.F
start timer

INSTRT
R.STACK.F

“S.ACK .F
stop timer

DLC connection protocol of RSX-il/M

~-58-

Conclusions

In this report we describe tne design and implementation
detail of a 480-based front end processor witn multiuser remote
loyin capability. In FEP, a real-time event-driven multitaskingy
executive has been implemented to drive a set of layered protocol
machines, In the hosu computer, a set of comunication software
programs has also been implemented to function as the layered
peer-protocol machines., In particular, v1r£ual terminal. concept
has been employed to enhance the communication capability of the
RSX-11/M system. The result of tnis project has alsoc peen extend-
ed to achieve the communication requirement of a heteroyeneous

computer network, and is now run to test.

-5

REFERENCES

(l)'D* M. Ritcnle and K. L. Thompson,“"The UNIX Time-snaring
System," CACM, VOL.17, NO.7, July 1974,

(2) R. F. Rashid,"An Interprocess Communication Facility
For UNIX," Local Networks for Computer Communications,
North-Hoxland Publisning Company, luidl.

(3) L. A. Rowe and K. P. Birman,"A Local Network Based on
the UNIX Operating System," Ikkk ‘rans. on Soitware
Engineering, VO#. SE—Q; NO.2Z2, Marcn 19H2.

{4) "ng—au User's Guide", Intel Corp.

{5} "REX-B¢ Primer", Syspem and Software Corp.

(6) "RSX-1i/M Utility Manual", pigital Eguipment Corp.

{(7) "RS5a-11/M Executive Reference Manual', Digital Eguipment
Carp.

(8) v.W.Davies “Coqputer networks and their protocols"”

(Y) Michel Gien YA File Transfer Protocol,Computer Network,

Fep., 1973,

(lw) R. C. Holt, "structured Concurrent Programming with
Operating Systenm Apélications,“ Addison wesley, 1v78.

{(1Ll) John D.Day,"Terminal Protucols” I1EEE transaction on
communications, VOL,COM-23, no.4, APRIL L19BdY.

(12) Kai dwany, Benjaming w.wap and Fage A.Brigys,
"Engineering Compute£ Network" ,AFIPS conference
procesaings UOLfSM. |

(13) J. 5. Ke and ﬁ. C. Lia,"Desiyn and Implementation of a

Front End Processor with Multiuser kditing

-6~

Capability", Technical) Repori TR-8l-4¥4, Institute
of Information Science, Academia Sinica, R.0.C.,
October 1Ysl.

(l14) J. S. Ke, €. L. bLin, and H. L. Cuen etal.,"Design and
Implementation of a Distributed Database System", Technical
Report Th-83-wid2, Institute of Informathn Sclence,
Academia Sinica, R.0.C., January 1583.

(L5) C. €. Lu, C. L, Lin, and J. S. Ke,"knhanced Interprocess
Communication Mecnanisms for UNIX", Proc. of 1CS582,

Taichuug, Oec. 1982,

—61-

